Lower Cost, Higher Performance Carbon Fiber

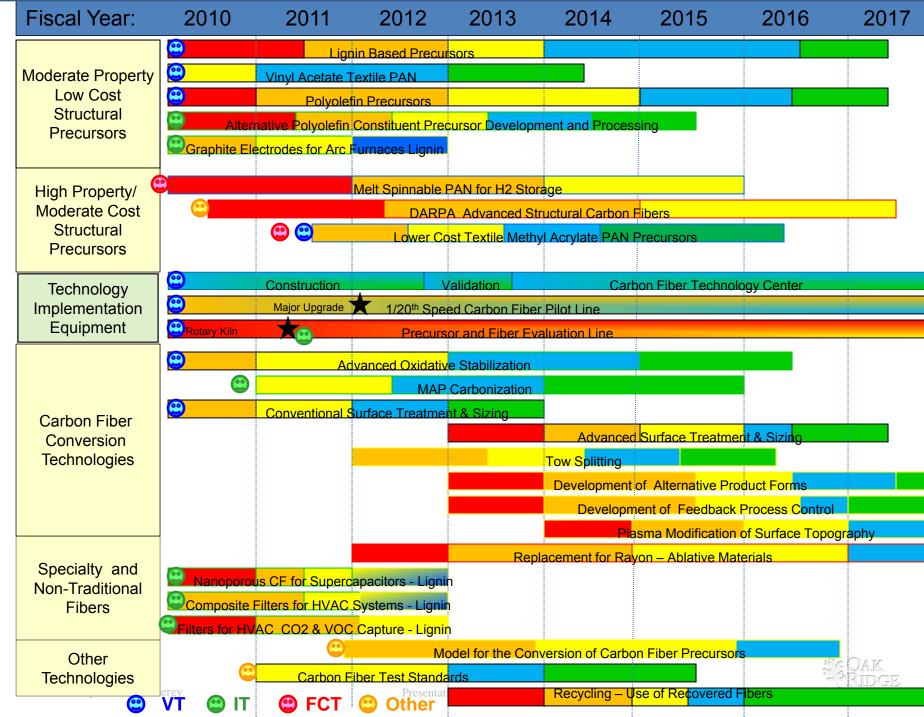
14 February 2011

C. David (Dave) Warren Field Technical Manager Transportation Materials Research

Oak Ridge National Laboratory P.O. Box 2009, M/S 8050 Oak Ridge, Tennessee 37831-8050 Phone: 865-574-9693 Fax: 865-574-0740 Email: WarrenCD@ORNL.GOV

How can the cost of carbon fiber suitable for higher performance applications (H₂ Storage) be developed?

H₂ Storage requirements implies Aerospace grade fibers.


Can we build off of work previously done for more modest structural applications?

To accurately answer: We need to know the **minimum performance** and **maximum cost** requirements of the fiber not simply the properties of current fiber.

Outline:

Technology development & potential industries The cost of making Carbon Fiber. The paths taken for structural materials. Potential paths for higher performance fiber cost reduction.

Cost Performance Categories

Carbon Fibers can be divided into 4 Broad Cost/Performance Categories:

High Performance	>750 KSI > 35 MSI	Cost is not Limiting Performance Driven
Moderate Grade	500 – 750 KSI 25 – 35 MSI	Cost and Performance Balance
High Volume Grade	250 – 500 KSI < 25 MSI	Cost Sensitive Performance Enabling
Non Structural	Chemical & Physical Properties of Carbon	Usually Low Cost and Chosen for Uniqueness

