U.S Department of Energy Fuel Cell Technologies Office Overview

Energy Efficiency & Renewable Energy

Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop

Washington, DC

March 18, 2015

Dr. Sunita Satyapal

Director Fuel Cell Technologies Office Energy Efficiency & Renewable Energy

All-of-the-Above Energy Strategy

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 2

"We've got to invest in a serious, sustained, all-of-the-above energy strategy that develops every resource available for the 21st century."

- President Barack Obama

<image>

Secretary Moniz at DC Auto Show

"As part of an all-of-the-above energy approach, fuel cell technologies are paving the way to competitiveness in the global clean energy market and to new jobs and business creation across the country."

> - Secretary Moniz, U.S. Department of Energy

• Transportation sector:

- is 93% petroleum dependent
- represents 70% of all U.S. petroleum use
- produces 27% of U.S. emissions
- The U.S. uses 21% of the world's oil supply
 - accounts for 11% of the world's production
 - has just 2% of the world's proven oil reserves

26.8 Quadrillion Btu of transportation energy use

(note: does not include approximately 2.2 quadrillion Btu for offroad equipment)

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 4

Sustainable TRANSPORTATION

Renewable ELECTRICITY GENERATION

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy **Fuel Cell Technologies Office** | 5

Background on Fuel Cells

Fuel cells convert chemical energy directly to electricity without the need for combustion and are more efficient than conventional technologies

Fuel Cells- An Emerging Industry

ENERGY Energy Efficiency & Renewable Energy **Fuel Cell Technologies Office** | 7

Steady Market Growth

~30% annual growth in global systems shipped since 2010.

Global market potential in 10–20 yrs: \$14 – \$31 billion/yr- stationary power \$11 billion/yr- portable power \$18 – \$97 billion/yr- transportation

FCEV Commercial Launch

Several automakers have announced plans for commercial FCEVs (Hyundai, Toyota, Honda, GM, Daimler, Nissan, Ford, BMW, etc.)

H₂USA to address H₂ Infrastructure Challenges

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 8

H₂USA

Public-Private Partnership with 3X increase in partners since 2013

H₂Infrastructure Development and Status

Nationwide

- **1,500 mi.** of H₂ pipeline
- >9M metric tons produced/yr
- ~50 stations (~10 public)

Other States

- 8-State MOU Members: CA, CT, NY, MA, MD, OR, RI and VT
- MA, NY, CT: Preliminary plans for H₂ infrastructure and FCEVs deployment in metro centers in NE states.
- Hawaii: Public access refueling infrastructure on Oahu by 2020

California

- 100 stations Goal
- >~\$70M awarded
- ~\$100M planned through 2023

NE states, California and Hawaii have H₂ infrastructure efforts underway

Petroleum Recovery &

Ammonia Production

Methanol Production

Metal Production &

Fabrication

Food Industry

Electronics

Others

Refining

Hydrogen can be produced from diverse, domestic resources and is used in numerous applications

Hydrogen vs. Hydrocarbons

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 11

Hydrogen has the highest energy content by mass but low energy density

FCEVs Reduce Greenhouse Gas Emissions

U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 12

Substantial GHG reductions with H₂ produced from renewables

U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 13

P&D Subprogram R&D efforts successfully concluded

FE, NE: R&D efforts in DOE Offices of Fossil and Nuclear Energy, respectively

Objective: Develop technologies to produce hydrogen from clean, domestic resources at a delivered and dispensed cost of < \$4/kg H2 by 2020

Hydrogen Production Cost

U.S. DEPARTMENT OF ENERGY Renewable Energy

Fuel Cell Technologies Office | 14

Current Technology

- Natural Gas (D/C)
- Electrolysis (D)

Near to Mid-Term:

- Electrolysis- Wind and Solar Powered (D/C)
- Bio-derived Liquids (D/C)
- Fermentation (D/C)

Long-Term (not shown): *Central Renewable* H₂

- Solar-based water splitting
- Photolytic Bio-hydrogen
 D- Distributed C- Central

Current renewable H₂ costs do not meet \$2/gge target. Challenges include capital cost, feedstock issues, durability, efficiency.

Example of Innovation: Tri-Generation

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 15

- Demonstrated co-production of electricity and hydrogen with 54% efficiency
- Uses biogas from wastewater treatment plant

Fountain Valley demonstration

- ~250 kW of electricity
- ~100 kg/day hydrogen capacity (350 and 700 bar), enough to fuel 25 to 50 vehicles.

