

Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes

Bryan Pivovar (PI)

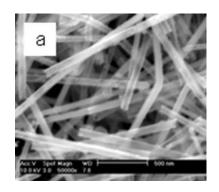
National Renewable Energy Laboratory

Sept 30, 2009

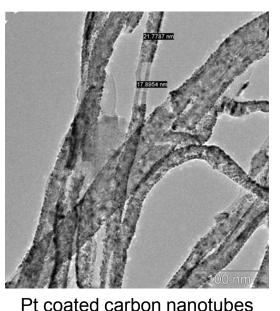
This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

Objectives

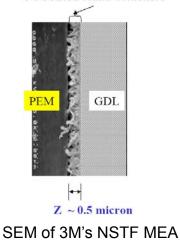

To assist the DOE Fuel Cell Technologies (FCT) Program in meeting cost, durability, and performance targets in the areas of Electrocatalysts and MEAs.

cal Targets: Electrocatalys	ts for Trans	portation Ar	Table 3.4.13 Technical Targets: MEAs						
						Units	2005 Status ^a	2010	2015
Units	2005 Status *		Stack Targets		Operating temperature	°C	<80	<120	<120
onito	Cell	Stack	2010	2015	Inlet water vapor partial pressure	kPa	50	<1.5	<1.5
mg PGM / cm ² electrode	0.45	0.8	03	0.2	Cost ^b	\$ / kW	60 °	10	5
area	0.45	0.0	0.0	0.2	Durability with cycling	1	1	1	1
\$ / kW	9	55 °	5 ^d	3 ^d	At operating temp of <80°C	hours	~2,000 ^d	5,000 ^e	5,000 ^e
	,,		1,	(At operating temp of >80°C	hours	N/A ^r	2,000	5,000 ^e
hours	>2,000	~2,000 °	5,000 ^f	5,000 ^f		L'	<u> </u>	L'	1
hours	N/A ^g	N/A ^g	2,000	5,000 ^f	Unassisted start from low temperature	°C	-20	-40	-40
+		++		-	Portomance @ 1/ power (0.8V)	mA / cm ²	200	300	300
%	90	90	<40	<40	Periormance @ /4 power (0.04)	mW / cm ²	160	250	250
A / ma Pt @ 900 mV/ar	0.28	0.11	0.44	0.44	Performance @ rated power	mW / cm ²	600	1,000	1,000
A / mg r t @ 500 mv R-mee	0.20	0.11	0.44		Extent of performance (power density) degradation over lifetime ^g	%	5 ^h	10	5
µA / cm ² @ 900 mV _{iR-free}	550	180	720	720	Thermal cyclability in presence of condensed water		Yes	Yes	Yes
	Units mg PGM / cm ² electrode area \$ / kW hours hours hours % A / mg Pt @ 900 mV _{iR-free}	2005 SrUnitsCellmg PGM / cm² electrode area0.45\$ / kW9\$ / kW9hours>2,000 N/A ghours90A / mg Pt @ 900 mV _{iR-free} 0.28	2005 Status ^a Units Cell Stack mg PGM / cm ² electrode area 0.45 0.8 \$ / kW 9 55 ° hours hours >2,000 N/A ^g ~2,000 ^e N/A ^g % 90 90 A / mg Pt @ 900 mV _{iR-free} 0.28 0.11	Units Cell Stack 2010 mg PGM / cm ² electrode area 0.45 0.8 0.3 \$ / kW 9 55° 5 ^d hours hours >2,000 N/A ^g ~2,000 ^e N/A ^g 5,000 ^f 2,000 % 90 90 <40	2005 Status ^a Stack Targets Units Cell Stack 2010 2015 mg PGM / cm ² electrode area 0.45 0.8 0.3 0.2 \$ / kW 9 55° 5 ^d 3 ^d hours hours >2,000 ~2,000 e 5,000 f 5,000 f % 90 90 <40	Call Targets: Electrocatalysis for Transportation ApplicationsUnits2005 Status aStack TargetsCharacteristicmg PGM / cm² electrode area0.450.80.30.2Inlet water vapor partial pressure $mg PGM / cm²$ electrode area0.450.80.30.2Durability with cycling At operating temp of $\leq 80^{\circ}C$ $\$ / kW$ 955 °5 d3 dAt operating temp of $\leq 80^{\circ}C$ $hours$ >2,000~2,000 e5,000 f5,000 fAt operating temp of $\geq 80^{\circ}C$ $hours$ >2,000~2,000 e5,000 f5,000 fInassisted start from low temperature%9090<40	Call Targets: Electrocatalysis for transportation ApplicationsUnits2005 Status aStack TargetsCharacteristicUnits $Cell$ Stack20102015Inlet water vapor partial pressurekPamg PGM / cm ² electrode area 0.45 0.8 0.3 0.2 Inlet water vapor partial pressurekPa $\% / kW$ 9 55° 5° 3° Durability with cycling At operating temp of <80°C	Call Targets: Electrocatalysis for transportation ApplicationsUnits2005 Status aStackZ0102015CellStack20102015Inlet water vapor partial pressurekPa50mg PGM / cm² electrode area0.450.80.30.2Durability with cycling At operating temp of \leq 80°Chours \sim 2,000 d% W955 °5 d3 dAt operating temp of \leq 80°Chours \sim 2,000 dhours>2,000 \sim 2,000 e5,000 f5,000 f5,000 fColor dN/A f%909090<40<40Performance @ 14 power (0.8V)mA / cm²200%909090<40<40Performance @ rated powermW / cm²600A / mg Pt @ 900 mV _{iR-free} 0.280.110.440.44Performance @ rated powermW / cm²600µA / cm² @ 900 mV _{iR-free} 550180720720720720720720	Linits 2005 Status ^a Stack Targets Characteristic Units 2005 Status ^a 2010 mg PGM / cm ² electrode area 0.45 0.8 0.3 0.2 Inlet water vapor partial pressure kPa 50 <1.5