Most High Volume Industries would require the last 2 Categories

Potential Markets and Needs

🙂 250-500 KSI, 25 MSI Fiber 🛛 🙂 500 - 750 KSI, 35 - 40 MSI Fiber

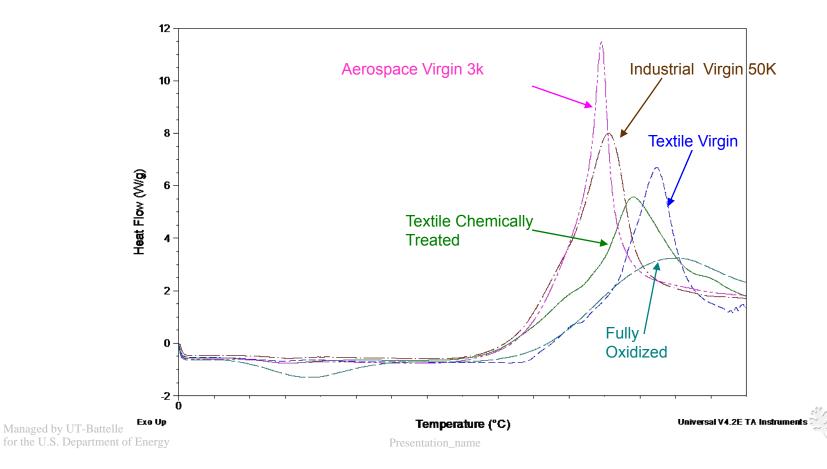
Industry	Benefit	Applications	Drivers	Obstacles	Current Market	Potential Market
Automotive	Mass Reduction: 10% Mass Savings translates to 6-7% Fuel Reduction	Throughout Body and Chassis	Tensile Modulus; Tensile Strength	Cost: Need \$5-7/lb; Fiber Format; Compatibility with automotive resins, Processing Technologies	< 1M lbs/yr	> 1B lbs/year
Wind Energy	Enables Longer Blade Designs and More Efficient Blade Designs	Blades and Turbine Components that must be mounted on top of the towers	Tensile Modulus; Tensile Strength to reduce blade deflection	Cost and Fiber Availability; Compression Strength; Fiber Format & Manufacturing Methods	1-10 M Ibs/yr	100M - 1B Ibs/yr
Oil & Gas	Deep Water Production Enabler	Pipes, Drill Shafts, Off-Shore Structures	Low Mass, High Strength, High Stiffness, Corrosion Resistant	Cost and Fiber Availability; Manufacturing Methods	< 1M lbs/yr	10 - 100M Ibs/yr
Electrical Storage and Transmission	Reliability & Energy Storage	Low Mass, Zero CTE transmission cables; Flywheels for Energy Storage	Zero Coeficient of Thermal Expansion; Low Mass; High Strength	Cost; Cable Designs; High Volume Manufacturing Processes; Resin Compatibility	< 1M lbs/yr	10-100M Ibs/yr
Pressure vessels	Affordable Storage Vessels	Hydrogen Storage, Natural Gas Storage	High Strength; Light Weight	Cost; Consistent Mechanical Properties	< 1M lbs/yr	1-10B lbs/yr

Potential Markets and Needs (Continued)

(2) 250 -	500 KSI, 25 M	SI Fiber	() 500 - 75	0 KSI, 35 - 40 MS		criais
Industry	Benefit	Applications	Drivers	Obstacles	Current Market	Potential Market
Infrastructure	Bridge Design, Bridge Retrofit, Seismic Retrofit, Rapid Build, Hardening against Terrorist Threats	Retrofit and Repair of Aging Bridges and Columns; Pretensioning Cables; Pre- Manufactured Sections; Non- Corrosive Rebar	Tensile Strength & Stiffness; Non- Corrosive; Lightweight; Can be "Pre-Manufactured"	Cost; Fiber Availability; Design Methods; Design Standards; Product Form; Non-Epoxy Resin Compatibility	1-10M Ibs/yr	1-100B Ibs/yr
Non-Aerospace Defense	Lightweight Ground and Sea Systems; Improved Mobility and Deployability	Ship Structures; Support Equipment; Tanks; Helicopters	Low Mass; High Strength; High Stiffness	Cost; Fiber Availability; Fire Resistance; Design into Armor	1-10M Ibs/yr	10-100M Ibs/yr
Electronics	EMI Shielding	Consumer Electronics	Low Mass; Electical Conductivity	Cost; Availability	1-10M lbs/yr	10-100M Ibs/yr
Aerospace	Secondary Structures	Fairings; seat structures; luggage racks; galley equipment	High Modulus; Low Mass	Cost of lower performance grades; Non-Epoxy Resin Compatibility	1-10M Ibs/yr	10-100M Ibs/yr
Non-Traditional Energy Applications	Enabler for Geothermal and Ocean Thermal Energy Conversion	Structural Design Members; Thermal Management, Energy Storage	Tensile Strength & Stiffness; Non- Corrosive; Lightweight	Design Concepts; Manufacturing Methods; Fiber Cost; Fiber Availability	1-10M Ibs/yr	10M-1B Ibs/yr
Electircal 🙂 Energy Storage	Key Storage Media	Li-Ion Batteries; Super-capacitors	Electrical and Chemical Properties	Design Concepts; Fiber Cost and Availability	1-5M lbs/yr ∯	10-50M lbs/yr
forthe US. Depar	ment of Energy	Pre	sentation_name		11-70M lbs/yr	3-114B Ibs/yr

So What is the difference between making aerospace and industrial grade carbon fiber?

