

DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop January 25, 2005 Washington DC

Hydrogen Delivery Infrastructure Option Analysis

Jim Campbell Bhadra Grover Air Liquide

Graham Moore Chevron Glyn Hazelden GTI

Tan-Ping Chen Nexant Matt Ringer NREL Ray Hobbs Pinnacle West Stefan Unnasch

This presentation does not contain any proprietary or confidential information

Presentation Outline

- Project Background
- Knowledge Collected and Preliminary Results for Each Delivery Option
- Summary of Observations
- Next Step

Project Background

- **Option 1* GH delivery by new pipelines**
- Option 2 Converting NG/oil pipelines for GH delivery
- **Option 3** Blending GH into NG pipelines
- **Option 4* GH** tube trailers
- **Option 5*** LH tank trucks
- Option 6 Use of novel H2 carriers (alanate; chemical hydride; liquid hydrocarbon; metal hydride in powder or brick form)

 Option 7 Methanol/ethanol/ammonia as H2 Options already incorporated in the H2A component and scenario models carriers

- Refine technical and cost data in H2A component and scenario models based on industrial experience
- Explore new options to reduce H2 delivery cost
- Expand H2A component and scenario models to include new options
- Provide basis to recommend H2 delivery strategies

Task 1 Collect/Compile Data and Knowledge Base

- Task 2 Evaluate Current/Future Efficiencies and Costs for Each Delivery Option
- Task 3 Evaluate Existing Infrastructure Capability for H2 Delivery

Task 4Assess Emissions in Each Delivery Option

- Task 5Compare and Rank Delivery Options Based on Expansion of H2A Component & Scenario Models
- **Task 6**Recommend Hydrogen Delivery Strategies

Task 7Project Management and Reporting

Schedule, Budget, and Status

Project Schedule

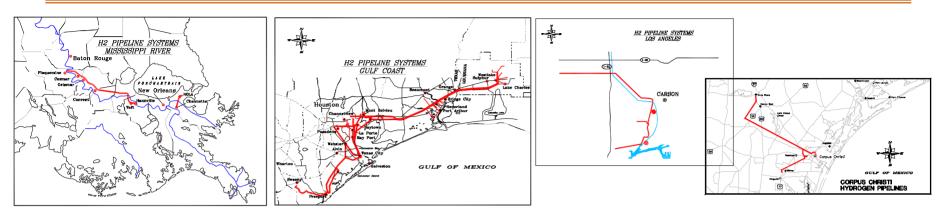
✓ Start: November 2004

✓ End: March 2007

- Project Budget
 - ✓ \$1.5 million

✓ Increase to \$1.7 million with addition of ANL and PNL

Status


 Completed Task 1 (Review Existing H2A Models; Compile Knowledge Base)

✓ Midst of Task 2 (Evaluate Each Delivery Option)

Knowledge Collected and Preliminary Results

GH Delivery by New Pipelines

H2 Pipeline Delivery Experience (from Air Liquide)

Transmission lines

- 600 miles exist in US
- 10-18" lines (100,000-500,000 kg/d)
- Size range envisioned for H2 economy @ full penetration
- \$0.5-2MM/mile
- Only 2-5% more than NG line costs (refinement for H2A model): pipe material is not more exotic; but better welding needed

Compression station

- Reciprocating compressor only
- Compressor cost: 100-150% more than NG
- Installed cost: 50-100% more (refinement for H2A model)
- Distribution lines
 - None built; borrow NG experience
 - Dominated by labor cost (>80% of total)
 - Very high total cost: \$ 0.75-1.5 MM/mile (being incorporated by H2A model)

Pipeline Safety

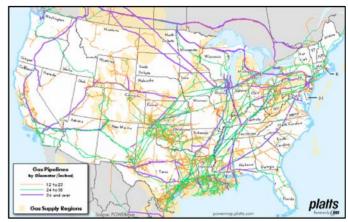
- 4 DOT pipeline location classifications (49 CFR 192)
- Higher classification:
 - Higher population density
 - Allowable pipe stress decreases
 - Number of isolation valves increases
 - Frequency of leak check & line patrol increases
- Regulation for using odorants
 - DOT does not require for transmission
 - NG transmission lines: interstate lines use no odorants; lines in a state might require (such as CA)
 - NG distribution lines: gas companies usually use for Class 3 & 4

- No odorants used in current H2 pipelines
- Conventional sulfur-based odorants not suitable
 - Molecules are too large compared with H2
 - Will precipitate and deposit on the pipe wall
 - Removal prior to use in FCV adds cost
- Several sulfur-free odorants being developed by JARI (Japanese Automobile Research Institute) hold promise

Minimize Right of Way Cost

Transmission lines

- DOT (49 CFR 192) allows mixed energy transmission
- General engineering practice: 50' easement on either side of the line
- H2 lines can be installed next to existing oil/NG lines to avoid ROW cost
- H2 and NG/oil lines need to separate at least 12" but separate owners of the line might want 20' apart to avoid interferences and disputes

