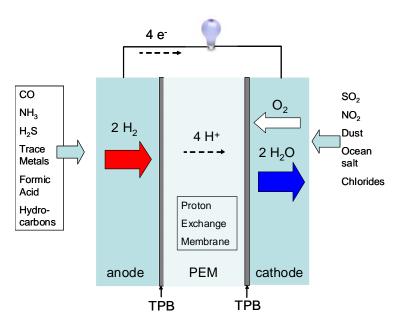


Effects of Impurities on Fuel Cell Performance and Durability

Trent M. Molter

Research Scientist and Business Development Officer The Connecticut Global Fuel Cell Center The University of Connecticut



- Introduction
- Background/Technical Concept
- Project Objectives
- Project Work Plan/Deliverables
- Project Timetable
- Roles of Participants
- Facilities and Equipment
- Summary

Introduction

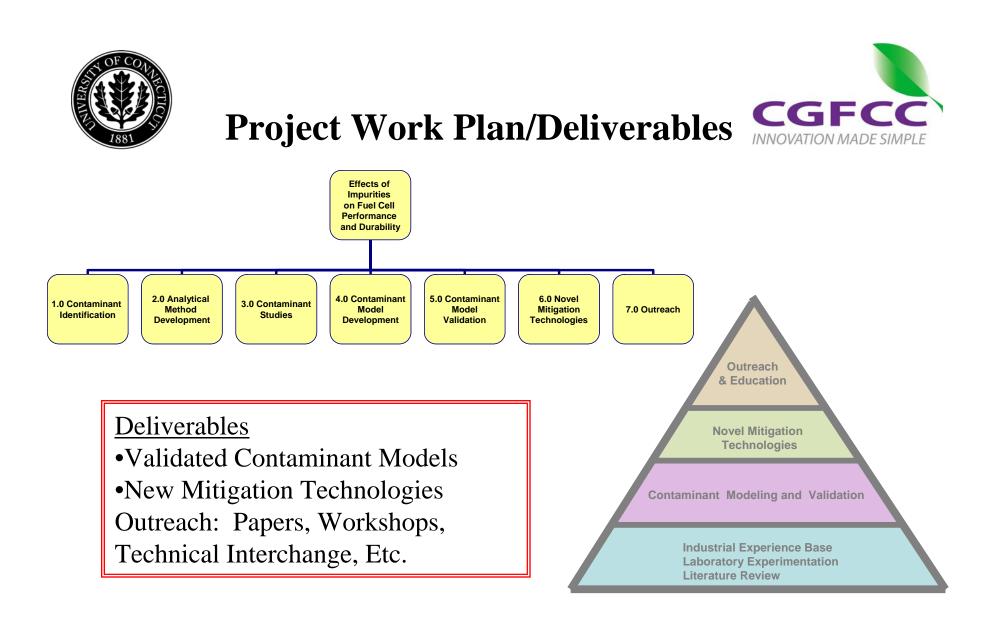
- Cost and Durability of Fuel Cells are Important Barriers to Commercialization
- Contamination of Fuel Cells From Fuels/Oxidants Affects Both Cost And Durability
- General Effects of Certain Contaminants on Fuel Cell Performance and Durability are Known, But Empirical Relationships and Specific Performance Models are Not Well-Established

Contaminant			
Category	Examples	Fate of Contaminant	General Performance Effects
Large Cations	Fe, Cr, Ni	Broad Distribution Throughout Membrane	Increases Ionic Resistance
		Movement to Cathode/Membrane Interface	
	Cu	During Operation	Contributes to Electrode Overvoltage
		Tends to Agglomerate in Membrane (Forms	Increases Ionic Resistance, Causes
	Mg, Ca	Rocks)	Pinholing
		Broad Distribution Throughout Membrane,	Increases Ionic Resistance, Reduces Water
Small Cations	Na+, Li+	Move to Cathode During Operation	Content at Cathode Surface
Anions	CI-, SO2	Movement to Anode	Sometimes No Effect
Organics	HCOOH,	Some Adsorbs on Catalyst Surface	Reduces Catalyst Activity
Inerts	N2, Ar	Some Adsorbs on Catalyst Surface	Functions as Diluent for Reactants

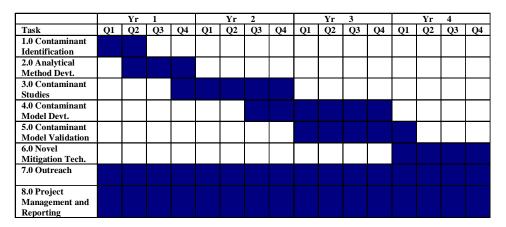
Background/Technical Concept

- Initiate Studies by Leveraging Existing Database From Prior Work
 - DOE Sponsored Activity
 - USFCC Data
 - Prior Electrolysis Product Experience
- Focus on Specific Contaminants/Concentrations Identified by DOE/Others
- Use Standardized Test Protocols Where Appropriate to Investigate Contaminant Effects
- Develop Empirical Models Based on Our Findings