Materials

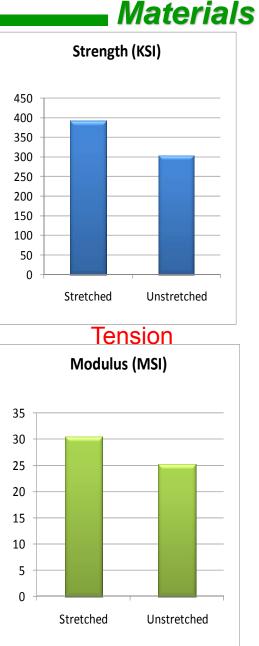

Attribute	Industrial Grade	Aerospace Grade	Cost Impact
Tow Size	12-80K Filaments	1-12K Filaments	Less material throughput
Precursor Content	< 92% AN, MA or VA	> 92% AN, MA	Little on raw material; slower oxidation
Precursor purity & uniformity	Can tolerate more impurity	Controls UTS and compression strength	Slower spinning speed
Oxidation	Quicker due to lower AN	Slower due to higher AN	Time is money
Carbonization	Lower Temp	Sometimes Higher Temp	Small impact
Surface treatment	Same but utility affected	Same	None but Load Transfer affects amount of fiber needed
Packaging	Spooled	Small Spools	More Handling
Certification	None	Significant	Expensive; Prevents incremental Improvements.

Essentially the same process with slightly different starting materials. Not captured is the fact the CF manufacturers are specialty material makers, not high volume.

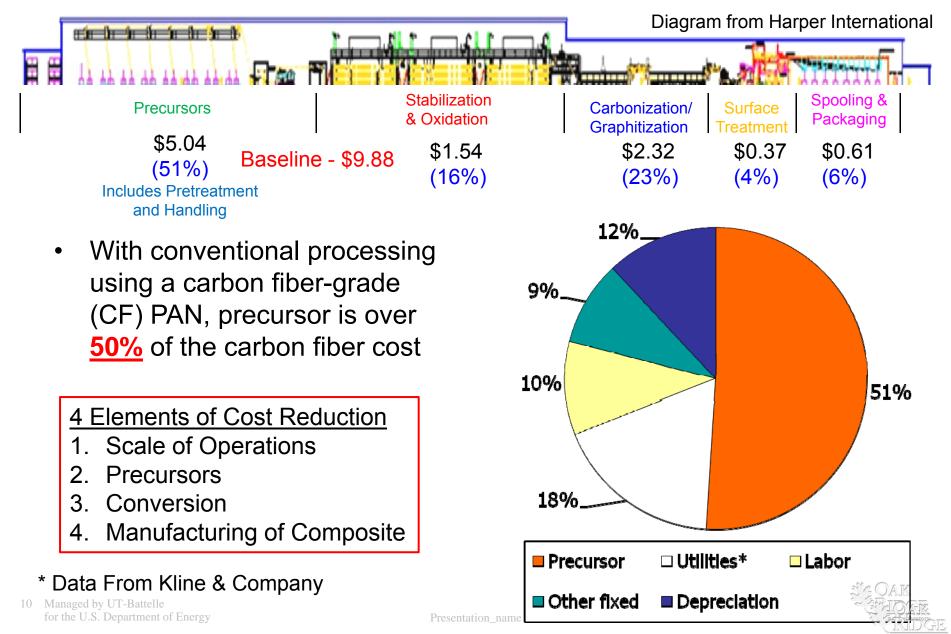
So What is the difference between making aerospace and industrial grade carbon fiber? Materials

An higher performance fiber during production has:

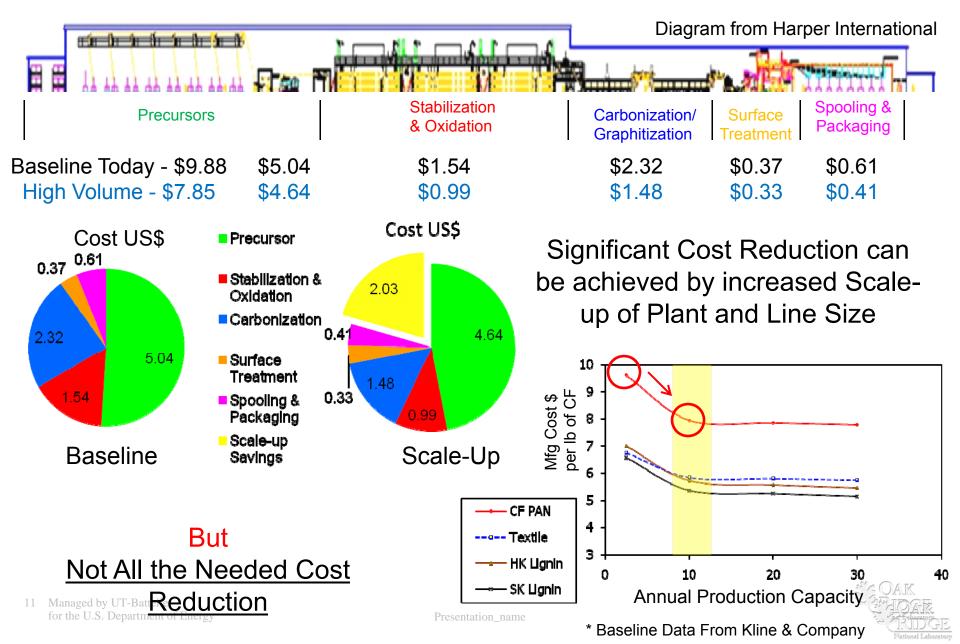
- 1. Less material throughput (smaller tow size).
- 2. Requires more care in spinning (to get round fibers).
- 3. Spends longer in oxidation (affects lbs/hr production).
- 4. And requires higher temperature carbonization (energy \$).



