

DOE Bioenergy Technologies Office (BETO)

Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop

Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production

March 18-19, 2015

Meltem Urgun-Demirtas, Ph. D. Argonne National Laboratory

Total Potential Energy at Municipal WWTPs

Basis	Thermal energy (MMBtu/ year)	Electric power (kWh/year)	Total energy potential (MMBtu /year)	Reference
1 MGD wastewater equates 26 kW	_		_	EPA, 2011
of electric capacity and 2.4	3.52 × 10 ⁷	9.11×10^9	6.65×10^7	
MMBtu/day of thermal energy Sludge energy content = 8,000				
Btu/dry lb CHP electric efficiency = 30% CHP thermal efficiency = 40%	4.59 × 10 ⁷	1.01×10^{10}	9.86 × 10 ⁷	NACWA, 2010 EPA, 2006
Available: 190 MW Electric power 18,000 MMBtu/day Thermal energy Potential: 400 MW Electric power 38,000 MMBtu/day Thermal energy	2.04 × 10 ⁷	5.17 × 10 ⁹	3.81 × 10 ⁷	EPA, 2011 2

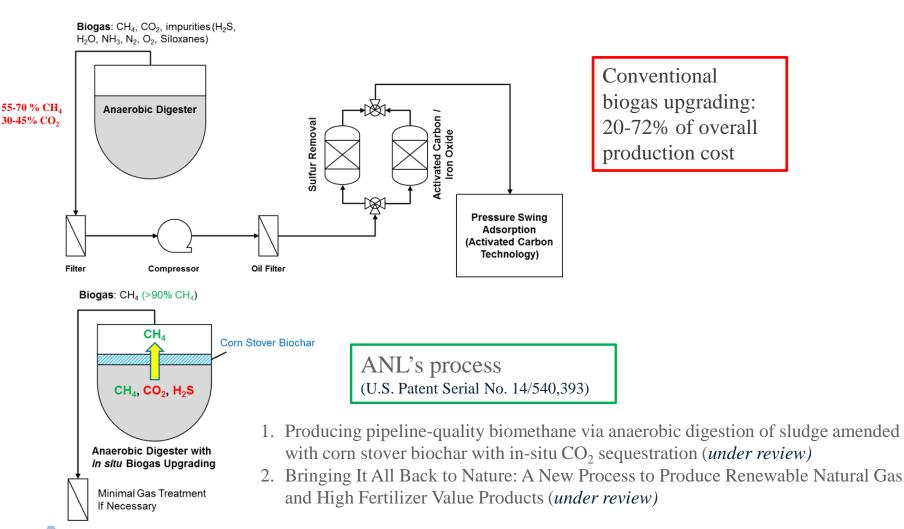
Project Objectives

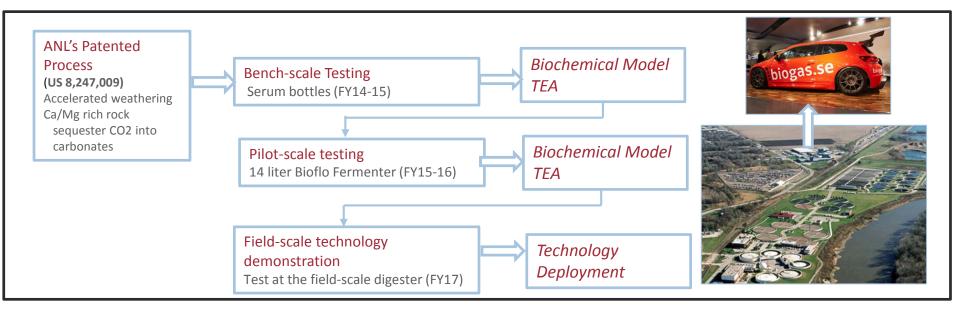
- Ultimate Goal: Transform negative-value or low-value biosolids into high-energy-density, fungible hydrocarbon precursors
 - Enhance anaerobic digestion of biosolids to produce biogas with ~90% methane content and hydrogen sulfide at nondetectable level (Task 1)
 - Develop a Comprehensive Waste Utilization System (CWUS) for production of hydrocarbon precursors from the anaerobic digestion of biosolids (Task 2)
- Enables sustainable production of biogas that is considered as a cellulosic biofuel under new RFS2 (EPA, July 2014)
 - Biogas competes with conventional natural gas
 - Reduce greenhouse gas emissions relative to petroleum-derived fuels
 - Reduce U.S. dependence on foreign oil
 - Over 99% of D3 RINs generated from biogas
- Addresses DOE's goals of development of cost-competitive and sustainable biofuels by advancing efficient production strategies for drop-in biofuels

Enhanced Anaerobic Digestion

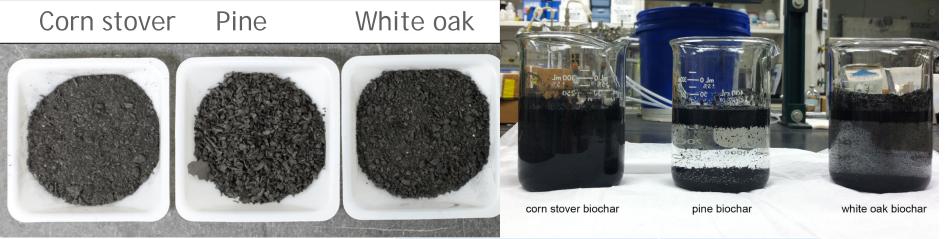
Waste-to-Energy: Why Biogas?

- Renewable sources for natural gas
 - Agricultural residues
 - Manure
 - Wastewater treatment
 - Landfill
 - Co-product in production of algal biofuels

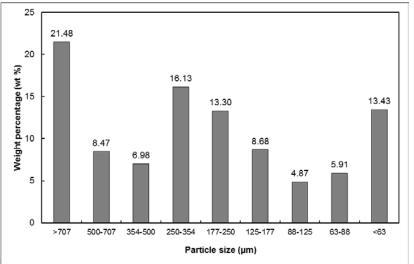

- No competition with food and feed crops used for the production of other biofuels
- 7 days/24 hr production
- Low value materials
- It would displace the equivalent of
 2.5 billion gallons of gasoline/year


Deer Island WWTP (Boston, MA)

Project Overview


• Development and deployment of a novel AD process to produce biogas to qualify for D3 RINs (Task 1)

Technical Approach



Not All Biochars are Equal!

Analysis	Content	Concentration
Proximate Analysis	Moisture	0.97 ± 0.05
	Ash	45.18 ± 0.40
	VM	7.18 ± 0.58
	FC	46.66 ± 086
Elemental	SiO ₂	60.58 ± 0.58
	Al ₂ O ₃	5.65 ± 0.10
	TiO ₂	0.27 ± 0.01
	Fe ₂ O ₃	1.93 ± 0.05
	CaO	3.87 ± 0.11
	MgO	4.23 ± 0.13
Analysis of	Na ₂ O	0.74 ± 0.03
Ash	K ₂ O	14.17 ± 0.15
	P ₂ O ₅	2.19 ± 0.12
	SO ₃	0.22 ± 0.06
	Cl	1.01 ± 0.02
	CO ₂	1.17 ± 0.13

Property	Corn stover biochar
BET surface area (m ² /g)	105
Total volume of mesopores (cm ³ /g)	0.02
Average diameter of mesopores (nm)	6.50
Total area of micropores (m ² /g)	315
Total volume of micropores (cm ³ /g)	0.09

Summary

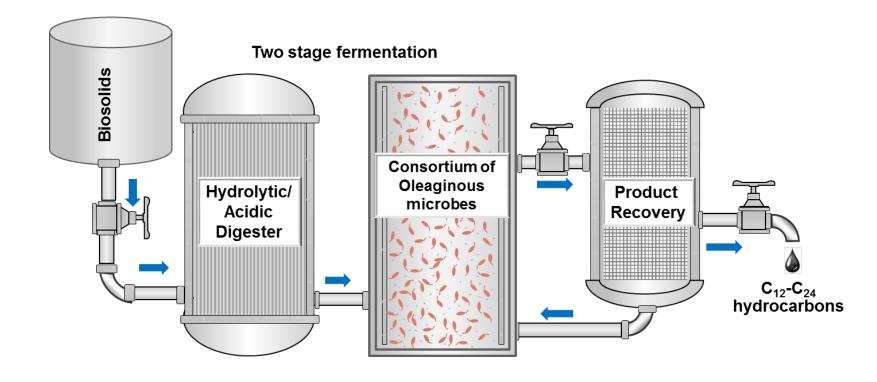
- Developed a novel process using biochar for producing biomethane at pipeline quality (>90% CH₄)
- A new paradigm of efficient and economical biomethane production for the AD industry
 - Both methane production and *in situ* sequestration of carbon dioxide and hydrogen sulfide take place in the same reactor
 - Facilitated CO_2 sequestration by up to 86.3% and H_2S removal (< 5 ppb), and boosted average CH_4 content in biogas by up to 30.1%
 - Enhanced AD performance
 - Methane yield, biomethanation rate and maximum methane production rate increased by up to 7.0%, 8% and 28%, respectively.
 - Increased alkalinity and mitigated ammonia inhibition, hence providing sustainable process stability
 - Increased fertilizer value of digestate
 - K, Ca, Fe and Mg in the biochar-amended digesters increased by 2000-4400% (corn stover), 122-273%, 60-134%, 43-95%, and 82-183%, respectively.

Hydrocarbon Precursor Production

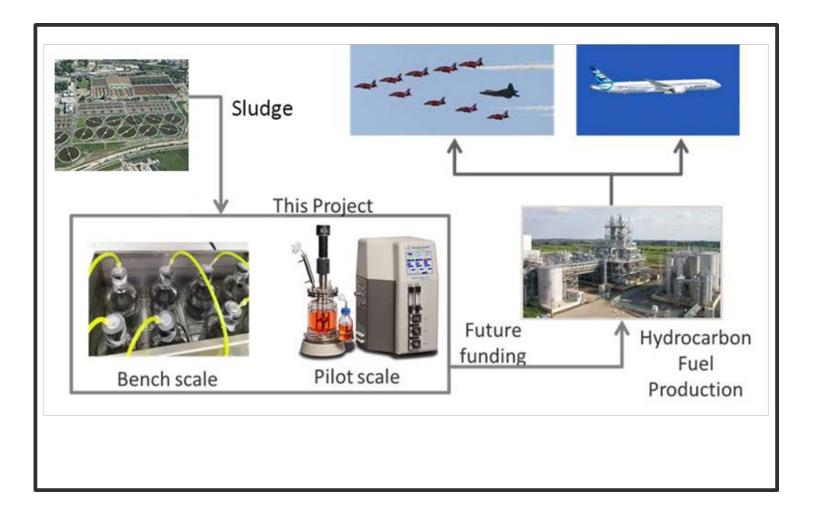
Background

High cell density cultivation (Voss and Steinbuchel, 2001)

Fermentation	Batch	Fed-batch no. 1	Fed-batch no. 2	Fed-batch no. 3	Fed-batch no. 4	Fed-batcl no. 5
Volume at the beginning ^a (l) Volume at the end ^b (l)	26 28	25 28	21 25	20 25	18 25	400 468
Media components added in total ^c						
Molasses ^d (g) →Sucrose ^e (g)	520 →244	$ \begin{array}{r} 1,098 \\ \rightarrow 516 \\ 701 \end{array} $	905 \rightarrow 425	905 \rightarrow 425	955 →449	$\begin{array}{c} 12,000 \\ \rightarrow 5,640 \\ 14,640 \end{array}$
$\frac{\text{Sucrose }^{\text{f}}(g)}{\text{Na}_{2}\text{HPO}_{4}\text{ 12 }\text{H}_{2}\text{O}(g)}$ KH ₂ PO ₄ (g)	234 39	781 225 37	1.867 189 31	2.311 180 30	2,820 162 27	14,648 3,600 600
NH ₄ Cl (g)	52	92	192	215	286	2,000
MgSO ₄ ·7 H ₂ O (g) CaCl ₂ ·2H ₂ O(g) Fe(III)NH ₄ ⁺ -citrate (g) SL6 (ml) Cell dry matter (g/l) Σ Cell dry matter ^g (g) Fatty acid content (% of CDM) Σ Fatty acids ^h (g) Yield (CDM sucrose ⁻¹) (%)	5.2 0.52 0.062 2.6 5.8 162.4 9.6 15.6 66.6	5.0 0.50 0.060 2.5 18.9 529.2 14.9 78.9 40.8	11.5 0.42 0.050 2.1 29.8 745.0 28.1 209.4 32.5	12.5 0.40 0.10 4.5 34.8 870.0 43.9 382.0 31.8	18.0 0.36 0.15 6.8 37.4 935.0 51.9 485.3 28.6	80.0 8.00 0.96 40.0 18.4 8,611.0 38.4 3,306.6 42.4
Yield (fatty acid sucrose ⁻¹) (%)	6.4	6.1	9.1	14.0	14.8	16.3


