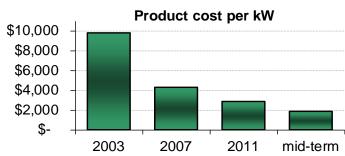


Electrochemical Hydrogen Compression (EHC)

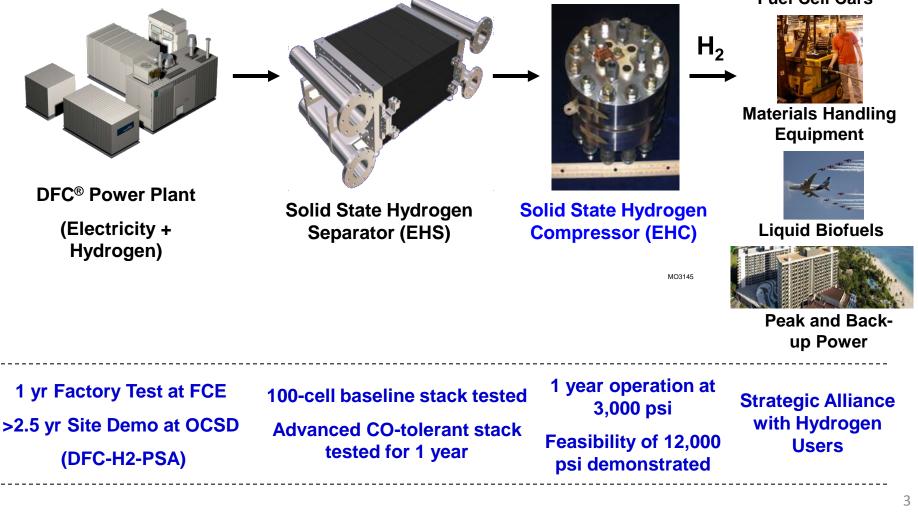
Pinakin Patel and Ludwig Lipp

Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL

Argonne, IL March 20, 2013


Ultra-Clean, Efficient, Reliable Power

- Experience with all fuel cells MCFC, SOFC, PEM, PAFC, etc.
- Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced)
- Unique internal reforming technology for high efficiency fuel cells



Advanced Hydrogen Coproduction Technology

EHC Technology Status

Parameter	Program Goals	Current Status	DOE Goals
Hydrogen Product Pressure	Up to 3,000 psi building block, 6-12 kpsi	12,800 psi single stage 6,000 psi 2-stage	12,500 psi
Hydrogen Inlet Pressure	5 - 300 psi	0 – 2,000 psi	300 psi
Compression Ratio	Up to 300:1	300:1	43:1
Hydrogen Recovery Efficiency	90 - 95%	>95%	99.5%
Hydrogen Flux	500 -1,000 mA/cm ²	750 mA/cm² for >6,000 hrs	High
Hydrogen Capacity	2-4 lb/day at 3,000 psi	~0.8 lb/day	Up to 1000 kg/day
Endurance Capability	1,000 hrs at 3,000 psi	>8,000 hrs at 3,000 psi	>5 years
Compression Efficiency	<10 kWh/kg at 3,000 psi	6-12 kWh/kg from <30 to 3,000 psi	6.2 kWh/kg from 300 to 12,500 psi

- Cell Technology: Creep of cell materials (especially electrode support) increases resistance and power requirement
- Hydrogen backdiffusion through the membrane: reduces compression efficiency
- Seal degradation (time, T, compression cycling): higher operating temperature reduces cost, but limits life
- Stack Technology: Higher current density operation is limited by stack cooling strategy; >1,000 mA/cm² needed to reduce capital cost
- Scale-up: cell area, stack height for 6-12 kpsi operation
- Manufacturing: tighter tolerances reduce yields and increase cost
- H₂ embrittlement and excessive yield of compression hardware

- Larger-area multi-cell stack technology development needed for greater capacity building block, longer-term endurance testing, innovative packaging
- Develop lower-cost protective coatings with desirable tolerances
- Develop hydrogen-resistant seal materials and designs with acceptable creep at higher operating temperatures
- Higher strength materials development needed for 6-12 kpsi operation (lower-cost support layers with higher yield strength and spring constant, engineered structure, ...)
- Develop membranes with lower H₂ diffusion (new materials, barrier layers with low electrical resistance)
- Develop robust, low-cost thermal and water management systems