Strength/Modulus vs. Temp


32 Msi **Temperature** *Fortafil F3 (C) Elastic Modulus (Msi) Tensile Strength (Ksi) *Panex 33 Stretched **Carbonization Temperature**

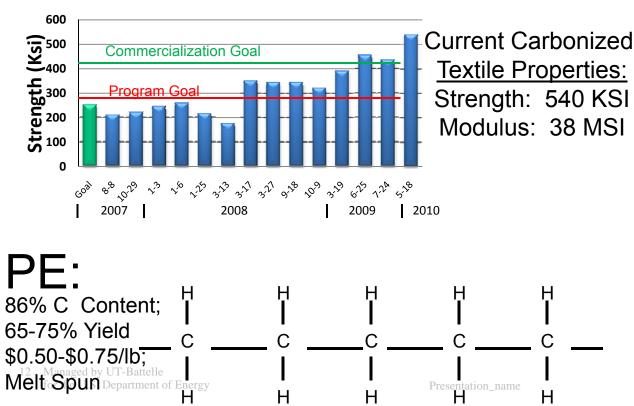
Based on broom straw test method measured in our labs (Not from Co. brochure)


Final Properties Depend upon: Managed binne – Temperature – Tension for the U.S. Department of Energy

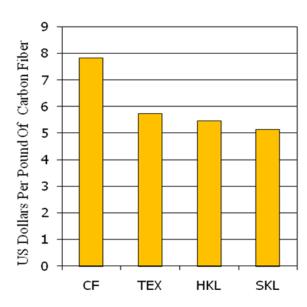
Carbon Fiber Costs (Baseline – 24K)

Carbon Fiber Costs (1. Scale of Operations)

Carbon Fiber Costs (2. Precursors)


Materials

More Affordable Precursors are Needed


<u>3 Current Precursor Options</u>

- 1. Textile Grade PAN (MA or VA formulations)
- 2. Lignin Based Precursor (Hardwood or Softwood)
- 3. Polyolefins (not shown on chart)

Carbonized Textile Precursor

Alternative Precursors and Conventional Processing

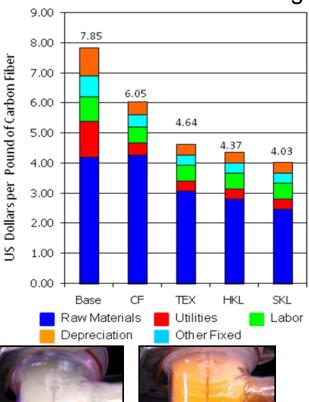
Processed Precursor Fibers from a Hardwood/Softwood Lignin Blend.

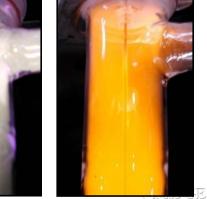
Current Research (3. Conversion)

Alternative Processing Methods Under Development

Current Generation of Oxidative Stabilization Equipment

Oxidized tows


3 Processing Methods


- 1. Advanced Oxidative Stabilization
- 2. MAP Carbonization
- 3. Surface Treatment (Not on graph)

MAP Carbonization/ Graphitization Unit

Alternative Processing


Materials

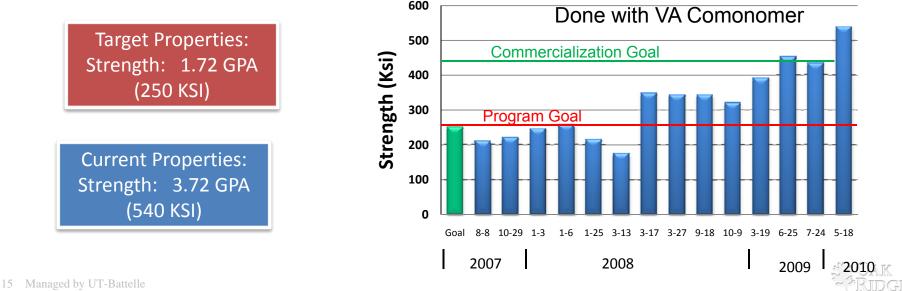
Advanced Surface Treatment

Composite Down Stream Processing

System designed for Epoxy based, Aerospace parts

The composite development and production process is very fragmented and expensive for typical carbon fiber composites.

 Managed by UT-Battelle
 Managed by US-Danagement of Energy for the U.S. Department of Energy

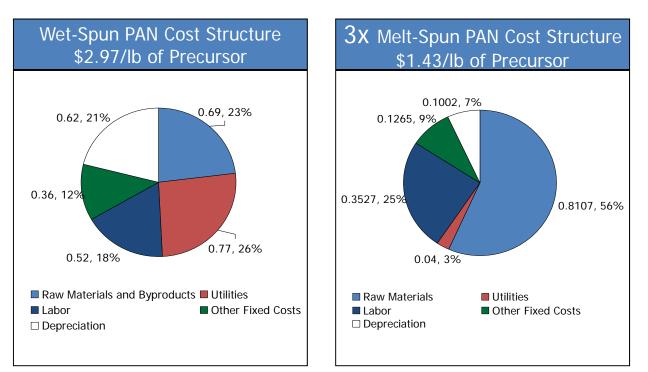

1. Textile PAN that is MA-based (Shorter Term)

Materials

Challenges:

- 1. Adapting high speed processes for higher AN concentration.
- 2. Adapting high speed processes to increase precursor purity (minimize defects).
- 3. Spinning of round fibers (air gap spinning).
- 4. Improving consistency, fiber to fiber and along fibers without sacrificing speed.

Can be done. Largely a quality control and willingness issue.


15 Managed by UT-Battelle for the U.S. Department of Energy

Potential Paths for Higher Performance CF cost reduction

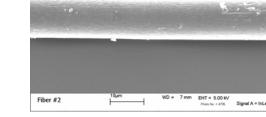
Materials

2. Melt-Spun PAN (Mid-Term)

- 1. 30% lower plant cost and 30% lower operating cost. No current manufacturers.
- 2. Higher properties must be developed. 400-600 ksi proven.
- 3. Melt spinning if faster.

BASF developed melt-spun PAN precursor in the 1980's

- Carbon fibers were qualified for B2 bomber
- Demonstrated 400 600 ksi fiber strength and 30 40 Msi modulus; even better properties were thought to be achievable
- PAN content was 95% 98% (consistent with high strength)


Significantly lower production cost than wet-spun fibers

- ~ 30% lower precursor plant capital investment
- ~ 30% lower precursor plant operating cost

Typical precursor line speed increased by $\geq 4X$ at winders

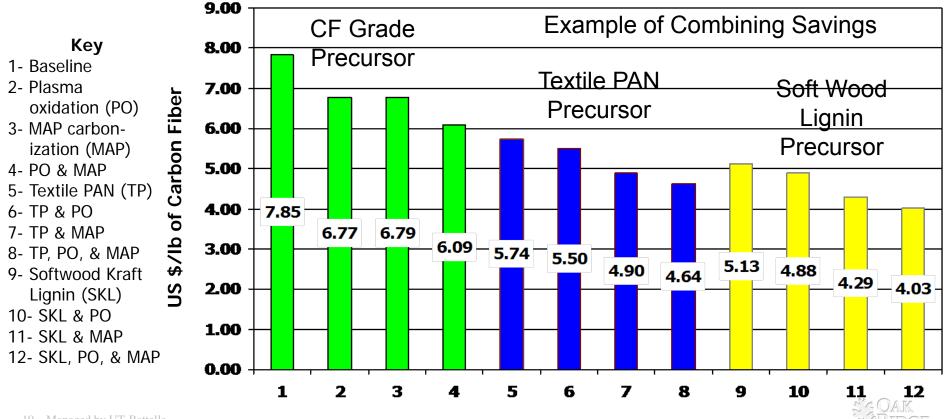
- Demonstrated feasibility of using benign plasticizers to melt spin PAN and promote higher degree of drawing
- Novel comonomers were successfully incorporated
 - Initially produced: Foamed PAN fibers and high molecular weight "fibrous" materials (4/08)
- First (low-quality) fibers were melt spun (2008 to mid 2009)
- Actual, produced PAN filaments:
 - Moderate quality
 - Large diameters
 - Need increase AN contain, > 95%

17 Managed by UT-Battelle for the U.S. Department of Energ

Materials

3. Develop a New Precursor (Longer-Term)

- 1. Polyolefins are the leading candidate, however, technology very premature.
- 2. Lignin achieving that level of properties unlikely due to inhomogenity.
- 3. Any other suitable precursor candidates would be even more suitable for lower performance fibers.
- 4. Micro/Nano-Doped Precursors (strength & seeding) [My #1 alternative]
- 5. New precursors must be proven at lower strength levels before obtaining higher strengths.



