H2A Hydrogen Delivery Components Model

Matt Ringer

National Renewable Energy Laboratory
February 8, 2005
Other Team Members:
Mark Paster: DOE
Marianne Mintz, Jerry Gillette, Jay Burke: ANL Daryl Brown: PNNL Joan Ogden: UC Davis

H2A Delivery

Outline

- Hydrogen delivery definition
- H2A Delivery Component Model
- Methodology
- Components included
- Key Assumptions
- Spreadsheet demonstration

H2A Delivery

Hydrogen Delivery

- Hydrogen delivery and storage defined as the complete set of equipment and processes used to move hydrogen from the central production plant to the forecourt station or primary usage

H2A Delivery

Hydrogen Delivery Component Model

- Excel-based tool
- Allow the user to determine a "generic" hydrogen cost for a particular component
- Each storage and delivery component has separate tab
- Final hydrogen cost determined using fixed charge rate calculation
- Final hydrogen cost determined in real dollars
- Model assumes MACRS depreciation
- Replacement capital includes for some components

H2A Delivery

Component Economic Analysis

- The economic results presented assume specific scenario
- Scenario refers to specific situation of hydrogen storage and delivery ... therefore, the results do not apply to every hydrogen storage and delivery application
- Scenario's used to prepare results are static and do not include dynamic cost effects likely to be applicable in real-life development of hydrogen storage and delivery infrastructure in a demand market

H2A Delivery

Consistent Assumptions Throughout Model

- Discount Rate - 10\%
- Dollar Year - 2005
- Startup Year - 2005
- Depreciation Type - MACRS
- Analysis Period - 20 years
- Federal Taxes - 35\%
- State Taxes - 6\%
- Total Tax Rate - 38.6\%

H2A Delivery

Components Modeled

- Hydrogen moved in either liquid or gaseous forms

Delivery Components

-Truck - Tube Trailer
-Truck - LH2
-Pipeline
-Liquefier
-Compressor (one-stage and multi-stage)
-Forecourt Compressor
-Terminals (gaseous and liquid)

Storage Components

-Compressed Gas Tube
System
-Bulk Liquid Hydrogen
System
-Geologic
-Forecourt

H2A Delivery

Spreadsheet Features

- Yes/no toggle switches to allow for user input or H2A standard input
- Inputs turn on/off based on yes/no toggle switch
- Error messages included to alert user when input errors are made
- Multiple options for MACRS depreciation period
- Includes standard MACRS table
- Color-coded to facilitate user input

	Calculated Cells
	User Input Required
	Optional Input
	Information

H2A Delivery

Component Model Hierarchy

Component
Design Inputs

Financial /
Economic Inputs

Replacement
Capital

Component Design/Scenario Calculations

Component Capital Costs

Direct/Indirect

Capital Costs

Operating and Maintenance Costs

Financial
Analysis

Component Cost in $\$ / \mathrm{kg}$ of Hydrogen

H2A Delivery

Component Spreadsheet Inputs

- Design Inputs
- Inputs required to design particular component
- Includes design hydrogen throughput, operating pressures, temperatures, component efficiency, system losses
- Scenario Inputs
- Inputs required to design "generic" scenario for specific component
- Includes delivery times, component availability, days of storage required, truck speed, delivery distance

H2A Delivery

Component Spreadsheet Inputs (cont.)

- Calculations
- No inputs required; calculations required for financial analysis
- Economic Assumptions
- Lifetime, discount rate, analysis period, taxes, depreciation period, system start-up year
- Capital Costs
- All component capital costs
- Options to use H2A data, or user-entered data

H2A Delivery

Component Spreadsheet Inputs (Cont.)

- Other Capital
- Land costs (assumed depreciable)
- Site preparation, engineering, contingency
- Options to use H2A, Peters and Timmerhaus or other data
- O\&M Costs
- Labor, feedstock costs (from H2A cost projections, or user-entered)
- Property taxes, insurance
- Financial Analysis
- Calculations to get component hydrogen cost (\$/kg)

H2A Delivery

Financial Analysis

- Based on fixed charge rate calculation
- First, capital recovery factor is calculated

$$
C R F=\sum_{z=1}^{N} \frac{1}{\left(1+d_{r}\right)^{z}}=\frac{d_{r}\left(1+d_{r}\right)^{z}}{\left(1+d_{r}\right)^{z}-1}
$$

$\mathrm{D}=$ discount rate, $\mathrm{N}=$ analysis period

- Present value of depreciation charges for particular MACRS recovery period calculated

H2A Delivery

Financial Analysis (cont.)

- Fixed Charge Rate Calculation - Based on before-tax-required formula

$$
F C R=\frac{C R F\left(1-b T \sum_{n=1}^{M} \frac{V_{n}}{\left(1+d_{n}\right)^{n}}-t_{c}\right)}{(1-T)}
$$

$\mathrm{b}=$ fraction dep. base, $\mathrm{T}=$ total tax rate, $\mathrm{V}_{\mathrm{n}}=$ fraction of dep. base in year $\mathrm{n}, \mathrm{t}_{\mathrm{c}}=$ tax credits

$$
F C R=\frac{C R F\left(1-T^{*} D\right)}{(1-T)}
$$

D=present value of depreciation (MACRS), T=total tax rate

Financial Analysis (cont.)

- Capital multiplied by FCR; product added to sum of annual costs (labor, utilities, other O\&M)
- Gives required revenue
- Required revenues calculated then divided by actual hydrogen throughput in a year for component
- \$/kg of H2 cost

H2A Delivery

Compressed Gas Truck Delivery

- Calculations assume trailer is dropped off at station
- Tab designed based on one tractor and enough trailers to maximize tractor utilization
- Analysis period = 20 yrs

H2A Delivery

Compressed Gas Truck (cont.)

- Trailer assumptions (H2A KIC):
- Max P = 2,640 psig, Min P = 135 psig
- Super Jumbo trailer holds 9 tubes, total of 340 kg of H2
- Lifetime - 20 yrs, MACRS Schedule - 5 yrs
- Capital Cost - \$165,000 (year 2005 dollars)
- Tractor assumptions:
- Avg. speed - 50 km/hr (30 mph)
- Fuel economy - 2.6 km/L (6 mpg)
- Lifetime - 5 yrs; MACRS schedule - 5 yrs
- Capital Cost - \$165,000 (year 2005 dollars)
- No overnight coach

H2A Delivery

Compressed Gas Truck Cost

- Scenario assumptions:
- Loading time at terminal - 6 hrs
- Drop-off/Pick-up time - 2 hrs
- Roundtrip Delivery Distance - 100 km
- H2 Station demand - 100 kg/day
- Trailers required - 16
- Compressed Gas Truck Portion of Delivered H2 Cost

H2A Delivery

Compressed Gas Truck: Delivery Distance vs. Cost

Assumptions:
Maximum Pressure: 180 atm
Station Demand: 100 kg/day

H2A Delivery

Compressed Gas Truck: Maximum Pressure vs. Cost

Assumptions:
Delivery Distance: 100 km
Station Demand: 100 kg/day

Spreadsheet Demonstration

H2A Delivery

Liquid H2 Truck Delivery

- Design based upon 1 tractor and 1 trailer
- Flexibility to specify 1, 2 or 3 stops
- Storage assumed to exist at delivery site
- Same tractor/scenario assumptions as gas truck delivery

H2A Delivery

LH2 Truck Delivery Cost

- Trailer assumptions:
- Capacity - 17,000 gall $(3,800 \mathrm{~kg}$ of H2)
- Unloading/Loading losses - 6\%
- Lifetime - 20 yrs; MACRS Depreciation - 5 yrs
- Capital cost - \$715,000 (year 2005 dollars)
- Roundtrip Delivery Distance - 100 km
- H2 Station demand - 1,500 kg/day
- Number of stops - 2 per trip
- LH2 Truck Portion of Delivered H2 Cost

Compressor (Single, Multi-stage

 and Forecourt)- Based on one compressor
- User can input adiabatic efficiency and have power req. calculated, or enter power required in $\mathrm{kWh} / \mathrm{kg}$ of H2
- Analysis period - 20 yrs
- Compressor assumptions:
- 90\% availability
- Cp/Cv - 1.4 (for H2 compression)
- Adiabatic efficiency - 70\%

From American Gas

- Lifetime - 5 yrs; MACRS Schedule - 5 yrs

H2A Delivery

NG Compressor Station Construction Costs (2005\$)

Data from Oil and Gas Journal Report on Pipelines, 2000

H2A Delivery

Capital cost of Large H2 compressors versus power (kW)

H2A Delivery

Compressor Cost

- Larger scale compressor
- Design capacity - 300,000 kg/day
- Inlet pressure - 20 atm (295 psia)
- Outlet pressure - 70 atm (1,030 psia)
- Pressure ratio - 1.7, 3-stages
- Compressor Portion of Delivered H2 Cost