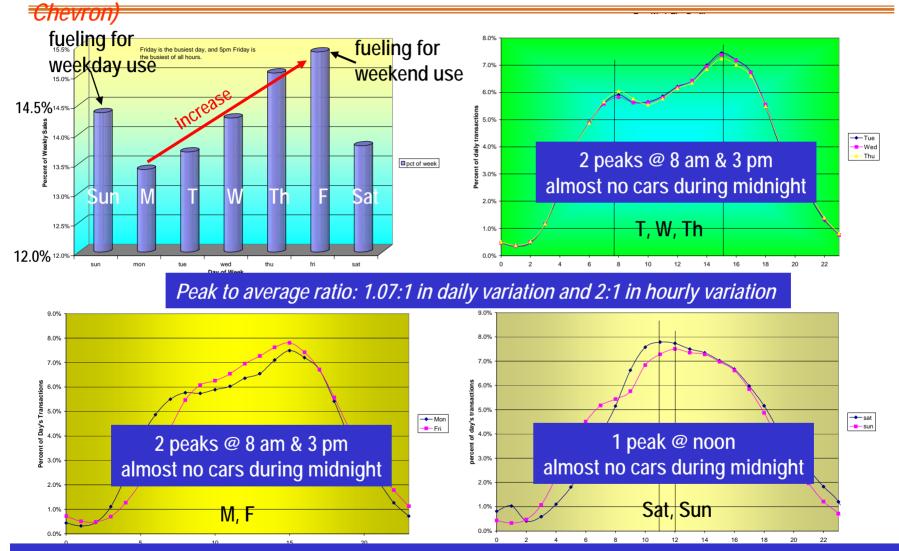

Distribution lines

- Share utility trenches within cities to minimize ROW cost
- City owns utility trenches
- Local utility leases ROW from the city through franchise fee
- City inspects mainly the repaving, but might occasionally the line quality

Differences from Natural Gas Pipelines

Freedom to site central H2 production; while NG resource locations are given & fixed

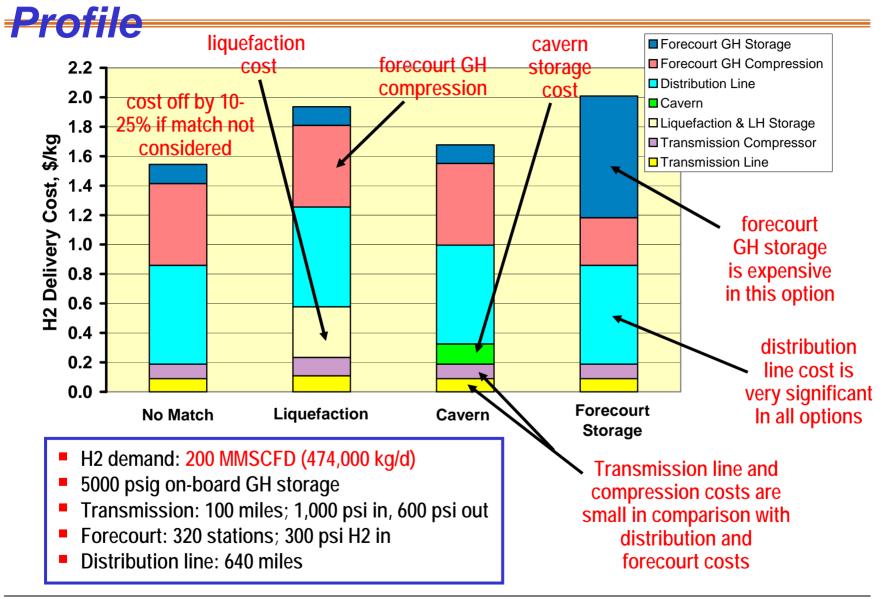
- Coal shipped across country; CO2 seq. sites all over US
- Biomass in most states (except those of desert climate)
- MeOH/NH3 produced from NG but ultimately from coal
- Ethanol from Midwest but trucked across country
- Wind in US central corridor; best delivered as electrons
- Hydro in NW region; best delivered as electrons
- Solar in South region; best delivered as electrons
- Nuclear power is available anywhere
- H2 pipelines are shorter & smaller
 - Production sites likely close to major cities (<100 miles)
 - 10-18" lines (100,000-500,000 kg/d H2) vs. 12-48" NG lines
 - Consist with H2A scenario model
- Metal distribution lines (300 psi?)


NG pipelines from resources to users

100 metropolitans for 70% US population

6 Nexant

Current Gas Station Fueling Profile (from

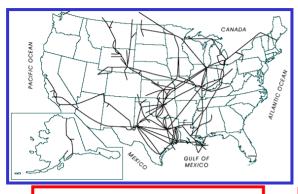

Also seasonal variation! Winter need is 70% and 90% of summer in the US North and South, respectively.

6 Nexant

Match Forecourt Fueling Profile

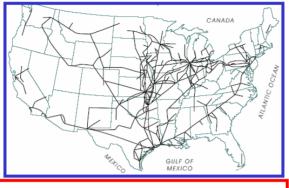
- H2 supply at forecourt is limited by central production plant: cannot match profile at will as CNG stations
- Options for GH pipeline delivery to meet the profile:
 - At central production plant: large liquefaction unit & LH storage
 - Use pipeline as storage; <3% for 100 mile long pipeline</p>
 - Use underground caverns for storage; not always applicable
 - At forecourt: on-site GH storage
- LH or H2 carriers served also for on-board storage are more cost effective to match the profile
 - Liquid and solid are easier and cheaper to store than gas
 - The high gas storage cost also applies for on-site H2 production (NG reforming; electrolyzer; reforming of methanol/ethanol/NH3)
 - GH pipeline might not the most cost effective long-term delivery option if the forecourt profile matching is realistically considered

Comparison of Options to Match Fueling

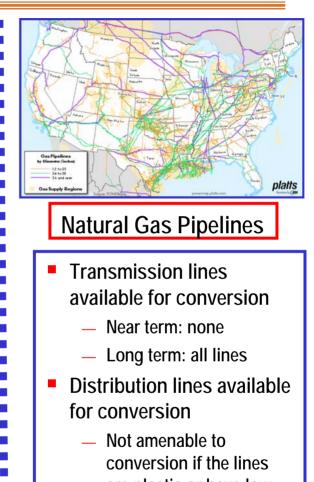


ONEXANT

Knowledge Collected and Preliminary Results


Converting NG/Oil Pipelines for GH Delivery

Lines Available for Conversion


Crude Oil Pipelines

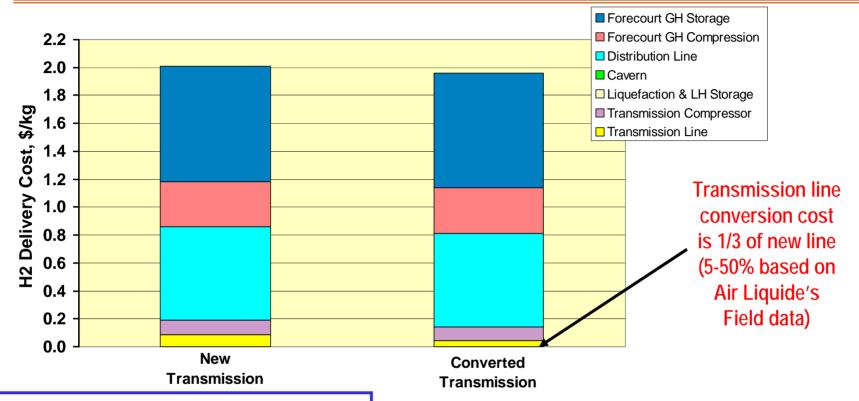
- Main US crude production: Alaska, TX, CA
- Lines to transport crude
 - Gulf area to Midwest refineries
 - CA to Gulf Coast refineries
- Availability for conversion
 - Near term: lines from depleted oil field
 - Long term: all lines

Petroleum Product Pipelines

- Lines to transport petroleum products
 - Gulf Coast refineries to Midwest
 - Gulf Coast refineries to East coast
- Availability for conversion
 - Near term: none
 - Long term: all lines

are plastic or have low pressure rating

6 Nexant


Capacity Adjustment After Conversion

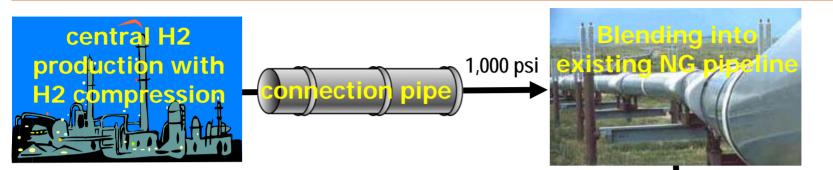
- Line operating pressure de-rated by 50%
 - Caution taken due to embrittlement of H2 in carbon steel pipes
 - Operating pressure is 35% rather than typical 72% of allowable stress
- 20-25% less energy delivered (excluding pressure de-rating):

	Natural Gas	H ₂
Volume of Gas Delivered (SCFH)	7.0 MM	18.4 MM
LHV Energy Delivered (BTU/Hr)	6,391 MM	5,060 MM
Less Compression Energy (BTU/Hr)	(20) MM	(69) MM
Net Energy Delivered (BTU/Hr)	6,371 MM	4,991 MM