Approach: Novel Synthesis and Electrode Studies

Novel Synthesis

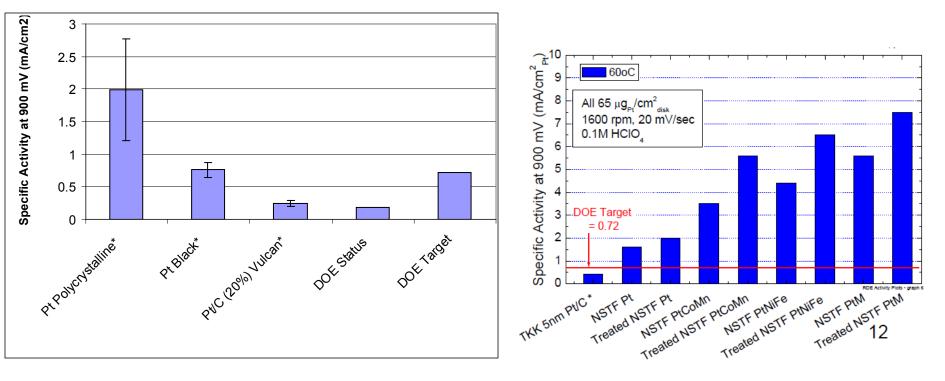
Synthesis of novel catalysts based on extended surfaces due to 3M's demonstrated improvements in specific activity and durability using similar systems.


Pt nanotubes (UC-R)

<u>20 m</u>

HR-TEM Karren More ORNL

Pt Coated Nano-Whiskers

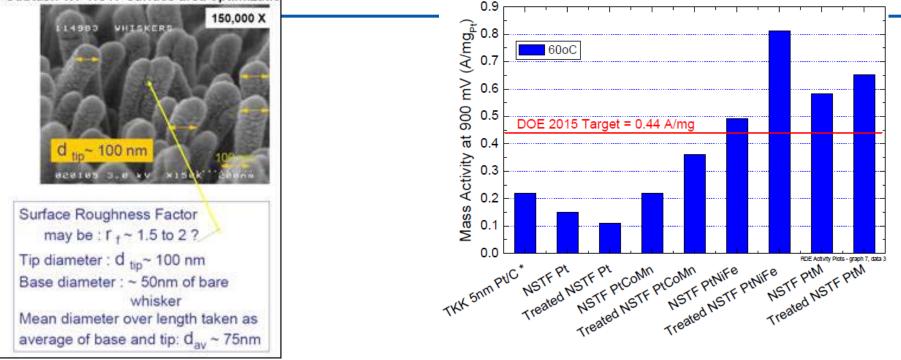


Electrode Studies

Electrode architecture design, based on novel catalyst structures that allow thick (~10 μ m), dispersed electrodes to be fabricated that are more tolerant to ranges of operating conditions.

Premise

Current catalysts - Pt is not particularly well used and has durability/performance issues that can be largely overcome.