H2A Delivery

Forecourt Compressor

- Design parameters
- Design capacity - $1,500 \mathrm{~kg} / \mathrm{day}$
- Inlet pressure - 20 atm (295 psia)
- Outlet pressure - 340 atm (5,000 psia)
- Pressure ratio - 2.5, 4-stages
- Forecourt Compressor Portion of Delivered H2 Cost (2 compressors)

H2A Delivery

Pipeline Delivery

- Tab does not design pipeline network for the user
- Asks for transmission, trunk and distribution details

H2A Delivery

Pipeline Delivery

- Can calculate diameter or outlet pressure
- Calculations based on Panhandle B Equation

$$
q_{s c}=737\left(\frac{T_{s c}}{P_{s c}}\right)^{1.02}\left[\frac{\left(P_{1}^{2}-P_{2}^{2}\right) d^{4.961}}{\gamma^{0.361} L T_{m} Z_{m}}\right]^{0.51} E
$$

$\mathrm{q}_{\mathrm{sc}}=$ flowrate $(\mathrm{scfm}) ; \mathrm{T}_{\mathrm{sc}}=$ temp at STP $(\mathrm{R}) ; \mathrm{P}_{\mathrm{sc}}=$ press at STP.; $\mathrm{P}_{1}=$ inlet press. (psia); $P_{2}=$ outlet press. (psia); d=diameter (in); $\gamma=$ gas relative density; L=length

H2A Delivery

Plot of Pipeline Material Cost vs. Pipeline Diameter

Data from Oil and Gas Journal Report on Pipelines, 2003

Plot of Pipeline Labor Cost vs. Pipeline Diameter

H2A Delivery

Plot of Pipeline Right of Way Costs vs. Pipeline Diameter

H2A Delivery

Pipeline: Plot of Total H2 Cost (Trans. and Trunk Dist.) vs. Design Capacity

Assumptions:
Pipeline Set-up: 100 mi Transmission, $5 \times 5 \mathrm{mi}$ trunk lines, $20 \times 2 \mathrm{mi}$ distribution lines

Diameters sized based upon pressure drops: Transmission (1,000 700 psia), trunk (600-450 psia), distribution (400-300 psia)

H2A Delivery

Pipeline: Plot of Cost vs. Flowrate for Several Transmission Pipeline Lengths

Assumptions:
Pipeline diameter for each length calculated at maximum flowrate, assuming pressure drop of $300 \mathrm{psi}(1,000-700 \mathrm{psi})$
Diameters: $50 \mathrm{mi}(20 \mathrm{in}), 100 \mathrm{mi}(23 \mathrm{in}), 200 \mathrm{mi}(24 \mathrm{in}), 500 \mathrm{mi}(32 \mathrm{in})$, 1,000 (37 in)

H2A Delivery

H2A Delivery

Liquefier

- Allows user to specify power requirement (kWh/kg of H2) or have power calculated

From Praxair 2003 Annual Report

- Analysis period - 20 yrs

H2A Delivery

Data from Taylor, 1986; Simbeck, 2002; DTI, 1997

H2A Delivery

Plot of Actual Liquefaction Energy Requirement vs. Liquefier Capacity

Data from Bossel et al., 2003

H2A Delivery

Liquefier - Cost

- Liquefier assumptions:
- Design flowrate - 50,000 kg/day
- Availability - 90\%
- Lifetime - 20 yrs; MACRS schedule - 15 yrs.
- Liquefier Portion of Delivered H2 Cost

H2A Delivery

Liquefier: Plot of Capacity vs. Hydrogen Cost/Energy Cost

H2A Delivery

Bulk Liquid Hydrogen Storage

- Allows user to size storage based on system throughput and days of storage, or system throughput and tank size
- Analysis period -
 20 years

H2A Delivery

Data from Taylor, 1986; Simbeck, 2002; DTI, 1997

H2A Delivery

Bulk Liquid Hydrogen Storage

- Liquid Storage:
- Design capacity - 50,000 kg/day, 2 days storage
- Useable portion of tank - 90\%
- Boil-off - 0.25\%/day
- Lifetime - 20 yrs; MACRS Schedule - 7 yrs.
- Bulk Liquid Hydrogen Storage Portion of Delivered H2 Cost

