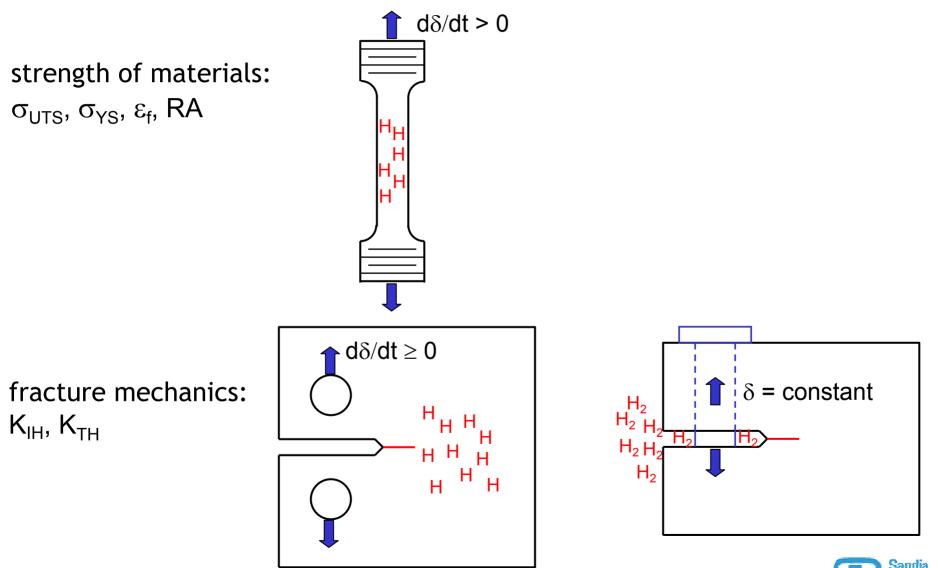
Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture

Brian Somerday, Chris San Marchi, and Dorian Balch Sandia National Laboratories Livermore, CA


> Hydrogen Pipeline Working Group Workshop Augusta, GA August 30-31, 2005

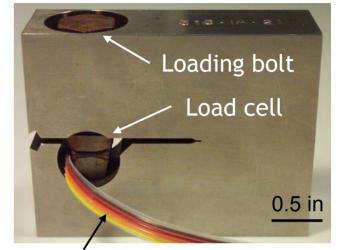
SNL has 40+ years experience with effects of high-pressure hydrogen gas on materials

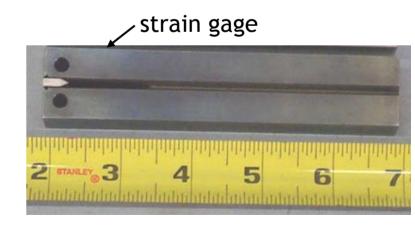
- Design and maintenance of welded stainless steel pressure vessels for containment of high-pressure H_2 isotopes
 - Extensive testing of stainless steels exposed to high-pressure H_2 gas
- Six-year program in 1970s focused on feasibility of using natural gas pipeline network for $\rm H_2$ gas
 - Materials testing in high-pressure $\rm H_2$ gas using laboratory specimens and model pipeline
 - Examined fusion zone and heat affected zones of welds
- Active SNL staff have authored 70+ papers and organized 6 conferences/symposia on H_2 effects in materials
 - Seventh conference on Hydrogen Effects on Material Behavior scheduled for Sept. 2008 at Jackson Lake Lodge, Wyoming

SNL/CA has capabilities for producing both strength of materials and fracture mechanics data

Thermal charging of specimens in H₂ gas

- Two high-temperature charging stations
 - temperatures up to 300 °C (572 °F)
 - pressures up to 138 MPa (20 ksi)
 - two to four A286 primary vessels in 304 secondary containment
 - H concentrations from 7,000 to 15,000 appm in stainless steels
- Specimens
 - compact tension and 3-pt bend fracture mechanics (K_{IH})
 - smooth and notched tensile (σ_{UTS} , σ_{YS} , ϵ_{f} , RA)
- Dedicated 90 kN (20 kip) servo-hydraulic load frame for rising displacement testing