Potential Paths for Higher Performance CF cost reduction

4. Couple New Precursor with Advanced Processing (Mid to Long -Term)

Materials

- 1. Cost reduction can be a function of both a lower cost precursor and less expensive processing methods.
- 2. Would result in a critical path of activities.

19 Managed by UT-Battelle for the U.S. Department of Energy

Potential Paths for Higher Performance CF cost reduction

5. Increase Competition and Suppliers

Part of the multi-industry approach being pursued.

Global Carbon Fiber Production - Estimated Capacity 2010

Not included is a 40,000,000 lb/year Chinese plant to come on-line after 2010 and a large Russian plant under Contruction.

			Small Tow*	Large Tow*	Total
			Production,	Production,	Production,
Company	Headquarters	Manufacturing Sites	lbs/year	lbs/year	lbs/year
AKSA	Turkey	Turkey	4,000,000		4,000,000
Cytec	US – SC	US-SC	5,000,000		5,000,000
Dalian Xingke	China	China	1,320,000		1,320,000
Grafil - Mitsubishi	US – CA	US - CA	4,400,000		4,400,000
Hexcel	US – UT	US - UT, AL	16,000,000		16,000,000
Kemrock	India	INDIA	1,430,000		1,430,000
Mitsubishi - Rayon	Japan	Japan, US-CA	13,530,000	6,000,000	19,530,000
SGL	Germany	Germany, UK, US-WY		14,300,000	14,300,000
Toho	Japan	Japan, US-TN	29,620,000		29,620,000
Тогау	Japan	Japan, US-AL	39,440,000	660,000	40,100,000
Yingyou	China	China	484,000		484,000
Zoltek	US-Mo	US -UT, TX, MO, Mexico		19,300,000	19,300,000
Total		Presentation name	115,224,000	40,260,000	155,484,000

Source: McConnell, V. "The Making of Carbon Fiber", CompositesWorld, 19 December 2008.

Comparison of Impact

Materials

Comparison of Technologies	Energy kBTU/lb	CO2 Emitted /lb of CF	Plant Cost \$/lb CF	Operating Cost \$/lb CF	Precursor Cost \$/lb CF	Total Mfg Cost \$/lb CF	Best Properties Achieved
Conventional Precursors (CC)	389	49.2	8.72	2.71	4.02	7.85	Baseline
Conventional Precursors (AC)	272	34.4	4.28	1.34	4.02	6.05	Baseline
Textile PAN – MA (CC)	389	49.2	5.56	2.06	2.90	5.74	Should exceed 450 KSI
Textile PAN-MA (AC)	272	34.4	3.57	1.20	2.90	4.64	Should exceed 450 KSI
Melt-Spun PAN (CC)			18.04	3.36	1.62	8.34	400-600 KSI
Melt-Spun PAN (AC)	138	19.4			1.62		Should match Conventional
Polyolefins (CC)	167	22.6					
Polyolefins (AC)	96	13.4					

21 Managed by UT-Battelle for the U.S. Department of Energy

AC – Advanced Conversion

Presentation_name

Contraction of the

The Carbon Fiber Team

Felix Paulauskas

Nidia Gallego

23 **Robert Norris** 23 Managed by UT-Battelle for the U.S. Department of Energy

Amit Naskar

Mohamed Abdallah

Ken Yarborough

Frederick Baker

Cliff Eberle

Ronny Lomax

resentation_name

Soydan Ozcan

Dave Warren

The Carbon Fiber Team

Brian Eckhart

Pol Grappe

Marcus Hunt

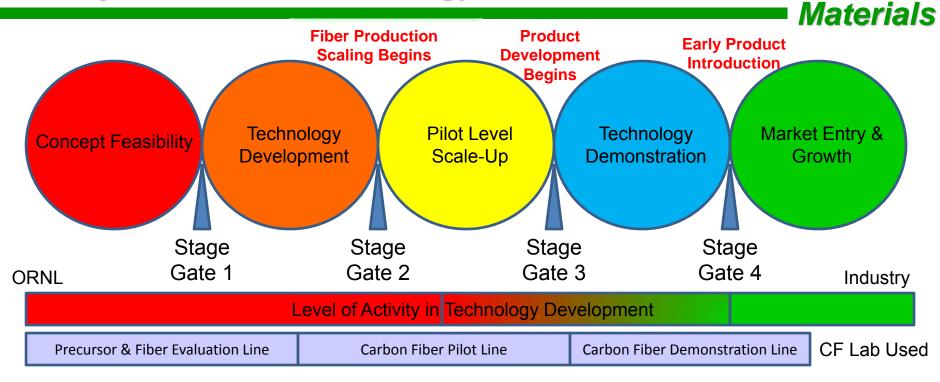
24 Managed by UT-Battelle for the U.S. Department of Energy

Rebecca Brown

Tomonori Saito

Kelby Cassity

Daniel Webb

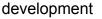

The entire team contributed to this presentation!!!!