H2A Delivery

Compressed Gas Storage (Tubes)

- Allows user to size storage based on system throughput and days of storage, or system throughput and tank size
- Analysis period 20 yrs

H2A Delivery

Compressed Gas Storage - Costs

- Key assumptions:
- Design Flowrate - 50,000 kg/day, 2 days storage
- Max. Pressure - 415 atm (6000 psia)
- Min. Pressure - 10 atm (150 psia)
- Lifetime - 20 yrs; MACRS Schedule - 15 yrs.
- Capital cost - based on quote for 358 kg tank for \$127,000, 0.8 scaling factor
- Compressed Gas Storage Portion of Delivered H2 Cost

H2A Delivery

Forecourt Compressed Gas

Storage - Costs

- Key assumptions:
- Design flowrate - $1,500 \mathrm{~kg} / \mathrm{day}, 2$ days storage
- Max. Pressure - 415 atm (6000 psia)
- Min. Pressure - 10 atm (150 psia)
- Lifetime - 20 yrs; MACRS Schedule - 15 yrs.
- Capital cost - based on quote for 358 kg tank for $\$ 127,000,0.8$ scaling factor
- Compressed Gas Storage Portion of Delivered H2 Cost

H2A Delivery

Geologic Compressed Gas Storage

- Based on natural gas cavern storage
- Data came from Saltville Salt Cavern project
H2 Pipeline

Geologic H2 Storage Cavern

Compressors

H2A Delivery

Geologic Compressed Gas Storage

- Based on natural gas cavern storage
- Data came from Saltville Salt Cavern project
- Compressors can fill cavern/dispense to pipeline
- Designed based on greater pressure ratio
- Designed to handle complete flowrate, but operate differently
- Cavern completely filled, then completely emptied

Spreadsheet Demonstration

H2A Delivery

Geologic Compressed Gas Storage

- Key assumptions
- Max. cavern pressure - 125 atm (1,850 psia)
- Min. cavern pressure - 20 atm (300 psia)
- Design flowrate - 500,000 kg/day, 10 days storage
- Time to fill cavern - 15 days
- Time to drain cavern - 10 days

H2A Delivery

Geologic Compressed Gas Storage - Cost

- Economic parameters
- Analysis period - 20 years
- Compressor lifetime - 5 yrs.; MACRS Depreciation Schedule - 5 yrs
- Cavern lifetime - 20 yrs.; MACRS Depreciation Schedule - 15 yrs
- Compressed Gas Storage Portion of Delivered H2 Cost

H2A Delivery

Geologic Storage: Refills per year vs. Hydrogen Cost

Assumptions:
Time to refill - 15 days
Time to empty - 10 days

H2A Delivery

Compressed Gas Terminal

- Designed like mini-scenario
- Setup

H2A Delivery

Compressed Gas Terminal (cont.)

- Truck loading compressors: 2, each designed at 75\% of total terminal capacity
- Storage compressor:
 1, designed for filling storage tank in 1 day
- Analysis period - 20 yrs.

H2A Delivery

Compressed Gas Terminal - Costs

- Key assumptions:
- Storage press. - 6,000 psia
- Compressor adiabatic efficiency - 70\%
- Compressor lifetime - 5 yrs
- Storage lifetime - 20 yrs
- Truck filling time - 6 hours
- Compressed Gas Storage Portion of Delivered H2 Cost

H2A Delivery

Liquid H2 Terminal

- Designed like mini-scenario
- Setup

Liquid H2
Delivery

Liquid H2 Storage

Cryogenic Pumps

Truck
Loading

H2A Delivery

Liquid H2 Terminal

- Liquid hydrogen pumps - 2 cryogenic pumps, each designed at 75\% of the total terminal capacity
- Key assumptions:
- Design flowrate - $500,000 \mathrm{~kg} / \mathrm{day} ; 5$ days of storage
- Boil-off - 0.25% per day
- Lifetime - 20 yrs; MACRS Schedule - 15 yrs

H2A Delivery

Liquid H2 Terminal - Costs

- Key assumptions (continued):
- Truck filling time - 3 hours
- Compressed Gas Storage Portion of Delivered H2 Cost

Conclusions

- Spreadsheet model has been developed to calculate cost, in $\$ / \mathrm{kg}$ of H2, for delivery components
- Based on fixed charge rate financial analysis method
- Meant to model static delivery cases
- Base case assumptions introduced
- Detailed cost curves, based on vendor, literature data, developed for some components