Overall, delivery capacity is de-rated by 60%

Economics for Converting Existing Lines

- H2 demand: 200 MMscfd (474,000 kg/d)
- 5000 psig on-board GH storage
- Transmission: 100 miles; 1,000 psi in,
 600 psi out
- Forecourt: 320 stations; 300 psi H2 in
- Distribution line: 640 miles


Saving by using existing pipeline infrastructure does not reduce GH pipeline transport cost too much because pipeline is a very small component of the whole delivery cost

6 Nexant

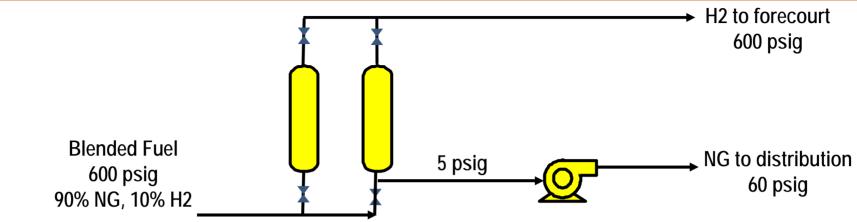
Knowledge Collected and Preliminary Results

Blending GH into NG Pipelines

Basic Concept

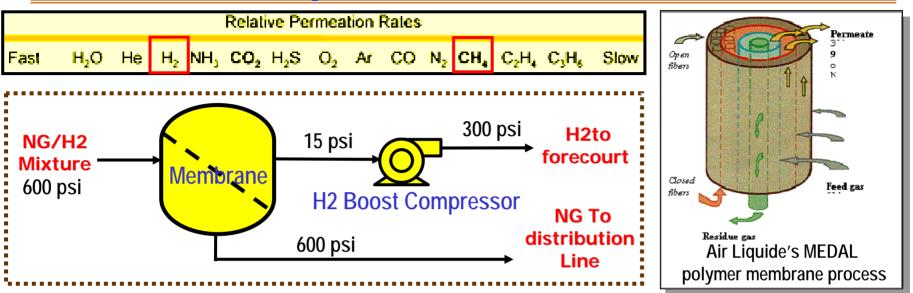
H2 in blended fuel needs to be <10%

- Fulfill NG delivery obligation: not much room for H2
- Capacity constraint faced by NG pipelines now
- Compatible with NG pipeline materials & safety
- 95% NG pipelines have gas take in the last 50-100 miles prior to city gate
- Deviate <5% from NG spec:</p>


	NG Spec.	10% mix
HHV, Btu/SCF	950	940
Wobbe Index, Btu/SCF	1,300	1,245

Separation Processes Considered

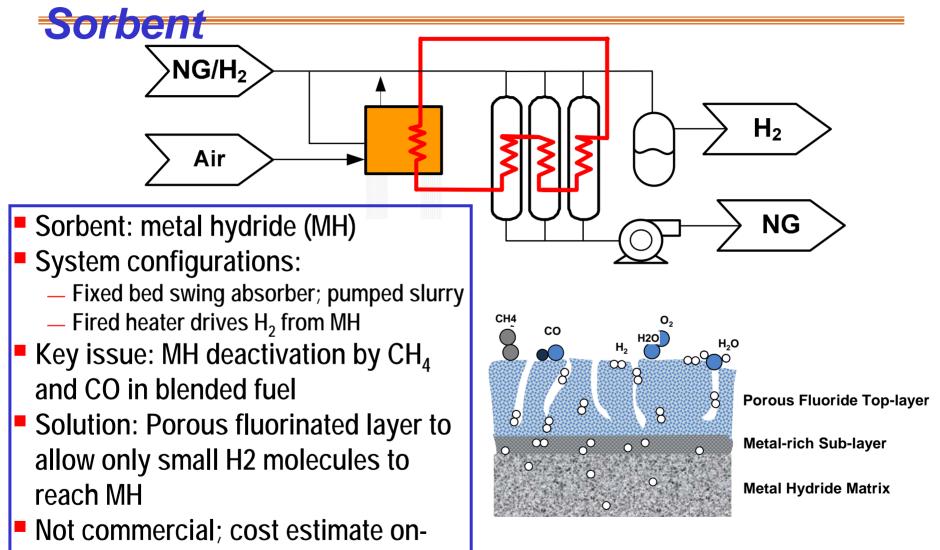
	Technology	R	esponsible
•	PSA	-	Air Liquide
•	Membrane	•	Air Liquide
•	H2 Absorber	•	ΤΙΑΧ
•	Methane Hydrate	•	GTI
•	Proprietary Process	•	Air Liquide


PSA Separation Process

System operation

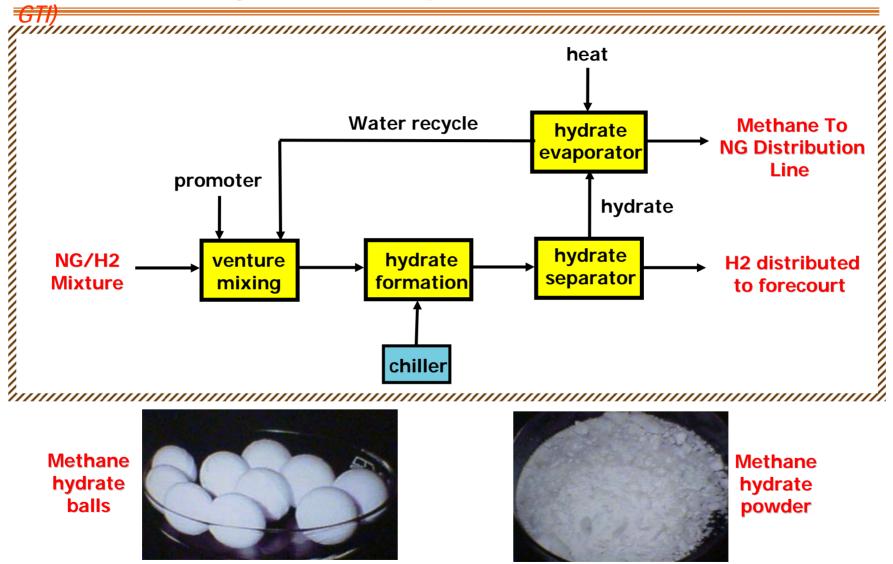
- Heavier compounds (i.e. NG & odorant) in the blended fuel are absorbed
- H2 leaves at high pressure to go to forecourt without further compression
- Part of H2 produced used to purge NG absorbed; NG leaves at low pressure
- Can produce high purity H2 for FCV
- Low H2 content (10%) in the feed increases the number of adsorbent beds & amount of purge gas required
- H2 recovery is estimated to be very low in the 20% range
- This separation option is not further considered

Membrane Separation Process



	Temp, C	Mechanism
Polymer	<100C	Molecular Diffusion
Porous Ceramic	200-600	Molecular Sieve
Metallic (Pd Alloys)	300-600	Atomic Diffusion
Porous Carbon	500-900	Molecular Diffusion
Dense Ceramic	600-900	lonic Transfer

Polymer membranes

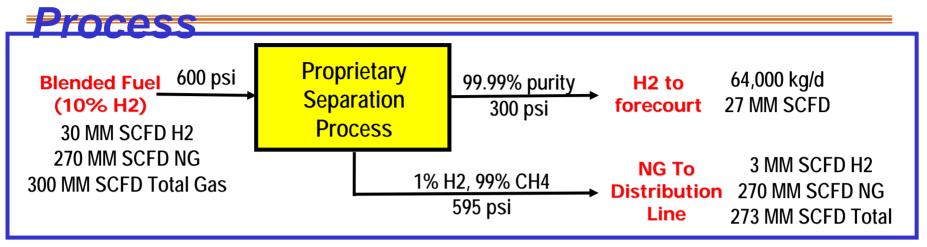

- Commercial (Air Products, Linde, BOC, Air Liquide)
- Potential to adapt large gas flow
- Cannot produce high purity H2 with 10% H2 in the blended fuel feed
- Metallic membrane
 - Commercial (J. Matthey, Aleghany Technology, Walther Juddah Tech)
 - Limited by precious metal cost to small-scale special applications
 - Cheaper ZrNi to replace Pd is under development (Bend Research, Japanese Nat Inst Material NIMCR)
- Porous/dense ceramics & porous carbon are far from commercial

Separation Process Using MH as H2

going

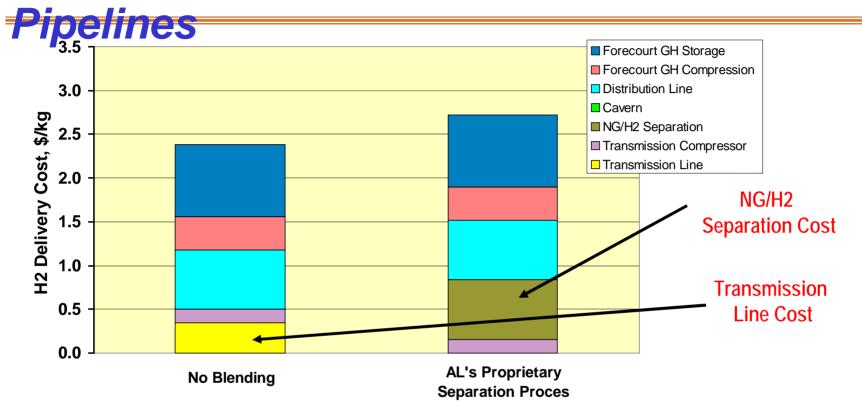
Methane Hydrate Separation Process (from

Methane Hydrate Operating Conditions (from


- Equilibrium: at reactor outlet condition
- Extremely low last stage temp: due to very high H2 purity required
- No chance to improve it: dictated by equilibrium
- Not practical to pursue further

0 1500 Equibrium Pressure, Psia With Promoter 0 0 1000 Original Ο 500 0 240 250 260 280 290 300 270 310 Temperature, K

$$\begin{array}{c} 10\% \ H2, \ 90\% \ CH4 \\ P_t = \ 600 \ psi \\ P_{CH4} = \ 540 \ psi \\ P_{H2} = \ 60 \ psi \end{array} \xrightarrow{\begin{subarray}{c} 50\% \ H2, \ 50\% \ CH4 \\ P_t = \ 600 \ psi \\ P_{CH4} = \ 300 \ psi \\ P_{H2} = \ 300 \ psi \end{array} \xrightarrow{\begin{subarray}{c} 50\% \ H2, \ 50\% \ CH4 \\ P_t = \ 600 \ psi \\ P_{CH4} = \ 300 \ psi \\ P_{H2} = \ 300 \ psi \end{array} \xrightarrow{\begin{subarray}{c} 50\% \ H2, \ 50\% \ CH4 \\ P_t = \ 600 \ psi \\ P_{CH4} = \ 300 \ psi \\ P_{H2} = \ 300 \ psi \end{array} \xrightarrow{\begin{subarray}{c} 50\% \ H2, \ 50\% \ CH4 \\ P_t = \ 600 \ psi \\ P_{CH4} = \ 300 \ psi \\ P_{H2} = \ 300 \ psi \end{array} \xrightarrow{\begin{subarray}{c} 50\% \ H2, \ 50\% \ CH4 \\ P_t = \ 600 \ psi \\ P_{H2} = \ 50\% \ H2, \ 50\% \ CH4 \\ P_t = \ 600 \ psi \\ P_{H2} = \ 50\% \ P_{H2} = \ 50\% \$$


() Nexant

Air Liquide's Proprietary Separation

- Can produce high purity H2 from low H2 content blended fuel
- Process components based on mature technologies
- High H2 recovery: 90%
- Only 5 psi pressure loss for NG
- Odorant in NG line: does not show up in the high purity H2 produced
- For 64,000 kg/d H2 delivered to forecourt:
 - capital: \$44 million
 - power consumption: 11 MW
 - O&M: \$3.7 million

Economics of Blending GH into NG

- H2 demand: 27 MMscfd (64,000 kg/d)
- 5000 psig GH on-board storage
- Transmission: 100 miles; 1,000 psi in, 600 psi out
- Forecourt: 43 stations; 300 psi H2 in
- Distribution line: 86 miles

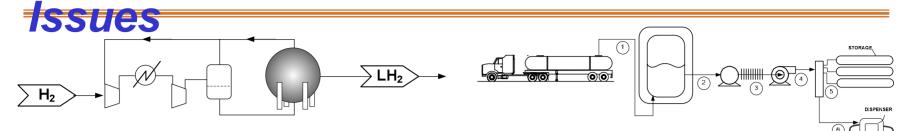
- AL's process is not economical when central production is 100 mile away from city gate
- It becomes cost effective when the central production is >175 miles away from city gate

6 Nexant

Knowledge Collected and Preliminary Results

GH Tube Trailers

GH Tube Trailer Delivery Experience &

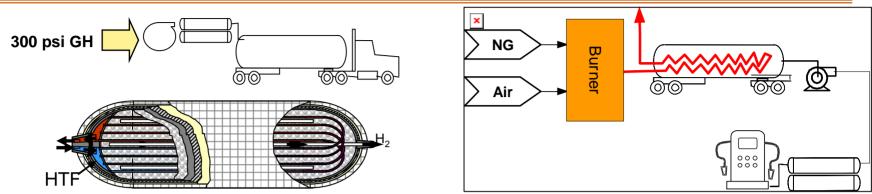

- 1500 tube trailers in services in US
- Tube trailers incorporated in H2A model
 - 2700 psi tube trailer in actual use (carry 9-36 tubes; 20-38' long,; 92 ft3 for 38' tube; 700 lb H2 total; \$165K trailer cost)
 - 7000 psi tube trailer being offered (carry 1 tube of composite materials; 918 ft3; 1445 lb H2 total; \$350K trailer cost)
- Refill terminal at central production: need 6 day LH storage to cover scheduled /unscheduled shutdown of GH production

Issues

Knowledge Collected and Preliminary Results

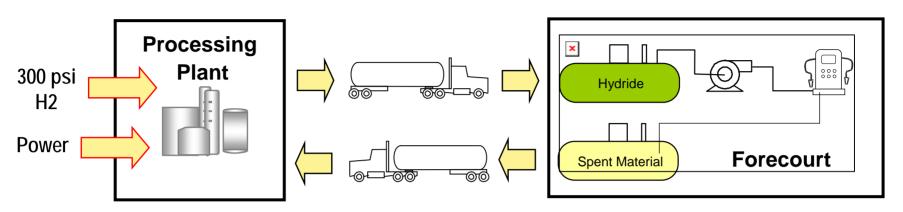
LH Tank Trucks

LH Tank Truck Delivery Experience &


- 10 liquefaction plants in US; producing 300 tpd LH
- LH tank truck delivery already incorporated in H2A model
 - LH tank truck (deliver 8000 lb H2; \$650K trailer cost)
 - Liquefaction plant:: 8-14.5 kWh/kg H2 (refining it as function of plant size)
 - LH pump rather than GH compressor
- Sub-cooled liquid to avoid boil-off during tank truck delivery
- No need of LH distribution terminal
 - 6-10% loss during unloading at terminal
 - LH will be dispatched from central production to forecourt directly
- 3 day storage is sufficient to match forecourt demand profile
- Magnetic liquefaction in development (Prometheus, Astronautics)
 - Can reduce power consumption to 7 kWh/kg H2 (twice of theoretical)
 - Capital is 2/3 of conventional process

Knowledge Collected and Preliminary Results

Novel H2 Carriers

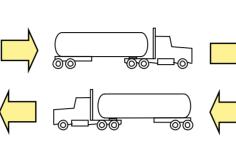

Technology	Forecourt Processing
Alanate	Dehydrogenate to produce GH
Chemical Hydride	React with H2O to to produce GH
Liquid Hydrocarbon	Pump to on-board fuel tank
Flowable Powder	Pump to on-board fuel tank
Bricks	Load as on-board fuel tank

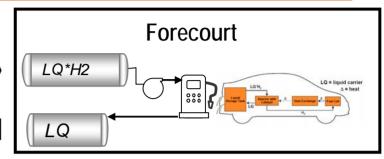
Alanate as Carrier

- Alanate (NaAlH4, LiAlH4, etc.) has high H2 content: 5.5% wt
- Suitable as carrier delivered by tank trucks
- Alanate burns vigorously upon contact with air
- Safer to leave in the trailer after disengaged from cab at forecourt
- Hydrogen is released after being heated at forecourt: process heat required = 6% of H2 energy
- Can match H2 demand profile at forecourt at will
- 1500 kg/d H2 demand at forecourt will require 1 trailers/d (1,500 Kg H2/trailer); minimum parking space required

Chemical Hydride as Carrier




Chemical hydride water solution reacts over catalyst on-board to release H₂


 $XH_2 + H_2O = XO + 2H_2$ X = Mg, Li, Na, NaB

- Hydrogen yield: 7-11%
- Regeneration
 - Electrolytic process
 - Processes of using reducing gases

Liquid Hydrocarbon as Carrier

 $H_{3}C \xrightarrow{R} H_{1}C \xrightarrow{R} H_{1$

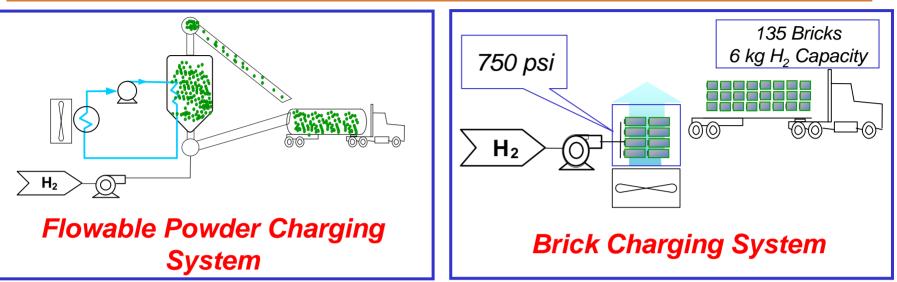
Indolocarbazole

HC carriers explored by Air Products

Very promising option

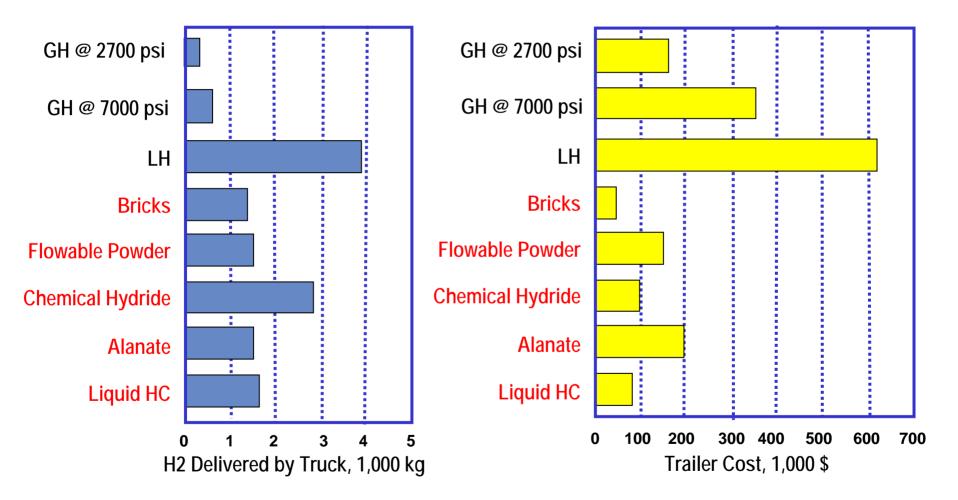
- High H2 content: 5-6.5 wt%
- Liquids are easier and safer to store
- On-board storage avoids gas compress
- No transition issue

On-board dehydrogenation

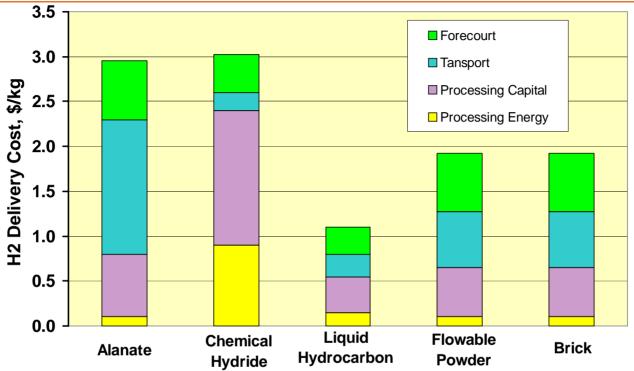

- Desirable to use FC waste heat (80 C); but succeeded so far only for 170 C
- Intermediate solution: burn part of the on board H2 generated
- On-going testing of various reactor designs, cyclic use capability, etc.

Hydrogenation

- Too complex for forecourt to handle; central processing allows effective use of the heat rejected
- Operating condition: around 170 C, 1200 psi
- No extensive tests yet
- Design & cost estimate bases: Use refinery naphtha hydrogenation experience


6 Nexant

Flowable Powder & Bricks as Carrier

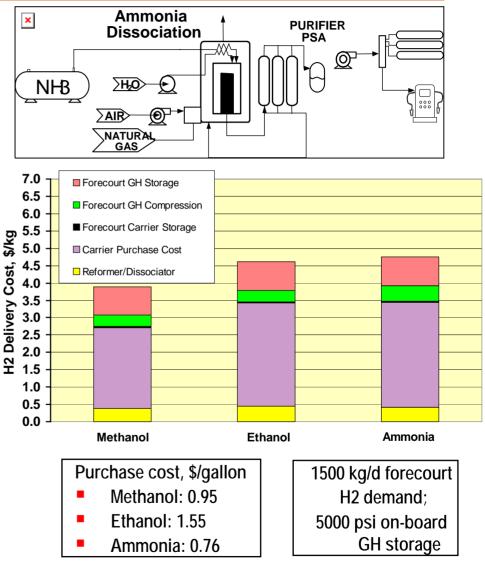


- Flowable powders and integrated tank systems (bricks) are options for delivering hydrogen adsorbed on solid materials
- Powder or bricks would be transported by truck
- Performance depends on achieving hydrogen mass storage performance
- Assumed 3.5% and 3% H₂ for powder and bricks, respectively
- Forecourt requires solids transport system, inert gas supply
- Hydrogen recovered from vehicle, presumably with waste heat

Truck Delivery Bases

Comparison of Novel Carriers

- All cases based on truck delivery from central processing plant 100 miles away from a large city requiring 200 million SCFD (474,000 kg/d) H2
- Liquid HC case might consider pipeline delivery to a city terminal with truck distribution to forecourt if central processing plant is located far away: delivery volume required is 8 times of gasoline
- Liquid HC case is most economical


6 Nexant

Knowledge Collected and Preliminary Results

Methanol/Ethanol/Ammonia as H2 carriers

Methanol, Ethanol, Ammonia as Carrier

- On-board conversion to GH not practical, need ground conversion
 - Methanol: steam reforming
 - Ethanol: auto thermal reforming
 - Ammonia: dissociation
- For ammonia, unloading and setback distance at forecourt are major safety issues
- H2 production and delivery cannot be segregated; their economics can be assessed only jointly with the production infrastructure

Summary of Observations

- Forecourt H2 demand profile is a critical factor to consider in selecting delivery options
- Marginal cost advantage to convert existing NG/oil pipeline for H2 delivery if transmission line is short
- Blending H2 into existing NG line does not pay if the gas transmission distance is short
- Liquid hydrocarbons, such as that <u>Nexant</u> being developed by Air Products, hold the best promise

45

Year	Activities	
FY2006	 Refine preliminary performance and cost estimate above for each delivery option Generalize the single point estimate as a function of delivery volume and distance Refine and expand H2A model 	
FY2007	 Evaluate existing H2 delivery infrastructure capability Estimate emissions for each delivery option Work with the production team & DOE to recommend hydrogen delivery strategies 	