

... for a brighter future

Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

HTMWG May 18, 2009

Welcome!

Agenda

9:00 am	Welcome	Nancy Garland,DOE						
9:05 am	Update on Membrane	e on Membrane Approaches						
9:25 am	Integration of non-trad	J. Kopasz, ANL itional membranes into MEAs						
		Yu Seung Kim, LANL						
10:10 am	MEA Testing Issues a members	Yu Seung Kim, LANL nd Fabrication from team						
		Jim Fenton FSEC						
10:55 am	OEM perspective							
		Craig Gittelman GM						
11:40	Open discussion							

Membrane Project Presentations at the DOE H₂ Program Annual Merit Review

Poster Session–Crystal Gateway Grand Ballroom 6-9 PM, FCP 10 K. Mauritz

Tuesday AM Fuel Cell Session Crystal Gateway Salon IV

- 8:30 FC 01 J. Fenton UCF/FSEC
- 9:00 FC02 C.Mittelsteadt Giner
- 9:30 FC03 S. Lvov Penn State

10:00 FC04 J. Mays U. of Tennessee 10:30 Break

11:00 FC05 J. McGRath Virginia Tech 11:30 FC06 D. Gervasio Arizona State 12:00 FC07 S. Creager, Clemson Tuesday PM Fuel Cell Session 1:45 FC08 M. Litt Case Western 2:15 FC09 P. Pintauro, Vanderbilt 2:45 FC10 L. Lipp, FCE 3:15 FC11 A. Herring Colorado School of Mines 3:45- Break 4:15 FC12 J. Goldbach Arkema 4:45 FC13 S. Hamrock, 3M 5:15 FC14 J. Kerr, LBNL

Wednesday AM Fuel Cell Session Crystal Gateway Salon IV

8:30AM FC 15 S. Das, Kettering

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Membrane Classification Scheme – Update with some results

High Temperature Membrane Working Group May 14, 2007

Huge variety of possible polymer membranes to investigate

- Hydrocarbon, Fluorocarbon, Inorganic
- Branched, Comb, hyperbranched, dendritic,,
- With additives
- With structural supports,

What avenues should be pursued? Which are dead ends? How do we decide?

Need a way to organize/manage information gathered

A wide variety of approaches for High temperature PEMFC membranes are being pursued

	Morphology	Molecular Approach			Addi	tive App	Micro/nano engineering approach			
Conduction	Mechanism	Other Polymer	Block Copolymer	Rigid Rods	ZrPhosphate	НРА	Zeolite	Other	Structured Support	Structured lonomer
Aqueous				1.100.0			200110	0 1101	Capport	
	FC-SO3H									
	HC-SO3H									
	Hydrous Metal Oxide	S								
	sulfonyl imides									
Potential N	on Aqueous									
	polyPOMs									
	Phosphates									
	Phosphonic acid									
	Phosphoric acids									
	Heterocyclic bases									
	lonic liquids									

A wide variety of approaches for High temperature PEMFC membranes are being pursued

	Morphology	Molecular Approach			Addi	tive App	Micro/nano engineering approach			
Conductio	Conduction Mechanism		Block Copolymer	Rigid Rods	ZrPhosphate	HPA	Zeolite	Other	Structured Support	Structured lonomer
Aqueous										
	FC-SO3H									
	HC-SO3H									
	Hydrous Metal Oxides	S								
	sulfonyl imides									
Potential I	Non Aqueous									
	polyPOMs									
	Phosphates									
	Phosphonic acids									
	Phosphoric acid									
	Heterocyclic bases									
	Ionic liquids									
	DOE/EERE									
	Other									

DOE Membrane Targets

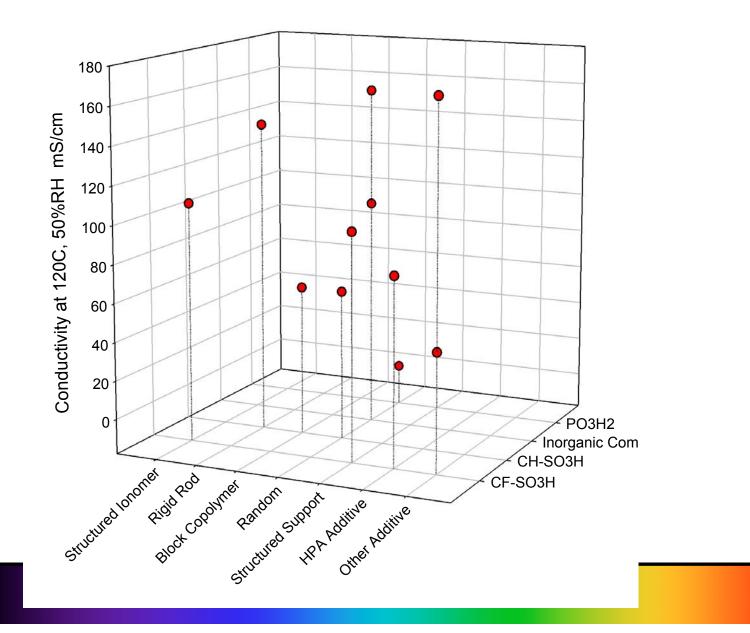
Characteristic	Units	2006 status	2005 target	2010 target	2015 target
Maximum operating temperature	°C	80	120	120	120
Area specific proton transfer resistance at:					
Maximum operating temp and water partial pressures from 40	Ohm cm ²	0.03	0.02	0.02	0.02
 80 kPa 80°C and water partial pressures from 25 - 45 kPa 	Ohm cm ²	0.03	0.02	0.02	0.02
30°C and water partial pressures up to 4 kPa -20°C and water partial pressures up to 0.1 kPa	Ohm cm ² Ohm cm ²	0.04 0.3	0.03 0.2	0.03 0.2	0.03 0.2
Oxygen cross-over ^a	mA/cm ²		5	2	2
Hydrogen cross-over ^a	mA/cm ²		5	2	2
Cost ^b	\$/m ²	с		20	20
Durability mechanical ^e chemical ^f	5 cycles w<10 sgcm crossover H2 crossove 15 $< 2mA/cm^{2}$	200		20,000 ^e 500 h	20,000 ^e 500 h
Minimum Electrical resistance	Ohm cm ²			1000	1000

Targets in numbers we're familiar with

- 0.02 ohm-cm² corresponds to a conductivity of 0.1 S/cm for a 20 micron thick membrane
- P_{H2O} 25-45 kPa at 80°C ~ 50-95%RH
- P_{H2O} 40-80 kPa at 120C ~ 20-40% RH

Conductivity Results at 80°C and 80% RH

Aqueous									
	FC-SO3H								
	HC-SO3H								
	Hydrous Metal Oxide	es							
	sulfonyl imides								
Potential I	Non Aqueous								
	polyPOMs	*							
	Phosphates								
	Phosphonic acids								
	Phosphoric acid								
	Heterocyclic bases								
	lonic liquids								
		>200 mS/c	m						
		100-200 mS	S/cm						
		Less than '	100 mS/cm						
	*	measured i	n house and	by a seco	ond party (not	FSEC/Be	ekkTech)	



DOE Projects have achieved high conductivity at 120°C 50% RH with a variety of approaches

			Molecular Approach				Micro/nano engineering			
	Morphology	IVIOI				itive App		approach		
Conductic	n Mechanism	Other Polymer	Block Copolymer	Rigid Rods	ZrPhosphate	НРА	Zeolite	Other	Structured Support	Structured lonomer
Aqueous		† ´			•					
	FC-SO3H									
	HC-SO3H									
	Hydrous Metal Oxide	es								
	sulfonyl imides									
Potential	Non Aqueous									
	polyPOMs	*								
	Phosphates	**								
	Phosphonic acids									
	Phosphoric acid									
	Heterocyclic bases									
	lonic liquids									
		> 0 1 S/cn	n at 120C and	d 50%RH						
		≥ 0.1 S/cm at 120C and 50%RH > 50% of target								
		Less than	50% of targe	et	NRE 212 < 50% of target					
	*	Measured	in-house and	by a seco	ond party					
	**	Measured	in-house							

Conductivity Results at 120°C, 50%RH

conductivity at 120°C, 25% RH with a variety of approaches

	Morphology	Mol	ecular Appro	ach	Addi	itive App		Micro/nano engineering approach		
Conductio	n Mechanism	Other Polymer	Block	Rigid Rods	ZrPhosphate		Zeolite	Othor	Structured Support	Structured Ionomer
Aqueous		Folymei	Copolymer	Rous	ZIFTIUSPITALE		Zeonte	Other	Support	lonomei
Aqueous	FC-SO3H									
	HC-SO3H									
	Hydrous Metal Oxide									
	sulfonyl imides	;5 								
Potential	Non Aqueous									
FULEIILIAI										
	polyPOMs	*								
	Phosphates	**								
	Phosphonic acids									
	Phosphoric acid									
	Heterocyclic bases									
	Ionic liquids									
		met conductiivty target of 0.1 S/c			cm					
		30-50% of target								
		20-30%			NRE 212 < 5	0% of ta	rget			
		Less than	20% of targe	t						
	*		in-house and		ond party					
	**	Measured								

What is the impact on mechanical properties?

	Morphology	Mole	ecular Appro	ach	Addi	tive App	Micro/nano engineering approach			
Conductio	n Mechanism	Other Polymer	Block Copolymer	Rigid Rods	ZrPhosphate	HPA	Zeolite	Other	Structured Support	Structured lonomer
Aqueous										
	FC-SO3H									
	HC-SO3H									
	Hydrous Metal Oxide	S								
	sulfonyl imides									
Potential N	Non Aqueous									
	polyPOMs									
	Phosphates									
	Phosphonic acids									
	Phosphoric acid									
	Heterocyclic bases									
	lonic liquids									
		improveme								
		neutral or	unknown							
		decrease								

Mechanical Durability Test

Table 4Membrane Mechanical Cycle and Metrics(Test using a MEA)							
Cycle	Cycle Cycle 0% RH (2 min) to 90°C dewpoint (2 min), single cell $25-50 \text{ cm}^2$						
Total time	Until crossover >2 m	Until crossover >2 mA/cm ² or 20,000 cycles					
Temperature	80°C	80°C					
Relative Humidity	Cycle from 0% RH ((2 min) to 90°C dewpoint (2 min)					
Fuel/Oxidant	Air/Air at 2 SLPM on	n both sides					
Pressure	Ambient or no back-	-pressure					
	·						
Metric	Frequency	Target					
Crossover*	Every 24 h	$\leq 2 \text{ mA/cm}^2$					
Shorting resistance	Every 24 h	Every 24 h>1,000 ohm cm^2					

* Crossover current per USFCC "Single Cell Test Protocol" Section A3-2, electrochemical hydrogen crossover method

Chemical Durability Test (requires MEA)

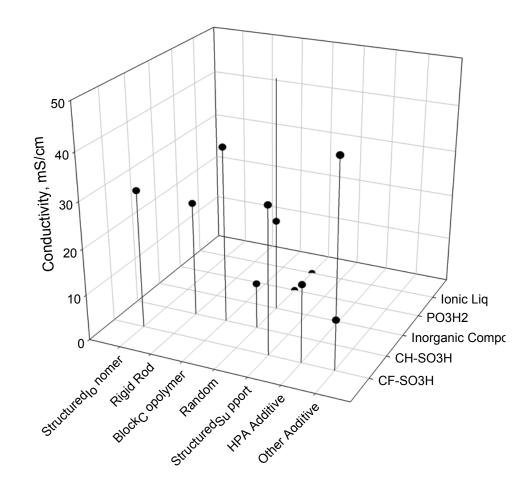
Table 3 MEA Chemical Stability and Metrics								
Test Condition	Steady state OCV, single cell	25-50 cm ²						
Total time	500 h							
Temperature	90°C							
Relative Humidity	Anode/Cathode 30/30%							
Fuel/Oxidant	Hydrogen/Air at stoics of 10/10 at 0.2 A/cm ² equivalent flow							
Pressure, inlet kPa abs (bara)	Anode 250 (2.5), Cathode 200 (2.0)							
Metric	Frequency	Target						
F ⁻ release or equivalent for	At least every 24 h	No target – for monitoring						
non-fluorine membranes								
Hydrogen Crossover	Every 24 h	$\leq 2 \text{ mA/cm}^2$						
$(\mathbf{m}\mathbf{A}/\mathbf{c}\mathbf{m}^2)^*$								
OCV	Continuous	$\leq 20\%$ loss in OCV						
High-frequency resistance	Every 24 h at 0.2 A/cm ²	No target – for monitoring						
Shorting resistance	Every 24 h	$>1,000 \text{ ohm cm}^2$						

*Crossover current per USFCC "Single Cell Test Protocol" Section A3-2, electrochemical hydrogen crossover method

Room for improvement

Using a 2D grid to try to simplify a higher-dimensional system

- Is there a more useful representation?
- Is there a better way to deal with projects that use multiple approaches?
- Incomplete data set


Need a way to organize/manage information gathered

- Track different types of approaches
- Determine which strategies are most fruitful
- Determine which strategies are dead ends
- Improve our understanding of proton transport
- Help maximize our return on HTM research

Conductivity Results at 120°C, 25%RH

Conductivity 120C, 25%RH

