

"Effects of Impurities on Fuel Cell Performance and Durability"

James G. Goodwin, Jr., Kitiya Hongsirikarn, Jack Zhang, Z.M. Liu
Department of Chemical and Biomolecular Engineering
Clemson University
Clemson, South Carolina

William Rhodes and Hector Colon-Mercado

Savannah River National Lab Aiken, South Carolina

Peter Finamoore

John Deere, Advance Energy Systems Division Charlotte, NC

This presentation does not contain any proprietary or confidential information.

Specific DOE-FreedomCAR-Hydrogen technical barriers and technical targets that will be addressed

□ Impact of impurities in H₂ and O₂ fuel streams on PEM fuel cell catalysts and operation

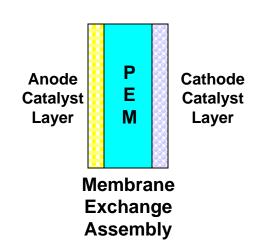
Objectives of the Project

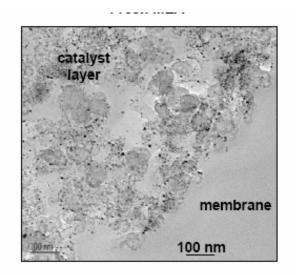
- To determine the mechanism of the impurities in affecting the components of the fuel cell catalyst and polymer membrane.
 - water
 - hydrocarbons (including formaldehyde, formic acid),
 - O_2
 - inert gases (He, N₂, Ar)
 - CO_2
 - **CO**
 - sulfur-containing gases
 - ammonia
 - halogenated compounds
 - particulates
- To investigate the effect of impurities in the hydrogen fuel stream and the oxygen stream on the operation and durability of fuel cells.
- To delineate strategies/means to reduce the impact of these impurities.

Previous Research

•	CO	CO affects PEMFC anode for concentrations >10 ppm due to Pt poisoning. [Springer et al., J. Electrochem. Soc.148 (2001) A11]
•	CO ₂	The effect varies from small to significant depending on the component and microstructure of the fuel cell anode probably due to reverse WGS. [Papageorgopoulos & De Bruijn,. J. Electrochem. Soc. 149 (2002) A140]
•	NH_3	Trace $\mathrm{NH_3}$ present in $\mathrm{H_2}$ rich fuel streams degrades cell performances not by affecting Pt so much as the conductivity of the PEM. [Chellappa et al., Appl. Catal. A: Gen. 227 (2002) 231]
•	H ₂ S:	Extensive poisoning of anode catalyst in PEMFC caused by 50 ppb of $\rm H_2S$ due to strong adsorption on Pt. [LANL, 2004]
•	SO ₂	Even 500 ppb levels of SO_2 have acute and irreversible negative effects on FC cathode performance. [LANL, 2004]
•	CI-	Little work has been carried out studying influence of halogenates on the performance of electrocatalysts of PEMFCs. The presence of Cl ⁻ does not significantly affect catalyst activity, but NaCl decreases membrane conductivity. [LANL, 2004]
•	He, Ar,	No electrode performance deterioration has been found related to inert gases such as He, Ar. N_2 could have an effect depending on the metal catalyst due to adsorption on the active

sites and possibly formation of ammonia. [Zhu, J. Alloys and Compounds 240 (1996) L1]

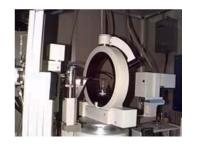

 N_2



TASK 1: MATERIALS ACQUISITION / PREPARATION

(Clemson & SRNL)

- Pt, PtRu Catalysts and PEM
- MEA
- Premixed Gases


LANL, 2004

TASK 2: STUDY OF IMPURITY EFFECTS ON Pt/C, Pt-Ru/C

(Clemson)

XRD

Surface Area/ Pore Volume/ Pore Size Distribution

- Transmission Electron Microscopy (TEM)
- EDX

- EDX

- X-ray Diffraction (XRD)
- Hydrogen Chemisorption
- Impurity Adsorption
- FTIR
- Solid State MAS-NMR
- H₂/D₂ Exchange Reaction
- H₂+O₂ Reaction

Adsorption

impurity	Conc.
СО	0.1-1 ppm
CO ₂	5-50 ppm
NH ₃	0.05-0.5 ppm
Ethane	1-10 ppm
Ethylene	1-10 ppm
Formic Acid	0.1-1 ppm
Formaldehyde	5-50 ppb
02	2-20 ppm
H ₂ O	2-20 ppm
CI ₂	20-200 ppb
H ₂ S	2-20 ppb

He, Ar, N₂

Higher concentrations of impurities will also be used in the mechanism studies in order to magnify their effect.

50-500 ppm

• TASK 3: STUDY OF IMPURITY EFFECTS ON NAFION

(Clemson)

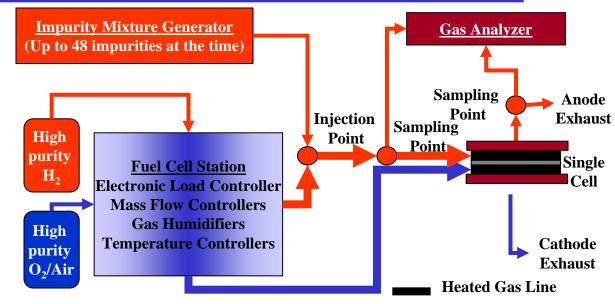
TPR/TPD

FT-IR

- Impurity Adsorption
- Surface Area/ Pore Volume/ Pore Size Distribution
- Determination of the Bronsted Acid Sites
- FTIR
- Solid State MAS-NMR
- Characteristic Acid-Catalyzed Reaction
- Proton Conductivity

Pt electrodes	Impedance measurement	Macrose Nafion mei	•
	Insulating sub	strate	
/			

Conc.
0.1-1 ppm
5-50 ppm
0.05-0.5 ppm
1-10 ppm
1-10 ppm
0.1-1 ppm
5-50 ppb
2-20 ppm
2-20 ppm
20-200 ppb
2-20 ppb
50-500 ppm



TASK 4: PEM FUEL CELL PERFORMANCE TESTING

(SRNL & John Deere)

SRNL Test Equipment

Impurity	Conc.
со	0.1-1 ppm
CO ₂	5-50 ppm
NH ₃	0.05-0.5 ppm
Ethane	1-10 ppm
Ethylene	1-10 ppm
Formic Acid	0.1-1 ppm
Formaldehyde	5-50 ppb
02	2-20 ppm
H ₂ O	2-20 ppm
Cl ₂	20-200 ppb
H ₂ S	2-20 ppb
He, Ar, N ₂	50-500 ppm

Temperatures (50°C, 90°C)
Pressures (P_a=P_c)(1 bar, 3 bar)
Humidity (100 % RH_{anode,} 50 % RH_{cathode}
Stoich. (A/C = 1.1/2.5 @1000 mA/cm²⁾
Loading
Anode 0.2 mg Pt/cm² (45 wt% Pt-C)
Cathode 0.4 mg Pt/cm² (45 wt% Pt-C)
Electrolyte (Nafion® 111)
Cell Area (5 cm², 50 cm²)
Current density (1000 mA/cm², 500 mA/cm²)

12 kW PEM FC components Available at end-of-life

Qtr	Materials Acquisition /Prep.	Pt/C Study	Nafion Study	PEMFC Performance Testing
1	materials purchase (Pt/C, PtRu/C, Nafion, gas mixtures)	training of student	training of student	purchase of PEMFC, design of test protocols
2	Prep. of Nafion membranes for cond. meas.	Effect of CO: ads., TPD, IR	Effect of NH ₃ : pulse ads., IR	Effect of NH ₃ :
3		impact on H ₂ /D ₂ exchange	impact on test reaction (HAc est.)	consideration of protocol modifications
4		impact on H ₂ -O ₂ reaction	NMR	Effect of CO:
	ANNUAL REPORT	ANNUAL REPORT	ANNUAL REPORT	ANNUAL REPORT

Qtr	Materials Acquisition /Prep.	Pt/C Study	Nafion Study	PEMFC Performance Testing
5	Prep. of Nafion membranes for cond. meas.	Effect of NH ₃ :	Effect of CO:	Effect of CO ₂ :
6		Effect of CO ₂ :	Effect of Ethylene:	Effect of Ethylene:
7		Effect of Ethylene:	Effect of CO ₂ :	Effect of Ethane:
8		Effect of HCHO:	Effect of Ethane:	Effect of HCHO:
	ANNUAL REPORT	ANNUAL REPORT	ANNUAL REPORT	ANNUAL REPORT
9	Go-No Go Decision	Go-No Go Decision	Go-No Go Decision	Go-No Go Decision

Qtr	Materials Acquisition /Prep.	Pt/C Study	Nafion Study	PEMFC Performance Testing
9	Prep. of Nafion membranes for cond. meas.	Effect of Ethane:	Effect of HCHO:	Effect of O ₂ :
10		Effect of HCOOH:	Effect of O ₂ :	Effect of HCOOH:
11		Effect of O ₂ :	Effect of HCOOH:	Effect of Cl ₂ :
12		Effect of H ₂ O:	Effect of Cl ₂ :	Effect of H ₂ O:
	ANNUAL REPORT	ANNUAL REPORT	ANNUAL REPORT	ANNUAL REPORT

Qtr	Materials Acquisition /Prep.	Pt/C Study	Nafion Study	PEMFC Performance Testing
13	Prep. of Nafion membranes for cond. meas.	Effect of Cl ₂ :	Effect of H ₂ O:	Effect of He, Ar, N ₂ :
14		Effect of H ₂ S:	Effect of He, Ar, N ₂ :	Effect of H ₂ S:
15		Effect of He, Ar, N ₂ :	Effect of H ₂ S:	Effect of Impurity Mixtures
16	FINAL REPORT	FINAL REPORT	FINAL REPORT	FINAL REPORT

Go/No-Go Decision Points

- Delineation of mechanisms of effect on Pt and PtRu of CO, NH₃, and CO₂
 - Feb. 15, 2009
- Delineation of mechanisms of effect on Nafion of CO, NH₃, and CO₂
 - Feb. 15, 2009
- Delineation of the effect on Fuel Cell operation of CO, NH₃, and CO₂ and correlation to fundamental adsorption/reaction results on fuel cell catalysts and proton transfer membrane
 - Feb. 15, 2009

Organizations Responsible for Work

Clemson University

Dept. of Chemical and Biomolecular Engineering Clemson, South Carolina

Savannah River National Lab
 Aiken, South Carolina

John Deere

Advance Energy Systems Division Charlotte, North Carolina

Budget by Fiscal Year

Fiscal Year	Clemson University	SRNL	John Deere
FY07	\$222,982 * \$130,505 **	\$145,402	\$37,500
FY08	\$296,118 <i>\$84,787</i>	\$193,867	\$50,000
FY09	\$301,431 <i>\$43,275</i>	\$193,565	\$50,000
FY10	\$307,630 \$38,213	\$193,701	\$50,000
FY11	\$77,265 \$9,458	\$48,445	\$12,500

*DOE Funding

**Cost-Sharing

