Automotive PEM Stack Freeze Requirements & Suggested Fundamental Studies

Fuel Cell Activities

Glenn Skala 01FEB05

Conundrum

One of the most attractive attributes of a hydrogen fuel cell is that it makes pure water

One of the most challenging attributes of a hydrogen fuel cell is that it makes pure water

Minimum Temperatures

Startability

Freeze Related Degradation

Suggested Fundamental Studies

Minimum Ambient Temperatures

Minimum start temperature*	-4 0°C
Vehicle able to start unassisted	
Minimum non-start temperature*	-48°C

*From GM Vehicle Technical Specifications

Minimum Temperatures **Startability** Freeze Related Degradation Suggested Fundamental Studies

Startability Targets

Start Time

 A competitive FCV must be able to start unassisted from –30°C and drive away at 70% power within 30 seconds

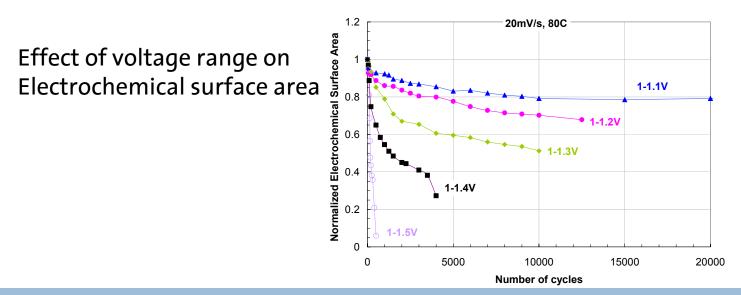
Start Energy

- Total vehicle fuel consumption should not increase more than 75% when comparing Phase 1 (Cold Start) of a -25°C EPA City test vs. Phase 3 (hot start) of 20°C EPA-City test*
- For an 'average' hydrogen FCV this translates to roughly 5MJ of additional energy allowed for -25°C startup and drive (including shutdown)

*Derived from SAE paper 2001-01-0221 "Cold Start Impact on Vehicle Energy Use", Gordon W. R. Taylor, Steve Stewart

Minimum Temperatures Startability Freeze Related Degradation

Suggested Fundamental Studies


Freeze Related Degradation Targets

- Up to 30 millivolts of cell voltage degradation (at max current) is allowed over the life of the stack (5500 operating hours)
 - There are multiple sources of stack voltage degradation
 - The vehicle is expected to startup about 40,000 times during its 5500 hour operating life
 - 1000 to 1500 of these starts are expected to be frozen

Freeze Related Degradation Targets

- The mix of voltage degradation requirements results in the following:
 - Allowable freeze related voltage degradation can be as high as 20 to 30 microvolts per frozen start if all other sources are zero (highly unlikely)
 - Considering the other sources of voltage degradation today, freeze related voltage degradation is a relatively minor issue

Minimum Temperatures Startability Freeze Related Degradation Suggested Fundamental Studies

Suggested Fundamental Studies

Considering the wide variety of fuel cell stack designs and system approaches it seems that the common ground for freeze related studies lies in the MEA/GDL (softgoods) arena

- Suggestions for fundamental studies include the following:
 - Better understanding of the state of water and proton conductivity in PFSA membranes (and others?) at freezing temperatures down to -40°C
 - Develop low cost catalyst systems and/or electrodes that are resistant to corrosion, platinum sintering and platinum dissolution.
 - Develop coolants with lower slush points that meet or exceed cost, performance, environmental and safety requirements

Fuel Cell Activities