Tri-Generation co-produces power, heat and hydrogen. World's First Fuel Cell and Hydrogen Energy Station demonstrated in Orange County (DOE/FCTO project)

Wastewater- Challenges & Opportunities

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 16

Cost of U.S. water treatment

- \$7.5 billion per year for wastewater treatment, safe drinking water
- ~ 30 TWh/yr for wastewater treatment
- ~0.8% of total U.S. electricity consumption used by wastewater industry
- Wastewater and biosolids contain energy far exceeding what is required for treatment (~9 fold)

Warren Gretz / NREL

Improved treatment methods that provide additional product streams can reduce costs and meet environmental regulations: Opportunity for MxCs & AnMBRs?

Biogas: Early Source of Renewable H₂ and Power

- Majority of biogas resources are near large urban centers, ideally located near the major demand centers for FCEVs and power
- Hydrogen can be produced using existing steam-methanereforming technology
- Power can be produced by stationary fuel cells

Wastewater treatment plants alone have the potential to provide enough hydrogen to support ~1-3M FCEVs/yr

Microbial Fuel Cell-based technologies (MxCs) couple microbial metabolism with electrochemical reactions

Products include:

Electricity Hydrogen Methane Ethanol Formate and others

Low-energy input water treatment with range of products

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 19

Distillatior

LC

Bruce Logan, Penn State

Microbial Reverse Electrodialysis

Waste

heat

Fermentation and Electrohydrogenic Approaches to Hydrogen Production

Pin-Ching Maness, National Renewable Energy Laboratory Improving fermentative hydrogen

production from pretreated corn stover

Cells for hydrogen production

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 20

Source: H.Wang, Z.J. Ren / Biotechnology Advances 31 (2013) 1796–1807

Hydrogen Production Rate for Various Bio-hydrogen Production Approaches

Bio-hydrogen system	H ₂ synthesis rate (reported units)	H ₂ synthesis rate (converted units)	Bio-reactor volume (m ³) for 5 kW PEMFC
Direct photolysis	4.67 mmol H ₂ /(180 h)	0.07 mmol H ₂ /(1h)	1707
Indirect photolysis	12.6 mmol H ₂ /(µg protein h)	0.355 mmol H ₂ /(1h)	337
Photo-fermentation	40 ml H ₂ /(ml h)	0.16 mmol H ₂ /(1h)	747
WGS	0.8 mmol H ₂ /(g cdw min)	96 mmol H ₂ /(1 h)	1.24
Dark fermentation	Various	82-121 mmol H ₂ /(1 h)	1-14.75
MEC	3.12 m ³ H ₂ /(m ³ reactors day)	5.8 mmol H ₂ /(1 h)	21
Multi-stage	Not available, but assumed higher than individual stages		1

Source: J. Holladay, et al, Catalysis Today, 139 (2009), 244-260 and references therein

Hydrogen production rates are critical MECs, dark fermentation and WGS have shown higher rates

DOE's H2A Techno-economic Analysis Tool

ENERGY Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 22

- H2A is a discounted cash flow analysis that computes the required price of H₂ for a desired after-tax internal rate of return
- Developed by NREL and DOE EERE-FCTO
- H2A Production Analyses Objectives:
 - Establish a standard format for reporting the production cost of H₂, to compare technologies and case studies
 - Provide transparent analysis
 - Provide consistent approach
 - Prioritize research and development efforts

Continued updates to the H2A tool & development of technology case studies are vital to P&D portfolio evolution

2013 FCTO Biological H₂ Workshop

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 23

	MxC Hydrogen Production R&D Needs			
PUEL CELL TECHNOLOGIES OFFICE 2013 Biological Hydrogen Production Workshop Summary Report November 2013	Cathode impro Precisely chara Precisely quan overpotential Characterize m overpotential) Fermentation Standardized r Develop scale- mproved prot	ovements acterize performance tify each step of potential loss that leads to mechanisms of "potential" loss (sources of + MEC integration to optimize performance metrics up designs on exchange membranes hic analysis		
	mproved anor Development Develop impro Develop impro Scale-up – long Durability and mprove anode synthetic) Microbial meta	de organisms of high-temp (~60°C) low-pH (~5) biofilm oved H+ transfer systems oved cathode catalyst gevity, cost reduction stability e with microbe engineering (metabolic/system abolism understanding		

http://energy.gov/eere/fuelcells/biological-hydrogen-production-workshop

Identified near, mid and long term R&D needs to overcome MxC barriers

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 24

U.S. Departme	DUE nt of Energy	\$1 million competition for on-site home and community-scale H ₂ fueling systems.		
1 st Year	2 nd Year	Late 2016	Award	
Teams form and submit designs	Selection of finalists and testing	Technical and cost analysis to select winner	\$1M	

Promoting H₂ fueling system development in the community Visit http://hydrogenprize.org/

Thank You

Dr. Sunita Satyapal

Director

Fuel Cell Technologies Office

Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov