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Introduction and Background 
• Hydrogen fuel cell vehicle performance is outstanding 

 
 
 

• Energy density of H2 is much greater than batteries 
• Rapid fueling, long range ZEV 

• H2 must be produced 
• energy intensive, may have emissions, fossil fuels, economies of scale 

• Low volumetric energy density of H2 compared to current 
infrastructure fuels (@ STP) 
• H2  handling (storage, transport and dispensing) can be energy and 

emissions intensive 

An emerging strategy is poly-generation  
of hydrogen, heat and power from a  

high-temperature fuel cell (HTFC) 

There is a need for a distributed,  
high-efficiency, low emissions hydrogen 

production  method able to use a  
variety of feedstocks 
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Tri-Generation Energy Station Concept 1, 2, 3 

Locally 
available 

feedstock: 
Natural Gas, 

ADG,  
Landfill Gas, …. 

Electricity 
Heat 

Hydrogen 

Energy Station Concept Introduction and Background 

1 Brouwer et al., 2001; 2 CHHN Blueprint Plan, 2005; 3 Leal and Brouwer, 2006 
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Introduction and Background 
Poly-generation of Power, Heat and H2 

 
• Advantages: 4, 5, 6 

• H2 production is at the point of use averting emissions and energy 
impacts of hydrogen and electricity transport 

• Fuel cell produces sufficient heat and steam as the primary inputs 
for the endothermic reforming process 

• Synergistic impacts of lower fuel utilization increase overall 
efficiency (i.e., higher Nernst Voltage, lower polarization losses, 
lower cooling requirement and associated air blower parasitic load)  

• Potential Disadvantage: 
• Distributed production may not be compatible with carbon 

sequestration 
 

4 Leal and Brouwer, 2006; 5 O’Hayre, R., 2009; 6 Margalef et. al, 2008 
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High Temperature Fuel Cell (HTFC) Stack 
• Solid Oxide Fuel Cell Example 

 

Introduction and Background 
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•  Fuel Utilization Factor (Uf) = ~ 85% 

•  Air Utilization Factor   = ~ 15 % 

~ 60% 

~ 30% 
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Recall: High Temperature Fuel Cell (HTFC) Stack 
• Molten Carbonate Fuel Cell Example 

 

Analyses of Synergies 

                         CH4+H2O  →  3H2+CO 
 
     2H2+2CO3

2-  →  2H2O + 2CO2 + 4e- 
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Air Flow and parasitic blower power can be reduced 

Endothermic 

Exothermic 
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Placement of a reformer in different locations:  
Configuration 1   reformer after the air preheater,  
Configuration 2  reformer after the water preheater,  
Configuration 3  reformer after the natural gas preheater,  
Configuration 4  reformer after the combustion chamber. 

Cycle Configurations 
Air Water Natural Gas 
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Configuration 5: External reforming with 
combustion chamber after the air preheater. 
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Thermodynamic Analyses 
• Energy performance analysis 
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• Synergy #1: Electrochemical heat & voltage 
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•  Electrochemistry & Reformation Synergy #2 – Air Flow  
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• EXAMPLE: Efficiency of a Poly-Generating Hydrogen 
Energy Station (H2ES) without valuing heat 

Poly-Generation Analyses 

Electricity 
production with 
state-of-the-art 

natural gas 
combined cycle

Centralized SMR 
Plant 

(H2 production)

(Case: H2ES) 
Poly-generating 

HTFC

Fuel

Fuel

Fuel

Electricity

Hydrogen

η el,1 = 61.2%
η el,2 = 51.7%
η el,3 = 58.4%

η H2,1 = 80.9%
η H2,2 = 54.9%
η H2,3 = 83.5%

η el,pp = 60%

η H2,SMR = 79%

ηtot = 69.5%
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Poly-Generation Dynamic Analyses 
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• Diurnal dynamic operation of SOFC 
• Hydrogen tank fills forcing end of tri-generation 
• Control of system temperatures during transient is possible 
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World’s First Demonstration 
• Orange County Sanitation District 

• Euclid Exit, I405, Fountain Valley 

• Support:  DOE, ARB, AQMD 

    

Renewable Tri-Generation of Power, Heat & H2 

Sponsors/Participants: 
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OCSD Project – World’s First 
• Installation complete, Operation on natural gas (6 months), 

ADG operation underway for ~1 year  

Renewable H2 
Filling Station 

ADG fueled 
DFC-H2 ® 
Production Unit 
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OCSD Project – Status Update 
As of December 31, 2011: 
• Operation on natural gas from January 1, 2011 
• Installation completed in June, 2011 (including ADG skid) 
• Operation on ADG:  3,522,591 SCF processed & used 
• Electricity produced: 605,512 kWh 
• Hydrogen produced: 6,400 lbs (2,902 kg) 
• Steady-State performance demonstrated 

 
 
 
 

• Significant challenges with grid interconnection, power 
quality, inverter trips that adversely affect performance 

Method Efficiency 

Total Efficiency (Elec. + H2) 53.2% 

Eq. Hydrogen Efficiency 87.0% 

Eq. Electrical Efficiency 37.4% 



The UC Irvine Team 

Credit:  Steve Zylius/UC Irvine Communications 
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