Appl Microbiol Biotechnol (2001) 55:547–555 DOI 10.1007/s002530000576

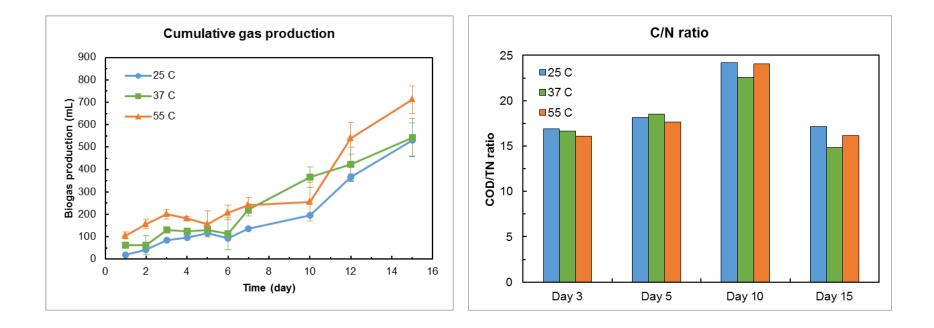
Introduction


- Conversion of biosolids to hydrocarbon precursors would be
 - capable of displacing the equivalent of ~ 450 million gallons of gasoline per year
 - reduce US dependence on foreign oil, increasing energy security, and mitigating climate change.
- Such an integrated assessment and technology R&D project generating hydrocarbon precursors using CWUS has not been investigated before.

Project Overview

• Development of a low-cost process to produce hydrocarbon fuels

Technical Approach

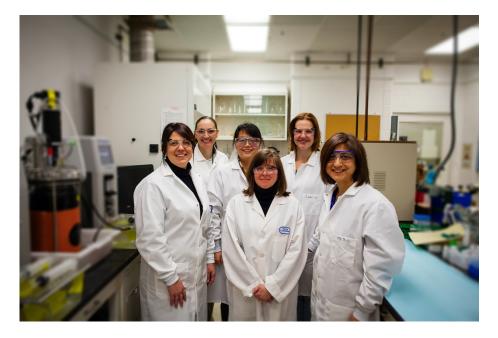


Results

- Identified and obtained most promising oleaginous microorganisms
- Completed initial short AD screening experiments
- Developed analytical methods for VFA (GC/FID) and FAME (GC/MS)
- Started testing of oleaginous microorganisms growth on digestate permeate

Strain	Growth temp.
Apiotrichum curvatum ATCC20509 (yeast)	20°C to 25°C
Trichosporon oleaginosus ATCC20509 (yeast)	
Lipomyces starkeyi ATCC58680 (yeast)	25.0°C
Mortierella isabellina ATCC38063 (fungus)	24.0°C
Mucor circinelloides ATCC1216B (fungus)	24.0°C
Rhodosporidium toruloides ATCC10788 (yeast)	25.0°C
Rhodotorula glutinis ATCC204091 (yeast)	25°C to 30°C
Yarrowia lipolytica ATCC20460 (yeast)	20°C to 25°C
Rhodococcus wratislaviensis (bacteria)	28 ⁰ C
Pseudomonas aeruginosa (bacteria)	37 ⁰ C
Rhodococcus opacus MITXM-61 (bacteria)	28 ⁰ C

Results


- First trial experiments showed that short AD operation should be less than 10 days.
 - Biogas productions starts to ramp up after 7 days
 - C/N ratio decreases after 10 days
- Second trial experiments needs to be conducted up to 7 days to minimize the biogas production.

Future Work

- Establish the links between feedstock characteristics, microbe community structure and environmental and economic impact on fuel production
- Develop the mathematical model to understand the complexities in the bioreactor environment
- Evaluate pathways to piloting and scale up the process.
- Complete techno-economic assessment of the process

Acknowledgments

- Joyce Yang, Ph.D., DOE-BETO Program Manager
- Seth Snyder, Ph.D., Argonne Water-Energy-Sustainability Director
- Metropolitan Water Reclamation District of Greater Chicago
- DuPage County Greene WWTP, IL

ANL Waste-to-Energy Group