U.S. DOE Webinar

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS

Rob Burgess Moderator

Jesse Schneider TIR J2601, Hydrogen Fueling Guideline

Steve Mathison

Development Fueling-MC Method

SAE TIR J2601 Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Guideline

Jesse Schneider (BMW) SAE J2601 & J2799 Sponsor

SAE TIR J2601 CURRENT USES AND SUPPORTING ORGANIZATIONS

EU CEP/ H2 Mobility/ NOW

US (DOE,CaFCP/ CARB, CEC)

ASIA (HySUT/FCCJ/ JARI/ NEDO)

OUTLINE

- Standardization & Timeline
- Hydrogen Fueling Background
- SAE TIR J2601, Guideline
- Theory and Modeling/ Tables
- Testing
- TIR J2601/ Dispenser Testing
- What is the next version? (Follow Up Planned)

OUTLINE

Standardization & Timeline

- Hydrogen Fueling Background
- SAE TIR J2601, Guideline
- Theory and Modeling/ Tables
- Testing
- TIR J2601/ Dispenser Testing
- What is the next version? (Follow Up Planned)

Hydrogen Fueling Protocol History and Path Forward

CaFCP I/O Guideline 2002	OEM Fueling "Rev A" 2007	SAE J2799 "70MPa Coupling & IrDA" 2007	SAE TIR "L.D. H2 Fueling" Guideline 2010
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>		<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><section-header><form><form><form><text><text><text><text><text></text></text></text></text></text></form></form></form></section-header></section-header>
	and Communi	cations Standard	

(~Middle) 2013

7

OUTLINE

- Standardization & Timeline
- Hydrogen Fueling Background
- SAE TIR J2601, Guideline
- Theory and Modeling/ Tables
- Testing
- TIR J2601/ Dispenser Testing
- What is the next version? (Follow Up Planned)

Importance of a Hydrogen Fueling Vehicle Protocol

Do you know how your vehicle is being filled with hydrogen?

- Hydrogen fueling is critical to the success of a hydrogen economy.
 - Customers expect a safe, short, and complete hydrogen fill
 - Characteristics of hydrogen and limits of storage systems emphasize need for managing the safety of the fill.
 - Need to maximize the capacity (state of charge) percentage of the fill.
- Hydrogen Fueling is the only ZEV technology proven to achieve "same as today's" fueling rates
- The goal of Hydrogen Fueling with SAE J2601 is to achieve a very high State of Charge (Range) in a short time without exceeding storage safety limits.

• TIR J2601 meets the U.S. DOE FCEV Targets for 2017 on Fueling Time: 3.3 minutes with 5 kg H2 storage

ZERO EMISSION VEHICLE STORAGE & FUELING: ELECTRIC CHARGING VS. HYDROGEN FUELING

	Electric Vehicle Charging, SAE J1772, BEV Reference	Hydrogen Vehicle Fueling SAE TIR J2601 (70MPa)
Reference Storage Capacity in kWh	30 kWh	100 kWH (5 kg H2)
Current Maximum L.D. Storage Capacity	85 kWh	200 kwH (10kg H2)
Fueling Time, Empty- 100% SOC (Reference Storage)	6-20 hours (depending on voltage level, 220V/110V)	3-15 minutes (A, B, Dispenser Type and Ambient Temperature)
Fueling Time Empty-100% SOC (Fast Charging)	30 minutes (to 80%) with "fast charge" with 60-200 kW required	3 minutes (Type "A" Dispenser)
Average Reference Range at 100% SOC (Hwy)	160 km (100%) / 130km (80%)	500 km+ (100%)

Source: Reference: C/E -Segment Thicle, J. Schneider, BMW

Hydrogen Fueling Protocol Approach

Technical Goals for Compressed Hydrogen Fueling

- Maintain the safety limits of storage system.
 - Maximum Gas Temperature: 85 C
 - Maximum Pressure: 87.5 MPa (70 MPa NWP) and 43.8 MPa (35 MPa NWP)
- Achieve target desired customer attributes.
 - Fueling Time: 3 minutes Ramp Rate (Type A Station)
 - Typical State of Charge Range : 90% to 100% (density based on NWP at 15 C)

Options for Compressed Hydrogen Fueling Protocol

Vehicle to station interface strategies

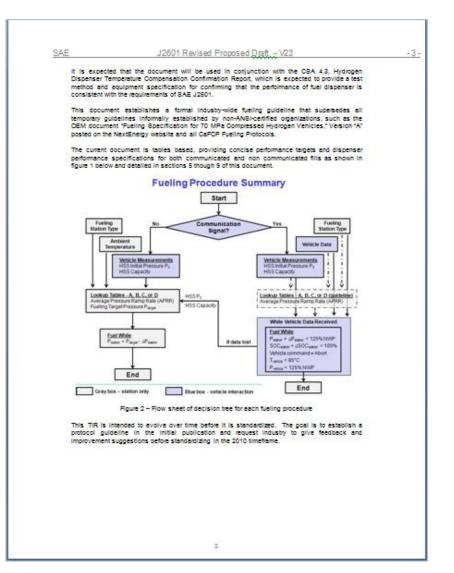
- --- Communication: vehicle provides tank parameters through an electrical interface
- Station key control factors
 - <u>Pre-cooling of hydrogen:</u> station conditions H2 temperature prior to dispensing

Importance of a Hydrogen Fueling Vehicle Protocol

The Challenge of Compressed Hydrogen Fueling

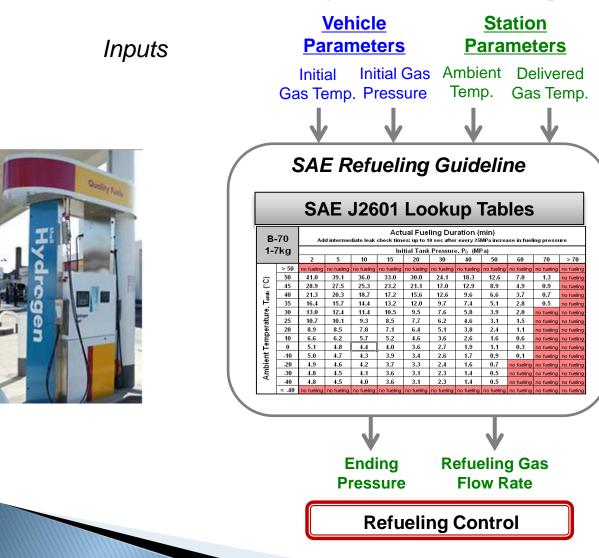
- Hydrogen fueling protocol must manage the heat of compression.
 - Storage tanks have a maximum temperature rating of 85 C
 - Pressurized gas entering the tank increases with temperature.
 - Hydrogen tank construction (i.e. wall thickness and material) reduces heat transfer which can influence the temperature increase in the tank.
- Hydrogen fueling protocol must manage unknowns.
 - --- Non-communication fill:

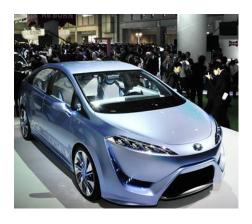
Known	Unknown
pressure	storage tank temperature
ambient temperature	tank properties


- Station must estimate the temperature change that occurs during fueling.
 Many tank unknowns: starting temperature, capacity, type, number of tanks, etc.
- In some cases, the station estimates can be conservative resulting in a reduced state of charge fill.

OUTLINE

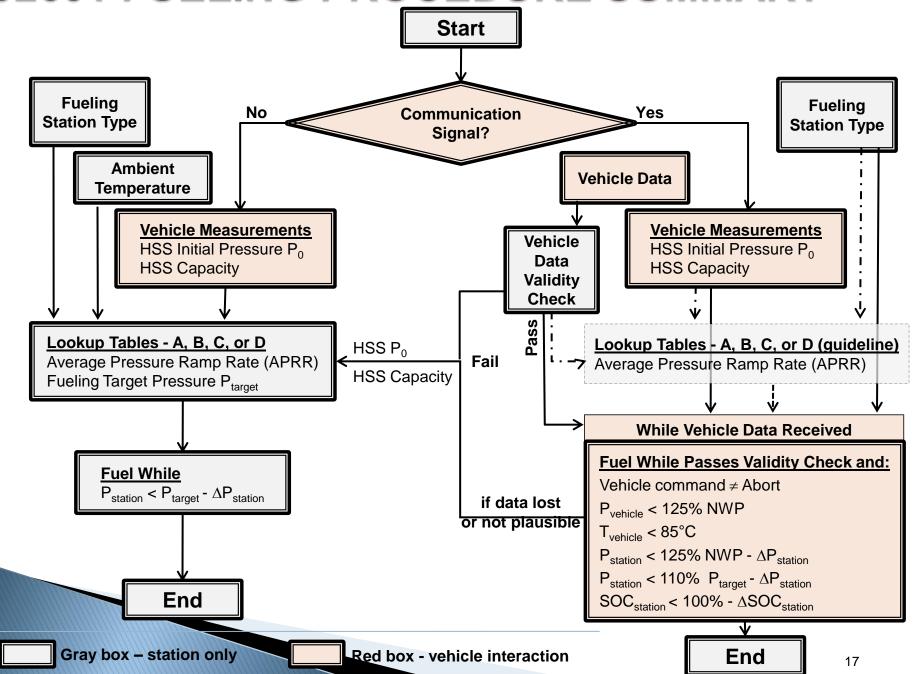
- Standardization & Timeline
- Hydrogen Fueling Background
- SAE TIR J2601, Guideline
- Theory and Modeling/ Tables
- Testing
- TIR J2601/ Dispenser Testing
- What is the next version? (Follow Up Planned)


SAE TIR J2601, GUIDELINE


- V.1 Technical Information Report (TIR): Light Duty Vehicle H₂ Fueling, published in 2010
- Provides guidance for hydrogen fueling within reasonable time without exceeding temperature and pressure limits
- Provides pressure targets to achieve a reasonable state of charge (SOC) under diverse ambient temperature(s)
- Fueling protocol created from fueling actual OEM tanks under extreme conditions
- Released as a Guideline for Field Trials, standard in 2013

LOOK UP TABLE LOGIC

Lookup Table Control Diagram

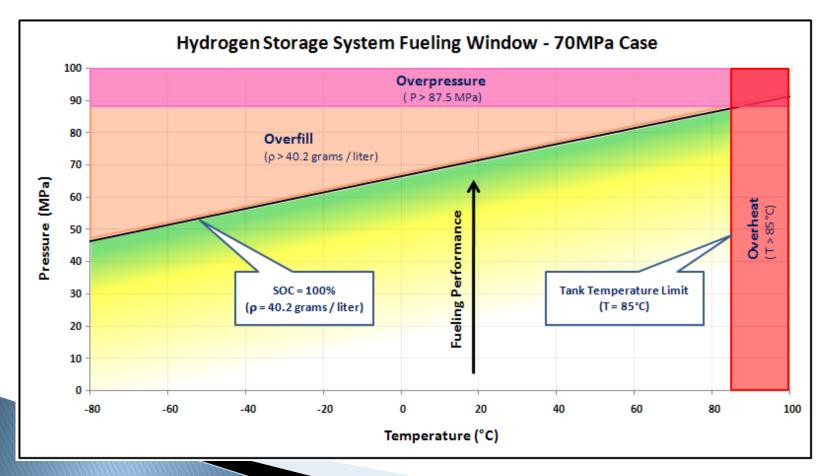

Outputs

FUELING STATION TYPES

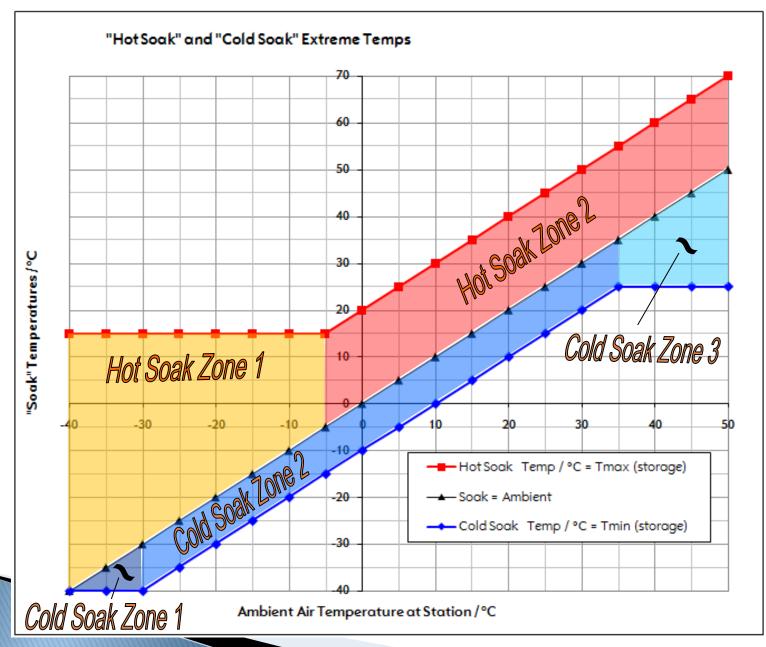
J2601 defines fueling station type by capability to dispense hydrogen fuel at a specific nozzle "pre-cooled temperature":

- Type "A"- Station has -40° C pre-cooling
- Type "B"- Station has -20° C pre-cooling
- Type "C"- Station has 0°C pre-cooling
- Type "D"- Station has no pre-cooling

J2601 FUELING PROCEDURE SUMMARY


OUTLINE

- Standardization & Timeline
- Hydrogen Fueling Background
- SAE TIR J2601, Guideline
- Theory and Modeling/ Tables
- Testing
- TIR J2601/ Dispenser Testing
- What is the next version? (Follow Up Planned)


FUELING FUNDAMENTALS

An optimal fueling protocol will ...

- fuel all hydrogen storage systems <u>quickly</u> to a <u>high state of charge</u> (SOC)
- never violate the storage system operating limits of 85°C internal tank temperature (<u>don't overheat</u>) or 100% SOC (<u>don't overfill</u>)

PARAMETER EXAMPLE – HOT SOAK / COLD SOAK

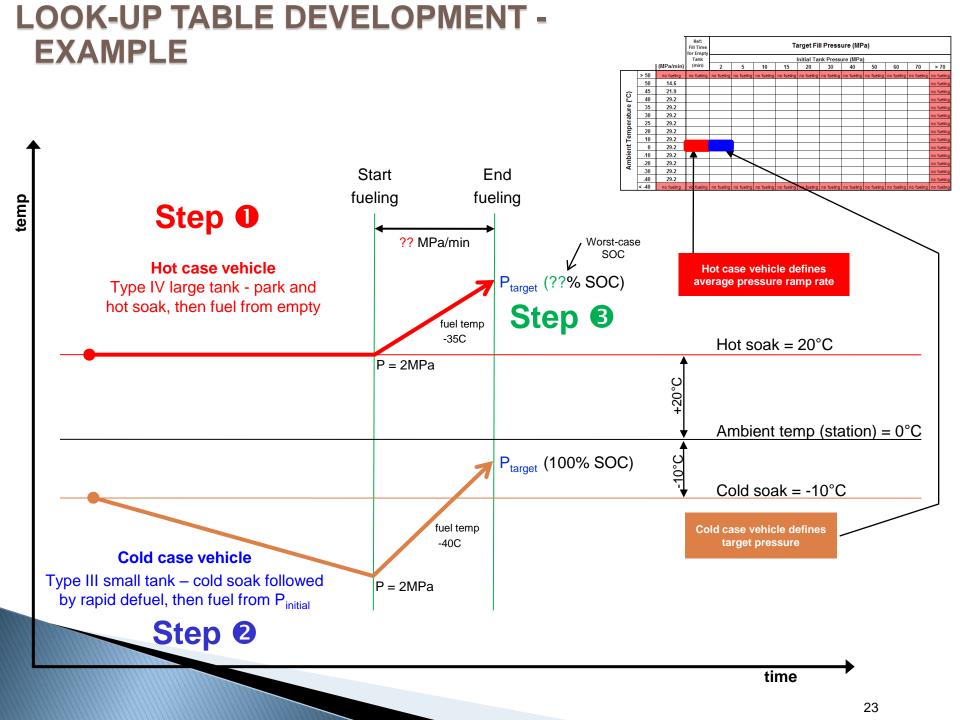
Reading the TIR J2601 Tables: Target Pressure for Dispenser Control Logic

A.	-70	Average Pressure		Fueling Target Pressure, P _{target} (MPa)									
1-7	7kg	Ramp Rate, APRR		•		Ini	tial Tank	Pressure	e, P ₀ (MI	Pa)			
		(MPa/min)	2	5	10	15	20	30	40	50	60	70	> 70
	> 50	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling
(°C)	50	11.4	73.5	73.2	73.0	72.8	72.6	72.4	72.2	72.0	71.9	72.2	no fueling
<u>ْ</u>	45	15.7	73.9	73.6	73.3	73.0	72.8	72.5	72.3	72.0	71.8	72.1	no fueling
amb	40	19.8	74.2	73.9	73.6	73.2	73.0	72.6	72.2	72.0	71.8	72.0	no fueling
F	35	23.7	74.5	74.1	73.6	73.3	73.1	72.7	72.3	72.0	71.8	72.0	no fueling
ອົ	30	27.4	74.1	73.8	73.2	72.7	72.5	71.9	71.4	71.0	70.6	71.0	no fueling
ţ	25	28.2	73.6	73.3	72.6	72.3	71.7	70.9	70.4	69.9	69.3	no fueling	no fueling
era	20	28.2	73.2	72.8	72.0	71.4	71.0	70.0	69.3	68.7	68.2	no fueling	no fueling
Ē	10	28.2	72.0	71.5	70.6	70.0	69.4	68.2	67.2	66.5	65.8	no fueling	no fueling
Ambient Temperature,	0	28.2	70.9	70.3	69.3	68.5	67.9	66.4	65.2	64.0	63.5	no fueling	no fueling
- <u>-</u>	-10	28.2	69.8	69.2	67.9	67.1	66.1	64.4	63.0	61.6	no fueling	no fueling	no fueling
e	-20	28.2	68.9	67.9	66.6	65.5	64.3	62.4	60.7	59.1	no fueling	no fueling	no fueling
a de	-30	28.2	67.8	66.7	65.2	63.7	62.5	60.4	58.3	56.4	no fueling	no fueling	no fueling
Ā	-40	28.2	67.3	66.5	65.0	63.7	62.5	60.1	58.3	56.4	no fueling	no fueling	no fueling
	< -40	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling

NON-COMMUNICATION CASE PROTOCOL DEVELOPMENT

- Two fueling cases: 1) non-communication and 2) communication
- Protocol is based on known parameter values and possible ranges of unknown parameter values
- Protocol specifies fueling rate and final fill pressure as a function of known parameter values

Step 1 – Fueling Rate


 Fast fueling is desired, but 85°C tank internal temperature limit must not be violated under any fueling conditions

<u>Step 2 – Target Pressure</u>

A full fill is desired, but 100% SOC must not be violated in any fueling conditions

Step 3 – SOC Assessment

Range of SOCs expected in real-world application of fueling protocol is 90-100%

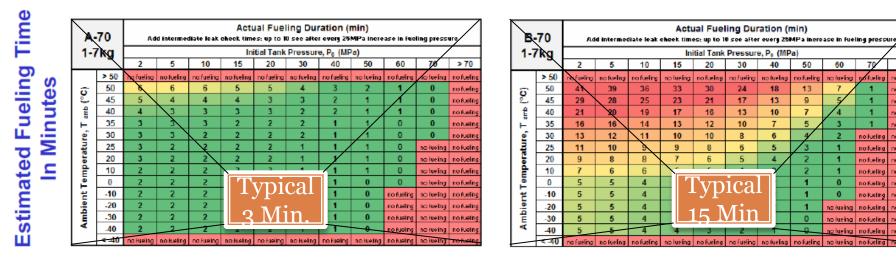
MODELING RESULTS

Non-communication Case

- A series of "look-up tables" that specify fueling rate and target pressure as a function of ambient temperature, initial tank pressure and storage system volume.
- Look-up table values describe the capabilities and limitations of the fueling process. For example
 - Fueling times of 3-5 minutes or less under most conditions when fuel pre-cooled to -40°C
 - Fueling times of an hour or longer under some conditions when station does not have pre-cooling capability
 - Expected SOCs in the 90-100% range


Lookup Table (70MPa, Cap ≤ 6kg, -40°C)

		Avg Ramp	Ref: Fill Time for Empty		Target Fill Pressure (MPa)									
		Rate	Tank					nitial Ta	nk Pressu	ure (MPa)			
		(MPa/min)	(min)	2	5	10	15	20	30	40	50	60	70	> 70
	> 50	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling
	50	14.6	6	75.5	75.0	75.0	74.5	74.0	73.5	73.0	72.5	72.0	72.0	no fueling
100	45	21.9	4	76.0	76.0	75.5	75.0	74.5	74.0	73.0	72.5	72.0	72.0	no fueling
ပ္ရွိ	40	29.2	3	77.0	76.5	76.0	75.5	75.0	74.0	73.0	72.5	72.0	72.0	no fueling
e	35	29.2	3	76.5	76.0	75.5	75.0	74.5	74.0	73.0	72.5	72.0	72.0	no fueling
atr	30	29.2	3	76.0	75.5	75.0	74.5	74.0	73.0	72.0	71.5	71.0	71.0	no fueling
e	25	29.2	3	75.5	75.0	74.5	74.0	73.0	72.0	71.0	70.5	69.5	no fueling	no fueling
Ē	20	29.2	3	75.0	74.5	73.5	73.0	72.5	71.5	70.0	69.0	68.5	no fueling	no fueling
ц Ц	10	29.2	3	74.0	73.0	72.5	71.5	71.0	69.5	68.0	67.0	66.0	no fueling	no fueling
Ĕ	0	29.2	3	72.5	72.0	71.0	70.0	69.0	67.5	66.0	64.5	63.5	no fueling	no fueling
oie	-10	29.2	3	71.5	71.0	69.5	68.5	67.5	65.5	63.5	62.0	no fueling	no fueling	no fueling
Ambient Temperature	-20	29.2	3	70.5	69.5	68.0	67.0	65.5	63.5	61.5	59.5	no fueling	no fueling	no fueling
◄	-30	29.2	3	69.0	68.0	66.5	<u>65.0</u>	64.0	61.0	58.5	56.5	no fueling	no fueling	no fueling
	-40	29.2	3	69.0	68.0	66.5	<u>65.0</u>	63.5	61.0	58.5	56.5	no fueling	no fueling	no fueling
	< -40	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling


MODELING RESULTS

Communication Case

- A series of "look-up tables" that provide a recommended <u>initial</u> fueling rate as a function of initial tank temperature, initial tank pressure, and storage system volume
- Higher SOC fueling is possible in communication case where tank internal temperature is known to station
 - Fueling time of 3 minutes or less under most conditions when fuel pre-cooled to -40°C
 - Fueling times of 3-20 minutes under most conditions when fuel pre-cooled to -20°C
 - Under Moderate ambient temperatures, pre-cooling not always needed with communications.

J2601 Fueling Tables: 70MPa with < 7kg Storage Capacity* Type A (-40°C) Type B (-20°C)

A.	-70		Hot Case Final State of Charge, SOC (Hot Soak - No History)									
1-7	7kg				Ini	itial Tank	Pressur	e, P。(MF	Pa)			
	\sim	2	5	10	15	20	30	40	50	60	70	> 70
	> 50	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling
ច	50	89%	89%	89%	89%	88%	89%	89%	89%	90%	91%	no fueling
amb (°C)	45	89%	89%	89%	89%	89%	89%	89%	90%	50%	92%	no fueling
	40	89%	89%	89%	89%	89%	90%	90%	90%	91%	92%	no fueling
⊢	35	90%	89%	89%	89%	90%	90%	91%	91%	92%	93%	no fueling
é	30	89%	89%						1%	92%	94%	no fueling
E 문	25	89%	89%		0/				1%	92%	no fueling	no fueling
Temperature,	20	89%	89%	Q()%	nor	1-C (om	1%	92%	no fueling	no fueling
6	10	88%	88%				_		1%	92%	no fueling	no fueling
5	0	88%	88%						1%	92%	no fueling	no fueling
ΙĘΙ	-10	87%	87%		00/				9%	no fueling	no fueling	no fueling
ie.	-20	86%	85%	-98	5%	+ c	om	m.	6%	no fueling	no fueling	no fueling
Ambient	-30	85%	84%						4%	no fueling	no fueling	no fueling
Ā	-40	84%	84%	04%	0470	0470	00%	0476	64%	no fueling	no fueling	no fueling
	<-40	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling

B	-70 7kg				Hot Cas		State o ak - No H		ge, SO(•		
1-7	7kg				Ini	tial Tank	Pressur	e, Po (Mi	°a)		/	
	\sim	2	5	10	15	20	30	40	50	60	70	> 70
	> 50	no fueling	no fueling	no fueling	no fueling	no tueling	no fueling	no fueling	no fueling	no fueling	po fueling	no fueling
(C)	50	91%	91%	90%	90%	90%	90%	90%	90%	90%	91%	no fueling
2	45	90%	90%	90%	89%	89%	89%	90%	90%	91%	92%	no fueling
đ	40	90%	90%	89%	89%	89%	90%	90%	91%	92%	93%	no fueling
F	35	90%	89%	89%	89%	90%	90%	91%	92%	93%	94%	no fueling
é	30	89%	89%			'			1/6	93%	no fueling	no fueling
3	25	89%	89%		~ ~ ~				%	93%	no fueling	no fueling
20	20	88%	88%		0%	no	n-c	om	%	93%	no fueling	no fueling
Ê	10	88%	88%		0/0	110	11 C		%	93%	no fueling	no fueling
e	0	87%	87%						16	93%	no fueling	no fueling
÷	-10	86%	86%		00				%	91%	no fueling	no fueling
ie.	-20	85%	85%	C)8%) + (com	IM.	%	no fueling	no fueling	no fueling
Ambient Temperature,	-30	84%	84%						%	no fueling	no fueling	no fueling
A	-40	84%	83%							ne fueling	no fueling	no fueling
	< -40	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling	no fueling				

30

o fueling

24

17

13

10

8

6

5

na fuelina l

40

no fueing

18

13

10

7

6

5

4

50

to fueling

13

9

7

5

4

1

1

0

no fueline

60

no lue ing l

0

0

heime.

70

fueling

1

1

1

1

no fueling

no fueling

no fueling

no fueling

no Rualing

no fueling

no lue ing ino fueling

no lue ing in o fueling i

no lue ing I no fueling

no fueling in o fueling

> 70

no fuelin_i

na fuelini

na fuelin

na Fueling

na Fueling

na Fueling

no fueling

no fueling

na fuelin

na Fueling

na Fueling

no fueling

no fueling

OUTLINE

- Standardization & Timeline
- Hydrogen Fueling Background
- SAE TIR J2601, Guideline
- Theory and Modeling/ Tables
- Testing
- TIR J2601/ Dispenser Testing
- What is the next version? (Follow Up Planned)

SAE J2601 TIR VALIDATION: "MULTI CLIENT STUDY"

Purpose:

- Confirm 70 MPa fueling meant to be utilized by SAE for the purpose of future guidelines and standards
- Determine the 35/70 MPa fueling parameters for each OEM fuel system for modeling and station algorithm development

Funding Participants Include:

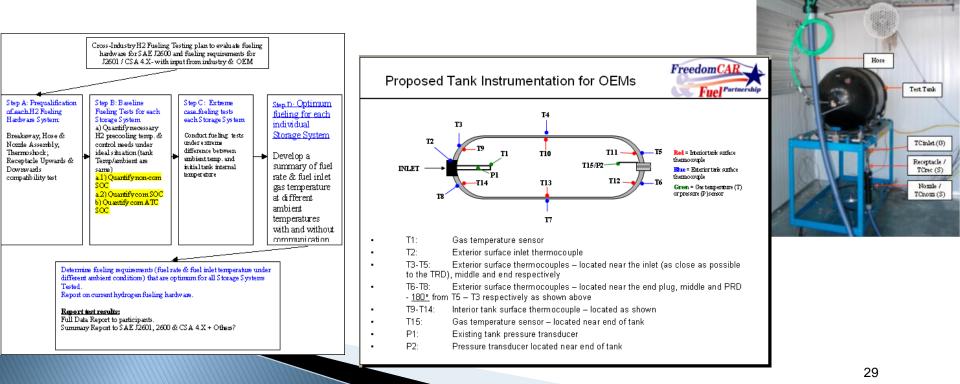
US DOE, Air Liquide, BP, Nippon Oil, Sandia, Shell, Iwatani

Vehicle OEM Participants Include: Daimler, Chrysler, Ford, GM, Nissan, Toyota

Results were used to validate SAE J2601 / J2799

FUELING TESTING AT POWERTECH

• US DOE FreedomCar C&S Technology Team Created Baseline Document with SAE J2601 Team for Testing


TChose (G)

Breakaway

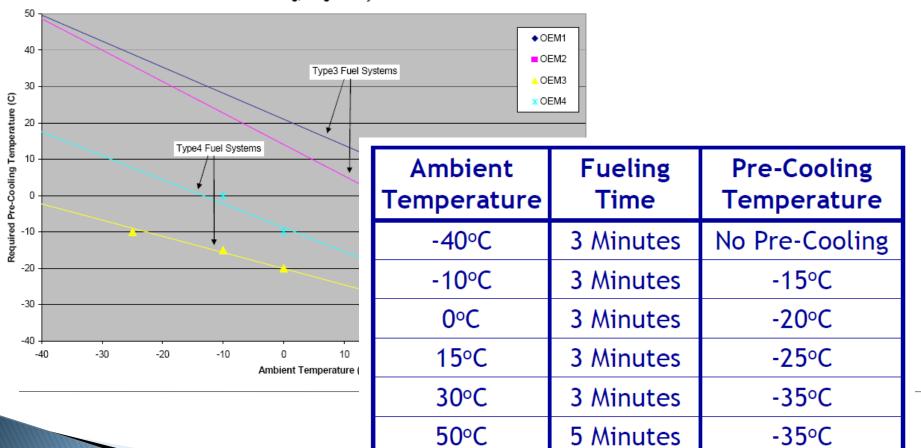
- OEMs sent their onboard hydrogen storage hardware to Powertech
- Powertech Tested OEM Tanks in extreme environments to

Establish Basic Understanding and Validate tables

• Data was shared with J2601 Team

CONFIRMATION OF LOOK-UP TABLES SAE J2601 Confirmation SOW

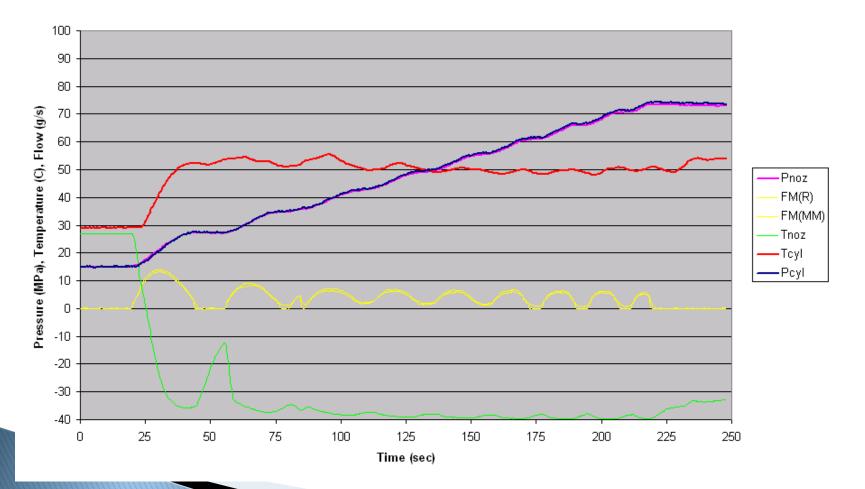
Purpose:


- experimentally confirm the 35 and 70 MPa fueling targets included in the SAE J2601 look-up tables
- experimentally confirm the tests to be included in CSA HGV4.3 Fueling Station Safety Parameter Evaluation

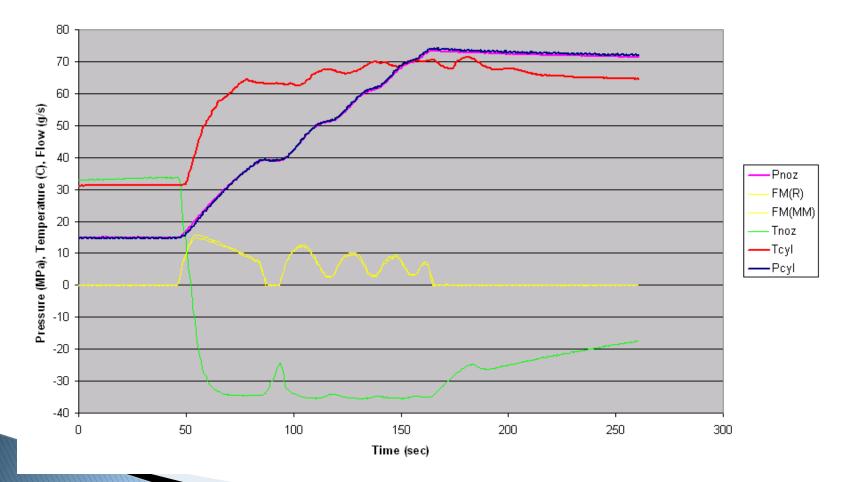
Scope of Work examines three distinct areas of interest:

- 1. Over-density fueling
 - Testing with cold-soak and cooling from driving on Type 3 tanks
- 2. Over-temperature fueling
 - Testing with hot-soak conditions on Type 4 tanks
- 3. Target SoC fueling

 Testing with "normal" conditions on all tanks to confirm noncommunication SoC


RESULTS OF TESTING USED FOR TIR J2601

Pre-Cooling Temperature as a Function of Ambient Temperature 3 Minute Fueling, <6kg Fuel Systems

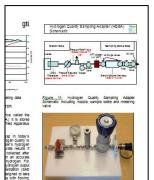

SAE J2601 Confirmation Tests Target SoC Test

SAE J2601 Look-Up Table Confirmation Tests Test 3 - 70MPa Target SoC Fill, >6kg, 30C Final SoC = 92.0%

SAE J2601 Confirmation Tests Target SoC Test

SAE J2601 Look-Up Table Confirmation Tests Test 3 - 70MPa Target SoC Fill, <6kg, 30C Final SoC = 91.4%

OUTLINE


- Standardization & Timeline
- Hydrogen Fueling Background
- SAE TIR J2601, Guideline
- Theory and Modeling/ Tables
- Testing
- TIR J2601/ Dispenser Testing
- What is the next version? (Follow Up Planned)

TIR J2601/ DISPENSER TESTING

Testing of Hydrogen Stations :

- Test procedures to confirm dispenser performance within limits and targets specified in J2601
- Hydrogen Dispenser Test Apparatus (HDTA) will be a mobile device with equipped with instrumented representative tanks to evaluate performance of dispenser.
- Representative Tanks to be used in hydrogen fueling validation
- History, in 2005: Designs and Concepts for a 35MPa station dispenser fueling, gravimetric metering test device and H2 quality sampling were published first in a SAE report, device was built and used in CA, but not patented.
- One option in future: CSA 4.3, HDTA

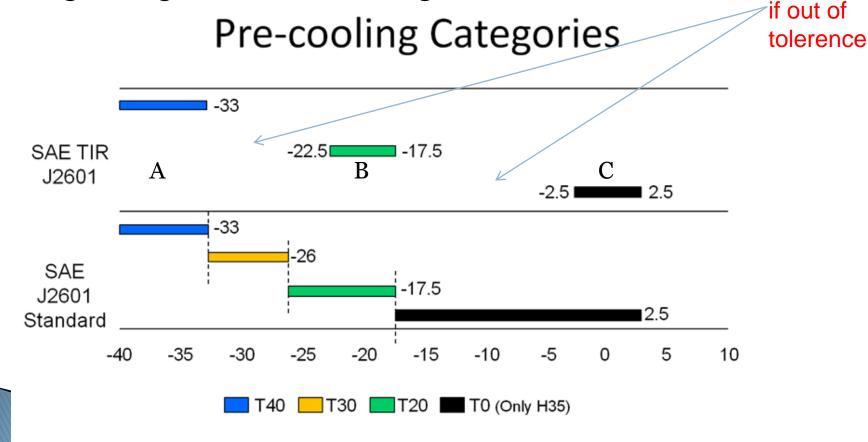
2005-01-0002						
Gaseous Hydrogen Station Test Apparatus: Verification of hydrogen dispenser performance utilizing vehicle representative test cylinders						
Jesse M. Schneider DamierChrysler Corporation						
Ward-Toyota Technical Center, U.S.A., Inc.: Mark Richards, ethtus: Frank Nieszbytowski & Todd Suckow-Ford Notor wick, Inc.: Michael Short, Willers Collins & Glas Schettler- of Transportation; John Tillman-Hyundal America, Technical pencer Guong-Guong and Associates, Inc.; Joseph Cohen-Air	David Zuckerman & Kenneth Kribg-Gas Technology in Company; Eloi Tatus- Nasan Technical Center, North Ame UTC Fuel Cells: William Chemicolff-US Department (
	Cegyright C 2008 SAE International					
The objective of successful relating is to have the maximum stratule of loss transmission, the solution amount of the transmission, and the solution hydrogen gas storage container stratutes loss and the solution of the solution pressure of the solution of the solution bit costs when examines the transferral at the reference temperature will be coceeded at the pressure of the reference temperature will be coceeded at the pressure of the reference temperature will be coceeded at the pressure of the reference temperature will be coceeded at the pressure of the setting of the solution because the pressure of the setting will be coceeded at the pressure of the setti	ABSTRACT The gave includes the operagravity (TA) and assocration of the appratual assign The property of the density is the appratual assign. The property of the density is of gaves, a brown of the approximation assocration of gaves, browner, and the approximation assocration of gaves, and the approximation assocration assocration of gaves, and approximation assocration assocration of gaves, and approximation assocration assocration of gaves, and approximation assocration assocration assocration assocration assocration as means the second assocration assocration assocration assocration and operations bases associated assocrations assocrations.					
bencice pressure and 19(0), with Constants placed on the maximum IIII pressure (125 Kancka pressure) and temperature (not be exceed 8070). ¹⁰ , In other words a "comprise time" equations in toxics, or constants reads at pressure. The examples for a storage constater reads at submit there is a mass equivalent to 2004Pa at 160 At the end of fits.	protocols. The device is to be outfield with vehicle representative contain cytothes and servoir located inside and outlide the appendix to monitor reflecting rate, antioidar and instrain gains therefore the process and weight of the transferred. Data is to be recorded during rebaining and graphic automatically.					
Fast fill hydrogen dispensers need to control the fill process so that constraint limits are not enceeded, performance targets are met, and complete fills—or at	INTRODUCTION					
last maximum permission tim—are botiesed over a mide vertige of matter and vertice controls. There is a a number of depender control strategiese tamp investiged and developed to address temperature inte leader within compressed hydrogen gas cylinders. These strategies anyo in their approximation to therporture strategies anyo in their approximation to therporture control of the strategiese anyo in the dependent control of the strategiese anyo in the dependent. In the strategiese anyo in the dependent of the dependent.	Hydrogen internal combation and the cell vehicles bydcary have hydrogen status in ordcard concreteses the status of the status of the status of the status rise of the gas within the cylinder are built of precision of the status of the status of the precision of the status of the status of the time through the cylinder and its fitting. Without compensation, this which results in restands to denies and broady inclumed syndomic vehicles and the status.					

Gaseous Hydrogen Station Test Apparatus: Verification of hydrogen dispenser performance utilizing vehicle representative test cylinders

CaFCP Station Test Apparatus Shown (35MPa)

OUTLINE

- Standardization & Timeline
- Hydrogen Fueling Background
- SAE TIR J2601, Guideline
- Theory and Modeling/ Tables
- Testing
- TIR J2601/ Dispenser Testing
- What is the next version? (Follow Up Planned)

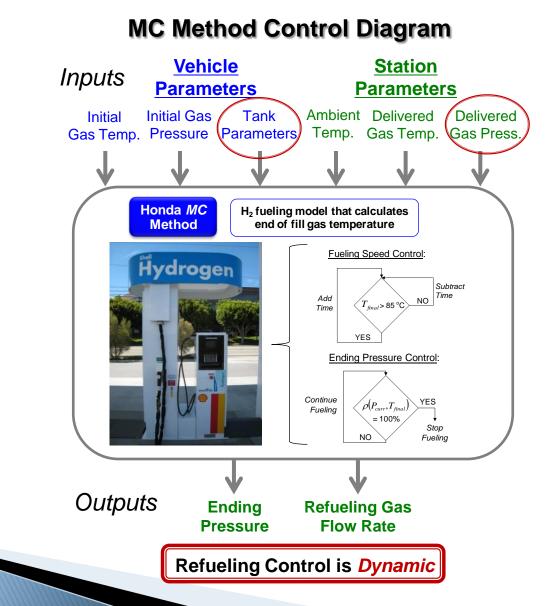

CHANGES CONSIDERED IN 2013 FROM TIR TO STANDARD J2601

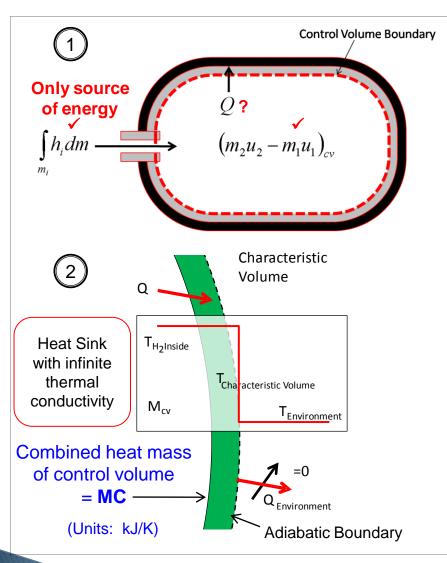
- SAE J2799 IrDA Portion, to be Integrated into J2601 from TIR J2799 (then cancelled).
- 30 seconds (vs. 15s) pre-cooling "cool-down" window, based on feedback from stations.
- Hot Soak Conditions in tables are relaxed with real world data.
- **Dispenser Temperature moved to break away** allows for better fueling measure accuracy.
- **New Precooling Categories** (with fall-back fueling) no shut down if out of tolerence.
- Thermal Mass of Fueling components taken into account in simulation model.
- New Tank Volume Categories One additional Category to focus on mainstream sizes.
- **Expanded Ramp Rate Tolerence** to allow for less storage requirement on station side.
- Allow Development (non-standard) Fueling MC Method using thermal properties to improve rates.

J2601 STANDARD WEBINAR TO BE ANNOUNCED MID 2013

PREVIEW FUELING DISPENSER TYPES*

J2601 Standard defines fueling station dispenser type by capability to dispense hydrogen fuel at a specific nozzle "pre-cooled temperature". There is no space between precooling categories as with original TIR. Shutdown


*Taken from WHEC Presentation (also from JARI)


Development H2 Fueling - MC Method -

Steve Mathison (Honda R&D Americas, Inc.)

Introduction –MC Method, Under Development Uses Dynamic Control

MC Method - Theory

Heat transfer from the hydrogen can be described as:

$$Q = m_2 C_v (T_{adiabatic} - T_{final}) \qquad (1)$$

Heat transfer into the Characteristic Volume:

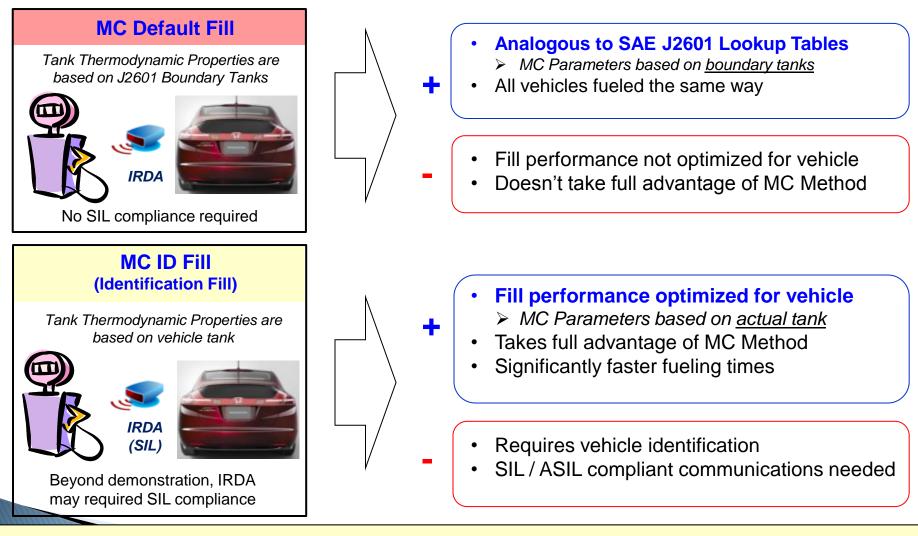
$$Q = MC(T_{final} - T_{initial})$$
⁽²⁾

These equations can be combined:

$$MC(T_{final} - T_{initial}) = m_2 C_v (T_{adiabatic} - T_{final})$$

A direct analytical expression for T_{final} is:

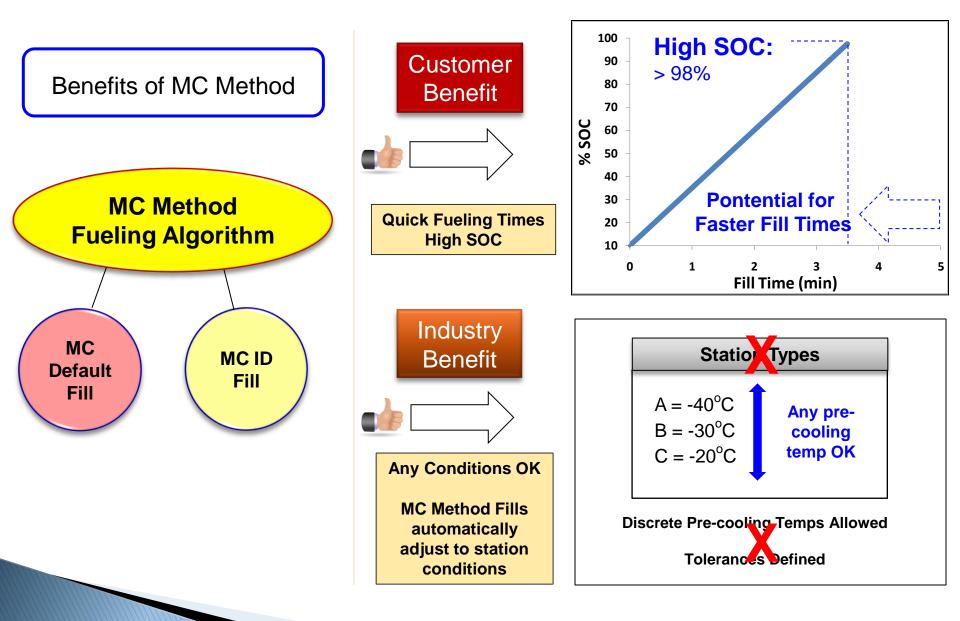
$$T_{final} = \frac{m_2 C_v T_{adiabatic} + MCT_{initial}}{MC + m_2 C_v}$$


Where MC is a function of fueling conditions and time:

$$MC = A + B \ln \left[\frac{U_{adiabatic}}{U_{init}} \right]^{1/2} + g \left(1 - e^{-k\Delta t} \right)^{j}$$

MC is a mathematical construct which quantifies heat absorption capability of the tank MC can be thought of as a heat sink or thermal mass with infinite thermal conductivity

MC Method – Development Fueling Protocols


There are two MC Method Fueling Protocols under Development

MC Default Fill is a "general" fill for all vehicles MC ID Fill is a "targeted" fill for specific vehicle

42

MC Method Introduction

WORLDWIDE HYDROGEN INFRASTRUCTURE PLANNING TO USE SAE J2601 STANDARD, 2015-

Europe:

Germany

- Demo-project Clean Energy Partnership
- ~ 10 active stations +
- > 50 in planning

Nordic Countries

- · Scandinavian Hydrogen Highway,
- 9 active stations/ 3 construction/ 20 planning for 2015.

Japan

100 stations planned until 2015
1000 stations in discussion until 2025

California

- ZEV Mandate 26 active stations (6 public) /
- 68 more in planning for 2015 US/ East Coast
- East Coast Hydrogen Highway evaluation

HYDROGEN FUELING AND STANDARDIZATION SUMMARY

- Currently Published, SAE J2601 TIR provides a baseline for a 3-5 minute hydrogen fueling based on a fueling target tables approach
- IrDa based communication increases SOC up to 100%

- SAE will be balloting a J2601 standard in 2013 based on state of the art math models, lab and field data
- The future Standard will allow for development fueling, MC Method which optimizes fueling based on dynamic control and tank properties.

THANK YOU...

QUESTIONS?