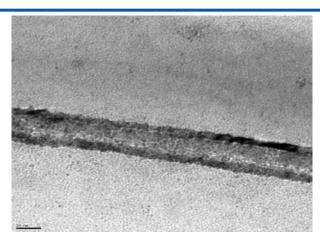
*Gasteiger et al., Appl. Catal. B: Environ., 56, 9-35 (2005)

http://www.hydrogen.energy.gov/pdfs/review09/fc_17_debe.pdf

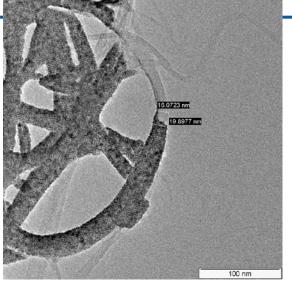
Limited mass activity

Subtask 1.1 NSTF surface area optimizatio

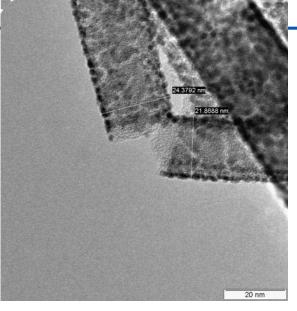
Particle	Pt Shells	Surface Pt
2 nm cubooctahedron	5	52%
5 nm cubooctahedron	12	24%
12.5 nm Pt coated(50 nm core) cylinder	29	~5%

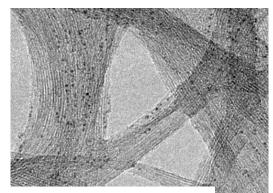

Mark Debe, 3M, DOE Annual Merit Reviews http://www.hydrogen.energy.gov/pdfs/review08/fc 1 debe.pdf,

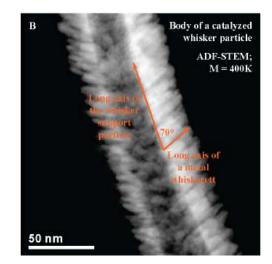
http://www.hydrogen.energy.gov/pdfs/review07/fcp_25_debe.pdf, http://www.hydrogen.energy.gov/pdfs/review05/fc3_debe.pdf http://www.hydrogen.energy.gov/pdfs/review09/fc_17_debe.pdf Significant improvements at least in part attributable to specific activity gains.

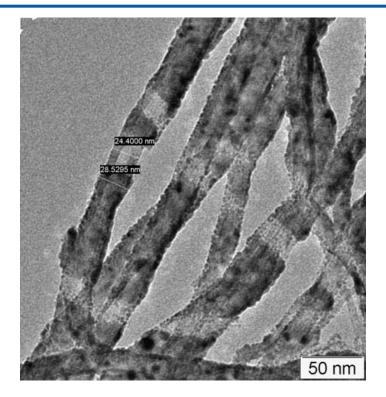

Further gains possible?

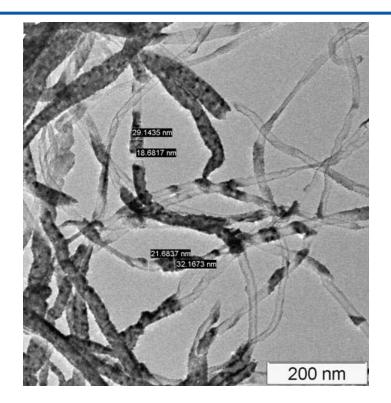
Nonconductive substrates and water management still a potential issue.


Continuous Pt-nanostructures


Pt nanotubes UC-R


Laser purified Pt coated SWCNT


Pt coated perylene red whiskers


ISI literature search yielded 350 hits from 2007 and before for "carbon nanotubes" and "fuel cells" Gancs, L; Kobayashi, T; Debe, MK, Atanasoski, R., and Wieckowski, A., *Chemistry of Materials,* 20, 2444-2454, 2008

NREL Pt Deposition

Lower deposition parameters (thinner)

Increased deposition parameters (thicker)