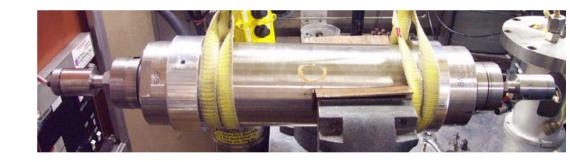

- \bullet Five stations for testing in high-pressure H_2 gas
 - pressures up to 200 MPa (29 ksi)
 - room temperature
 - A286 primary vessels in 304/321 containment



Measurement of K_{TH} in high-pressure H_2 gas: instrumented WOL and DCB specimens

- WOL specimens
 - procedures follow ASTM E1681-99
 - constant displacement with instrumented load cell
 - strain gages yield load vs. time: crack advance \rightarrow load drop \rightarrow K drop
 - crack arrests when K = K_{TH} (load constant with time)
- DCB specimens
 - procedures follow NACE TM0177-96
 - constant displacement from wedge
 - strain gage signals crack initiation and arrest
 - crack arrests when $K = K_{TH}$ (strain gage signal constant)

strain gage leads (Excitation and DAQ)

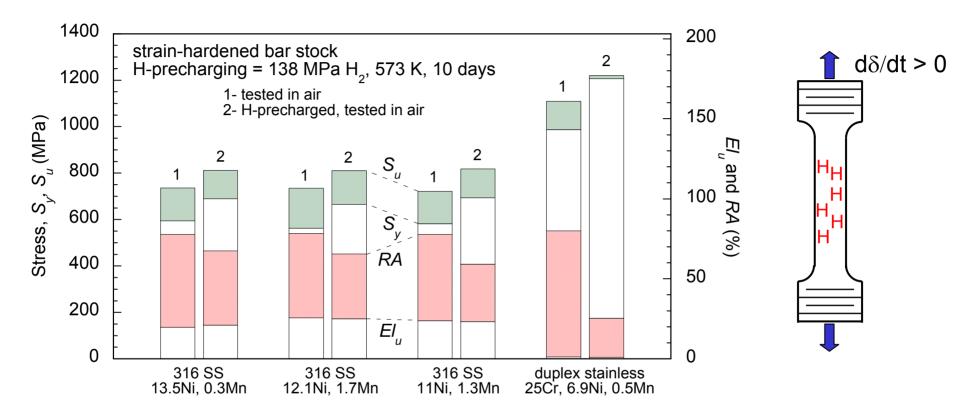


Measurement of K_{TH} in high-pressure H_2 gas: test assembly

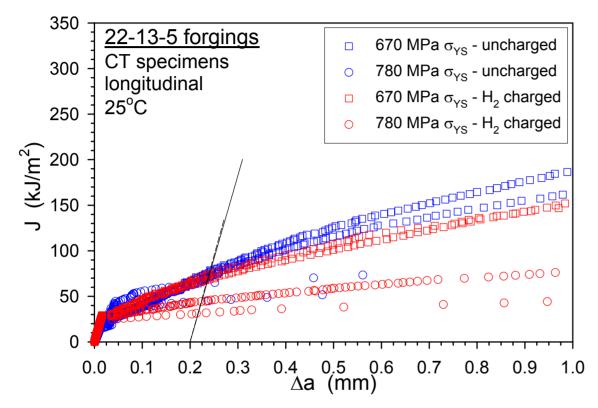
- Up to 4 WOLs in each cradle
 - 2 cradles/vessel
- Up to 8 DCBs in each modified cradle
 - 1 cradle/vessel
- Displacement loading applied in air

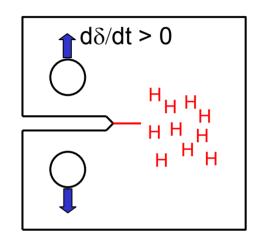
Test durations can be 1000+ hours for both stainless steels and ferritic steels

Measurement of K_{TH} in high-pressure H_2 gas: environmental chamber



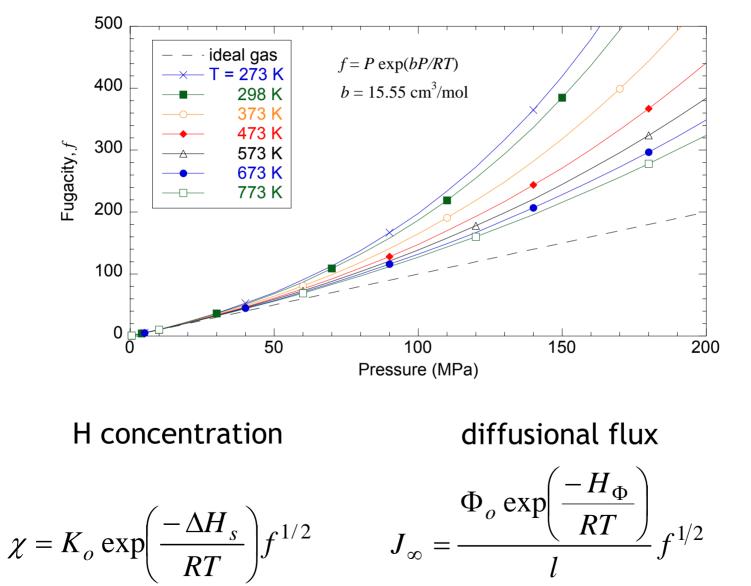
- Temperatures
 - +175 °C to -75°C (-347 °F to -103 °F)
- Pressures
 - 200 MPa (29 ksi) below room temperature
 - 138 MPa (20 ksi) above room temperature
- Capacity
 - one test vessel (8 WOLs or 8 DCBs)


Tensile tests with internal hydrogen



- Materials
 - Forged 22Cr-13Ni-5Mn and 21Cr-6Ni-9Mn stainless steels
 - Cold-worked and annealed 316 stainless steel
 - Cold-worked and annealed SAF 2507 duplex stainless steel
 - X-70 and X-80 pipeline steels

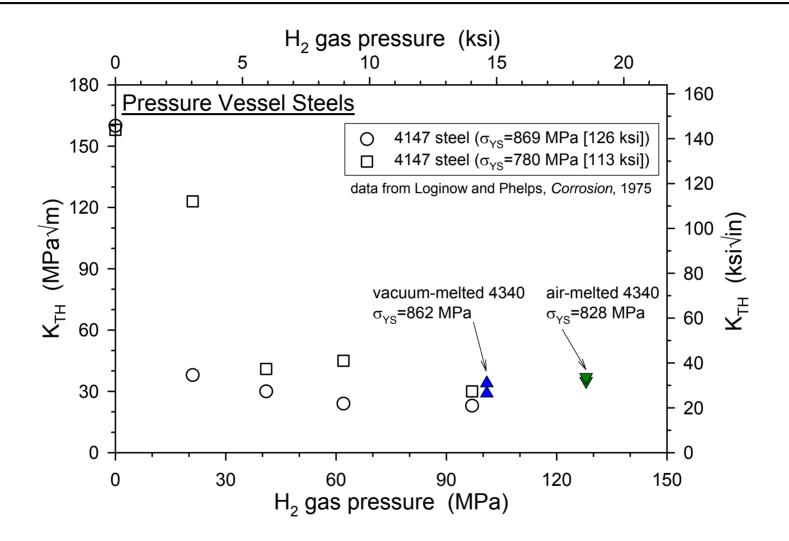
Fracture toughness tests with internal hydrogen



- Materials
 - Forged 22Cr-13Ni-5Mn and 21Cr-6Ni-9Mn stainless steels
 - Cold-worked 316 stainless steel
 - Cold-worked SAF 2507 duplex stainless steel
 - Stainless steel welds

Calculations involving high-pressure H₂ must consider fugacity

Crack growth threshold tests in hydrogen gas


Quenched and tempered low-alloy steels								
	Ni	Cr	Мо	С	Mn	Si	S	Р
VM 4340	1.81	0.84	0.27	0.41	0.82	0.29	0.001	0.004
AM 4340	1.71	0.82	0.21	0.41	0.75	0.22	0.007	0.012
SA 372 Gr. J	_	0.96	0.18	0.48	0.92	0.30	0.002	0.010

Summary of tests

Material	σ _{YS} (MPa)	H ₂ (MPa)	K _o (MPa√m)	K _{TH} (MPa√m)	Initiation time (hrs)
VM 4340	862	100	40-60	29-34	65
VM 4340	862	40	40-60	-	>500
VM 4340	600	100	50-75	-	>350
VM 4340	600	40	70-80	-	>500
AM 4340	828	100	40-60	-	>5000
AM 4340	828	130	40-60	35-37	1800
SA 372 Gr. J	718	80	35-105	-	>5000

K_{TH} measurements for 4340 compared to literature data

Initial K_{TH} measurements for modern "clean" steels are similar to data for older steels

Complications testing pressure vessel steels

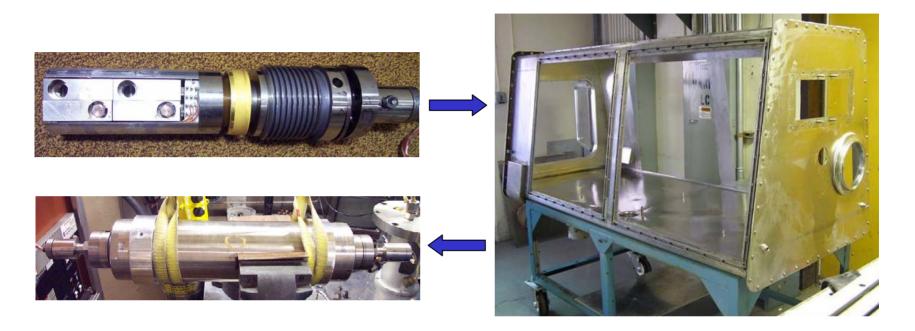
- Time for initial crack extension in H_2 gas varies widely
 - 65 hrs for VM 4340 vs >5000 hrs for AM 4340 in same test vessel
 - H_2 gas purity important
 - W.T. Chandler and R.J. Walter, ASTM STP 543, 1974
 - surface oxides important
 - WOL and DCB specimens displacement loaded in air
 - Nelson, ASTM STP 543, 1974 \rightarrow H₂ dissociation may govern crack extension in 4130 steel
- \bullet Long cracks complicate K_{TH} measurement in constant-displacement tests
 - $a/W \ge 0.8$ in VM 4340 WOL specimens

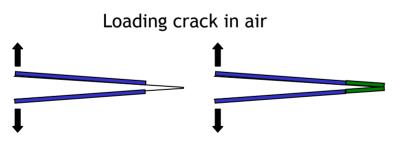
H₂ gas analysis in crack growth system

Gas sampling after H_2 flow through manifold

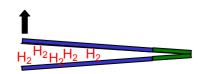
	0 ₂ (ppm)	H ₂ O (ppm)	N ₂ (ppm)	CO (ppm)	CO ₂ (ppm)	THC (ppm)
99.9999% H ₂ spec.	<0.05	<0.5	<0.2	<0.01	<0.02	<0.01
manifold	0.2	<0.5	2	<0.1	<0.1	<0.1
manifold + mol. sieve	0.5	<0.5	2	<0.1	<0.1	<0.1

Gas sampling after H₂ flow through manifold + pressure vessel

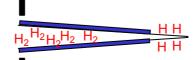

	O ₂ (ppm)	H ₂ O (ppm)	N ₂ (ppm)	CO (ppm)	CO ₂ (ppm)	THC (ppm)
99.9999% H ₂ spec.	0.1	0.16	0.32	<0.02	<0.02	<0.01
manifold + vessel	0.3	2	2	<0.1	<0.1	0.8


Gas compositions from other laboratories

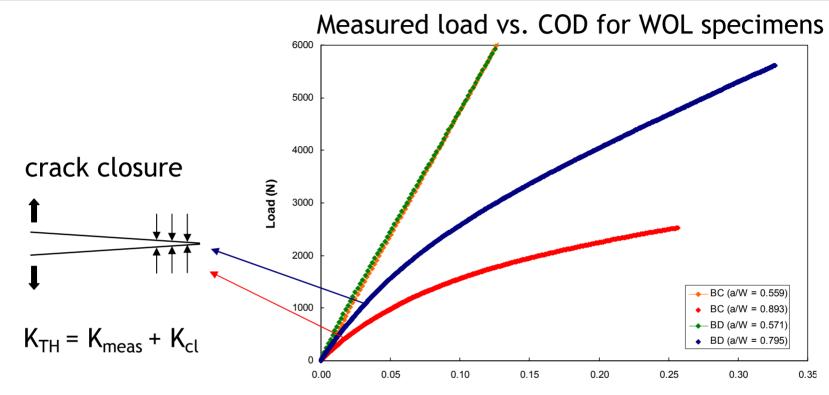
	O ₂ (ppm)	H ₂ O (ppm)	N ₂ (ppm)	CO (ppm)	CO ₂ (ppm)	THC (ppm)
Loginow & Phelps	<5	50	1000	n/a	<10	n/a
Walter & Chandler	<0.2	~1	0.6-0.9	<0.5	<0.5	<0.5



Preclude surface oxide effect with glovebox

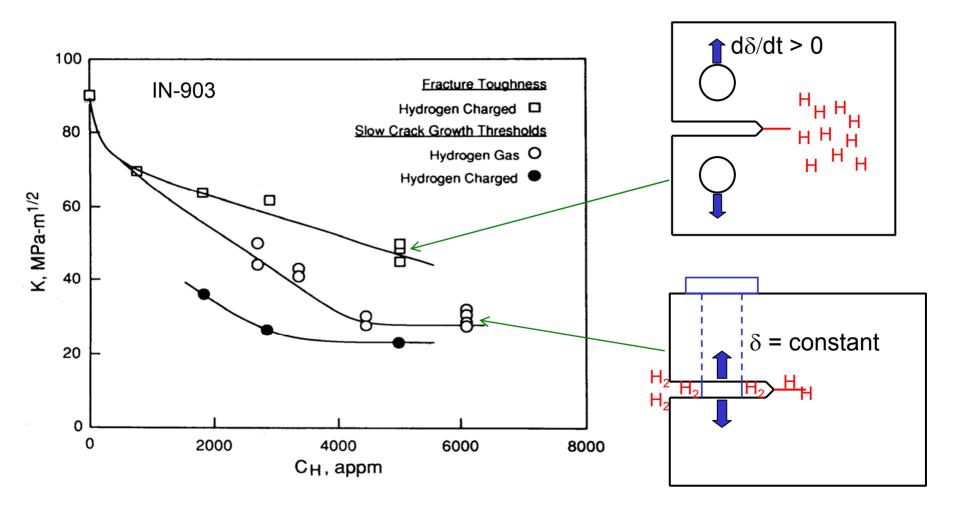

Exposure to hydrogen gas

Loading crack in glovebox



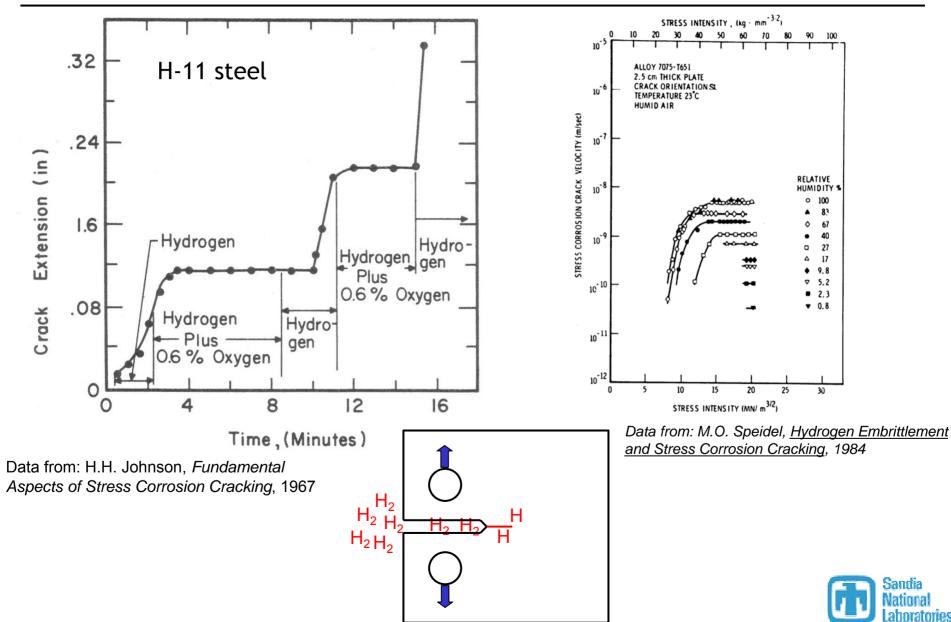
Exposure to hydrogen gas

Long cracks result in elevated K_{TH} measurements



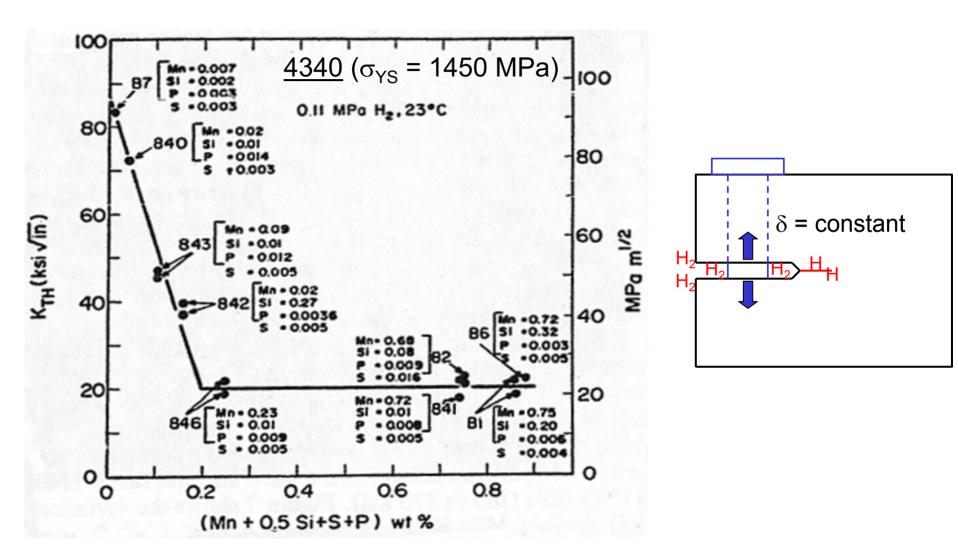
Front face COD (mm)

4340 specimen	Initial K (MPa√m)	K _{TH} (MPa√m) meas. load	K _{TH} (MPa√m) minus closure
VM (BC)	61	56	34
VM (BD)	43	46	29
AM (AC)	40	37	37
AM (AD)	62	47	35


H₂-assisted fracture depends on environment: hydrogen source

Data from: N.R. Moody et al., Hydrogen Effects on Material Behavior, 1990

H₂-assisted fracture depends on environment: gas purity



H₂-assisted fracture depends on environment: gas purity

- Impurities such as O_2 preferentially adsorb on clean metal surfaces \rightarrow inhibits adsorption of H_2
 - limits H uptake at crack tip
- Effect of O_2 may depend on absolute partial pressure
 - effect of O_2 may be observed at lower concentrations for higher H_2 pressures
- Other impurities may have same effect as O₂
 - SO₂, CO, CS₂, CO₂
- Resource: ASTM STP 543, 1974

H₂-assisted fracture depends on material: composition

Data from: N. Bandyopadhyay et al., Metallurgical Transactions A, 1983

SUMMARY

- SNL can characterize hydrogen effects on materials using strength of materials and fracture mechanics approaches
 - thermal charging of test specimens using high-pressure H₂
 - static loading of test specimens in high-pressure H₂
- SNL has active programs testing materials in high-pressure H_2
 - pressure vessel steels and stainless steels
- Numerous variables impact hydrogen-assisted fracture of structural materials
 - environmental variables
 - material variables
 - mechanical variables