Future Staff

Process for Carbon Fiber Technology Commercialization

Resolve continuous

Demonstrate technical feasibility
Demonstrate likely cost effectiveness
Bench scale
Small material volume
Batch processes
Concludes with design of issue


resolution plan

Demonstrate technology works
Demonstrate cost effectiveness if scaled
Bench scale
Small material volume
Batch processes transitioning to continuous
Concludes with design of prototype

unit or materials

- operation issues •Develop continuous operation capability for short time periods •Moderate material volume increasing as issues are resolved • Concludes with design of continuous unit or final material selection
- Work to resolve scale –up equipment issues
- •Develop multi-tow continuous operation capability for long periods of time
- Material volumes for product design and development
- Concludes with industrial adoption

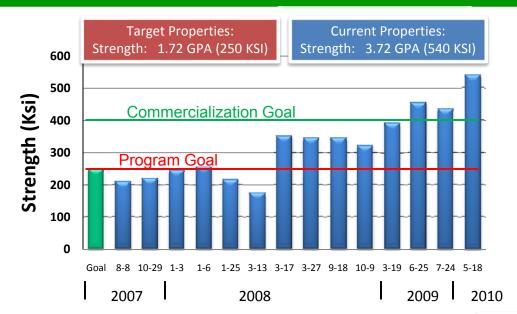
- Industry adoption
- Product
- development
- •Customer base

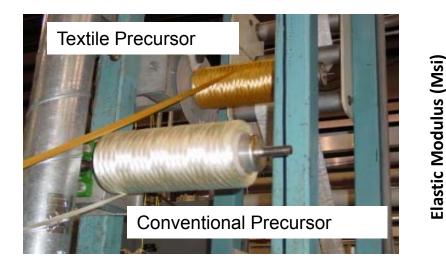
25 Managed by UT-Battelle for the U.S. Department of Energy

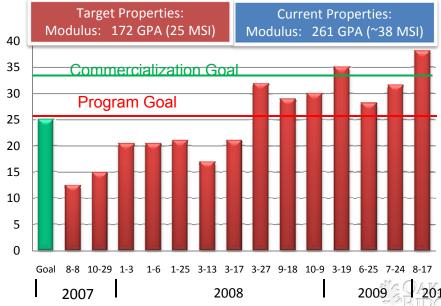
Common Issues and Needs: Multi-Industry Approach

Materials

Low, stable price Assured supply Design methods Product forms Product consistency Manufacturing methods Recovery and reuse






National Laborator

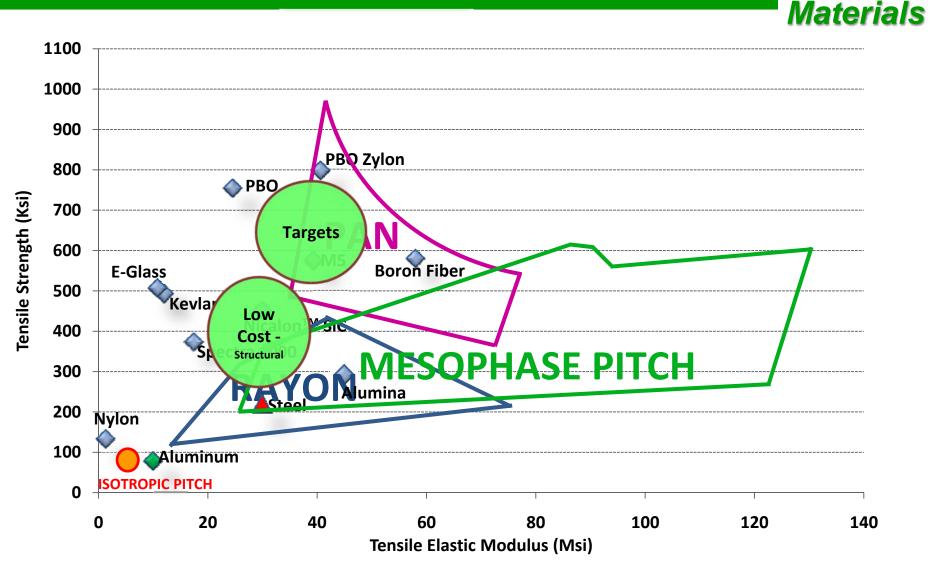
Textile PAN – Strength & Modulus

27 Managed by UT-Battelle for the U.S. Department of Energy

Materials

Diagram from H	Harper Inte	rnational	tion/	Stabiliz	zation		Precursors	
Packaging	Treatment			& Oxid			1100010010	
\$0.61	\$0.37	\$2.3		\$1	.54 Ba	aseline Tod	lay - \$9.88 \$5.	.04
\$0.41	\$0.33	\$1.4	8	\$0	.99 F	ligh Volum	ie - \$7.85 \$4	.64
Precursor type	Yi	eld (%)	\$/lb (as- spun)	Melt- spinn		chieved erties	Problem]
	Theore tical	Practical		able	Strength (KSI)	Modulus (MSI)		
Conventiona PAN	al 68	45-50	>4	No	500-900	30-65	High cost	
Textile PAN	* ~ 68	45-50	1-3	No	300-400+	30	High variation in properties	
Lignin*	62-67	40-50	0.40 - 0.70	Yes	160	15	Fiber handling, low strength & slow stabilization step	
Polyolefin**	86	65-80	0.35 - 0.5	Yes	380	30	Slow stabilization (sulfonation) step	
* Ongoing work ** Hexcel work	(2004)	∱ Yield	↑ Inexpensive		· · · · ·	↑ es Proven all Scale	↑ Obstacle Addressed	_

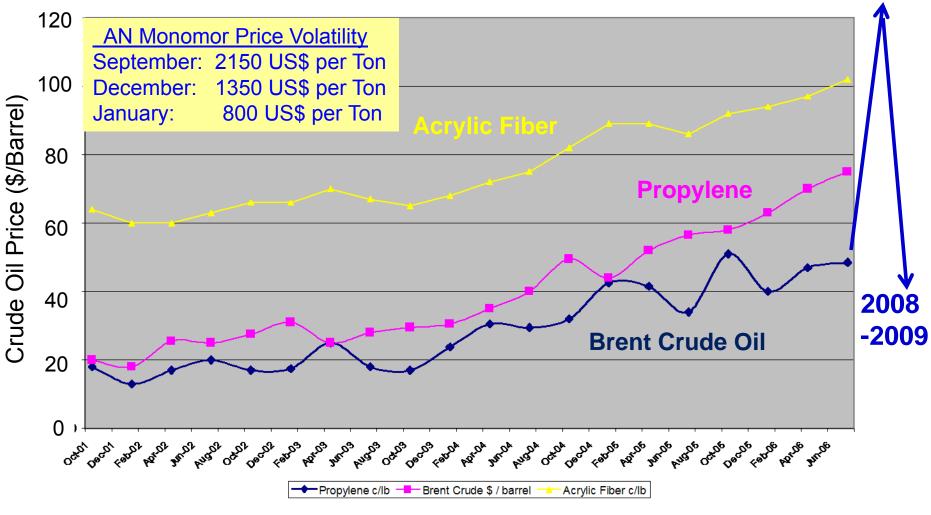
Eliminating Oxidative Stabilization Reduced conversion time to 15 – 30 minutes



Polyolefin Precursors – Cost Potential

Diag	Iram from H	Harper Intern	ational					A. 16. 6. 11. 16	
	TTTTTT	the sta							
	Spooling & Packaging	Surface Treatment	Carbonization/ Graphitization		Stabilization & Oxidation			Precursors	6
	\$0.61	\$0.37	\$2.32		\$1.54	Bas	seline Today	- \$9.88	\$5.04
	\$0.41	\$0.33	\$1.48		\$0.99	Hi	gh Volume -	\$7.85	\$4.64
High	\$0.41	\$0.33	\$1.48		\$0.20		\$3.3	32	\$0.90
Low	\$0.41	\$0.33	\$1.25		\$0.10		\$2.7	' 4	\$0.65
			Faster	Effluents throughput ncineration					
					Small tow				
			•	tow CF	(<24k) CF		Textile	Polyolef	
			Prec	ursor	Precursor		Precursor	Precu	rsor
	As-Spun	Fiber (\$/lb)	\$	3-5	\$ 4-6		\$ 2-3	\$ 0.50 - \$ 0	0.60
	Carbon Y	′ield	~4	5%	~50%		~50%	65 - 80%	6
	Precurso	r Cost (\$ /lb	CF) \$6.	5-11	\$ 8-12		\$ 4-6	\$ 0.65 - \$ 0	0.90
	Stabilizat	ion	85 - 1	20 min	75 -100 mir	n	75 - 100 min	60 min	**
	Carboniz	ation	Sa	me	Same		Same	Same	

Carbon Fiber Property Goal



Source: 1) Modified from J.G. Lavin, 'High Performance Fibers', Ed John Hearle, Chapter 5, Woodhead Publishing, 2001, 2) Peter Morgan, Carbon Fibers and Their Composites, Taylor & Francis 2005, 3) A.R.Bunsell, Fibre reinforcements for composite materials, Elsevier, 1987

Courtesy: Soydan Ozcan

PAN Dependence on Oil Price

Materials

Current Carbon Fiber Raw Materials are Tied to Oil