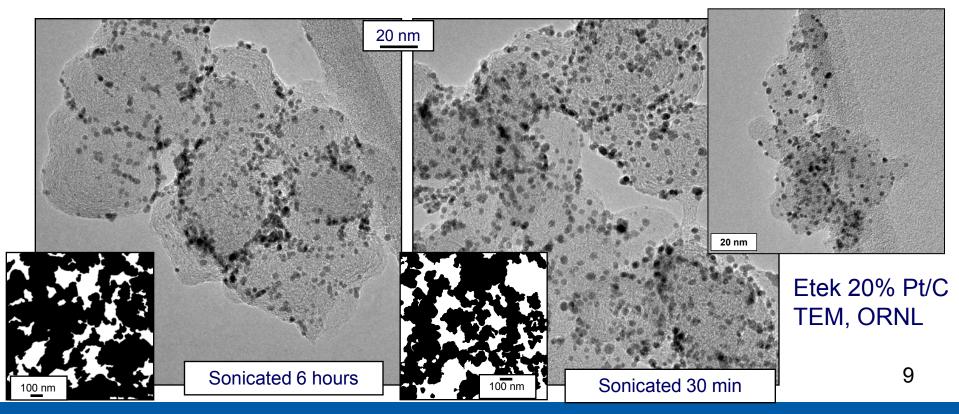
Coatings obtained are reasonably continuous/conformal. Demonstrated some level of thickness control.

Electrochemical characterization issues, quantities increasing, testing forthcoming.

Novel Catalysts

Core-shell and free-standing, all with extended surfaces.

Core/Templates based on


Metal Nanostructures (wires, tubes, etc) Carbon Nanotubes Metal oxides Whiskers

Pt Coating Techniques based on Vapor Deposition (sputtering, thermal evaporation, chemical vapor deposition, pulsed laser deposition, atomic layer deposition) Solution Deposition (galvanic displacement, electrochemical, spontaneous, underpotential)

Electrodes Studies

Novel extended-surface catalysts have yet to be incorporated into dispersed electrodes.

Factors investigated will include porosity, composition, and architecture (addressing durability and performance).

Timeline/Budget Overview

Timeline

Start: July 2009 End: September 2013 % complete: 2%

Project Timeline (Table of associated Milestones and Decision Points follows)

Task*	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16
1ai	М			MG				М				MG				
1aii	М	G				MG				М						
1aiii	Μ					MG		М				М				
1aiv	М					MG				М						
1bi ^a	М	М				MG										
1bi ^b						М				М		М		MG	MG	
1bii	М			М		М				М				MG	MG	
2a				М				MG				М				
2b				М						М				MG	MG	M
3°				М						М						M
3 ^d						М				М						M

*Task descriptions can be found in <u>Work Plan Outline</u>, ^a PVD coatings; ^oALD coatings; ^ccatalyst modeling; ^uelectrode modeling Q represents quarter from start date; M represents Milestones; G represents go/no-go decisions Milestones due and go/no-go decisions enacted at end of quarter in which they appear active task during quarter; active task during quarter pending go/no-go decision; inactive task

Budget

DOE Cost Share	Recipient Cost Share	TOTAL
\$8,384,342	\$867,763	\$9,252,105*
91%	9%	100%

%			9%	1		
			Budget (\$K)		
	FY	2009	1564			
	FY	2010	590			

FY 2011	2177
FY 2012	2015
FY 2013	2033

*Final award amounts are subject to appropriations and award negotiations.

- 1. Novel Synthesis
 - a. Substrates
 - b. Deposition Methods
- 2. Electrode Studies
- 3. Modeling

Go/no-go decisions focus primarily on down selection of substrates and deposition processes to those of novel structures showing improved performance and durability.

Project Participants

Key Investigators/Major Participants:

National Renewable Energy Lab (NREL): Bryan Pivovar (PI), Huyen Dinh, Lin Simpson, Chai Engtrakul, Tom Gennett, Arrelaine Dameron, Tim Olson, KC Neverlin, Jeremy Leong Oak Ridge National Laboratory (ORNL): Karren More Los Alamos National Laboratory (LANL): Rod Borup University of California-Riverside (UC-R): Yushan Yan State University of New York – Albany (CNSE): John Elter Stanford University (Stanford): Stacey Bent Case Western Reserve University (CWRU): Tom Zawodzinski University of Texas-Austin (Texas): Jeremy Meyers Nissan Motors (Nissan): Shyam Kocha Cabot Fuel Cells (Cabot): Paolina Atanassova Tanaka Kikinzoku Kogyo (Tanaka): Tomoyuki Tada

Novel Material Synthesis and Characterization (NREL, CNSE, UC-R) Continuous coating of Pt on substrates (NREL, Stanford, UC-R) Electrode/Fuel Cell Studies (NREL, LANL, ORNL, Nissan, Cabot, Tanaka) Modeling of Catalysts and Electrodes (NREL, CWRU, Texas)