Contaminant	Affected Area	Contaminant Source
Stainless Steel	Membrane Electrode Assembly	Gas Diffusion Layer (GDL) Screen
• Cr	(MEA)	and Bipolar Plates
• Ni		
• Fe		
Silicon	Pt Catalyst Formed Under Pt Oxides	Gasket and Cooling Fluid
Sulfur	Pt Catalyst	Vulcanized Carbon in Catalyst
Sodium	Membrane	Membrane Impurities
Copper Chloride	Membrane Conductivity	Coating for Aluminum Bipolar Plate
Ca ²⁺	Membrane	Membrane Impurity
Carbon Monoxide	Pt Catalyst	Gas Reactants
Sulfur Dioxide	Membrane	Air Near Battlefield
Benzene	Membrane	Air Near Battlefield
Ammonia	Membrane	Air Pollution
SO ₂	Catalyst	Air Pollution
HCN	Catalyst	Air Near Battlefield
CNCl	Catalyst	Air Near Battlefield
Sarin	Catalyst	Air Near Battlefield
Sulfur Mustard	Catalyst	Air Near Battlefield
Acetaldehyde	Catalyst	Byproduct of Ethanol Fuel Source


Project Objectives

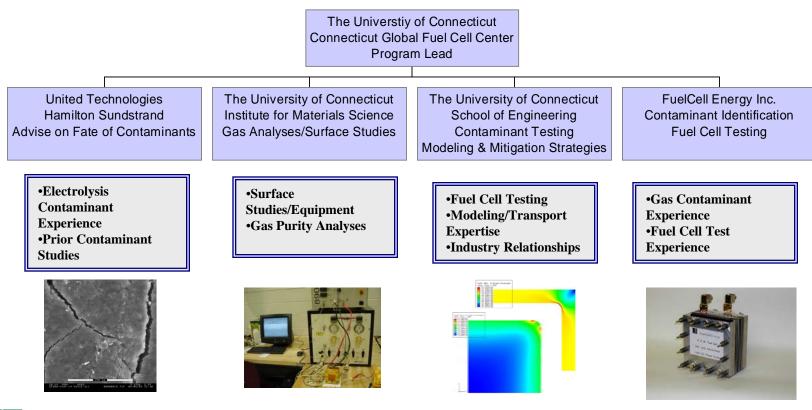
Task	Objectives	
1.0 Contaminant	• Identify specific contaminants and contaminant families present in both fuel and	
Identification	oxidant streams.	
2.0 Analytical Method	 Development of analytical methods to study contaminants. 	
Development	Experimental design of analytical studies.	
	• Novel <i>in situ</i> detection methods.	
3.0 Contaminant	Develop contaminant analytical models that explain these effects.	
Studies	 Establish an understanding of the major contamination-controlled mechanisms that cause material degradation in PEM cells and stacks under equilibrium and especially dynamic loading conditions 	
4.0 Contaminant Model Development	 Construct material state change models that quantify that material degradation as a foundation for multiphysics modeling Establish the relationship between those mechanisms and models and the loss of PEM performance, especially voltage decay 	
5.0 Contaminant Model Validation	 Validate contaminant models through single cell experimentation using standardized test protocols. 	
6.0 Novel Mitigation Technologies	• Develop and validate novel technologies for mitigating the effects of contamination on fuel cell performance.	
7.0 Outreach	• Conduct outreach activities to disseminate critical data, findings, models, and relationships etc. that describe the effects of certain contaminants on PEM fuel cell performance.	



Project Timetable

4 Year ProjectTime Phased Milestones Activities and Expertise

Task	Milestone	Date Year/Quarter
1.0 Contaminant Identification	Contaminant Identification Review With DOE Sponsor & Industry Focus Group	Y1/Q2
2.0 Analytical Method Development	Validate Analytical Methods For Studying Contaminants With Ersatz Gases	Y1/Q4
3.0 Contaminant Studies	Establish an Understanding of the Major Contamination-Controlled Mechanisms that Cause Material Degradation	Y2/Q4
4.0 Contaminant Model Development	 Determine the Relationship Between Contaminant Mechanisms and the Loss of PEM Performance, Especially Voltage Decay. 	Y3/Q4
5.0 Contaminant Model Validation	 Validate Contamination Models Through Single Cell Experimentation Using Standardized Test Protocols and a DOE Approved Test Matrix 	Y4/Q1
6.0 Novel Mitigation Technologies	 Demonstrate Novel Technologies for Mitigating the Effects of Contamination on Fuel Cell Performance 	Y4/Q4
7.0 Outreach	 Dissemination of Results Through Reports (DOE Approved), Papers and Workshops 	Continuous
8.0 Project Management and Reporting	Program Written Reports and Program Reviews	Continuous

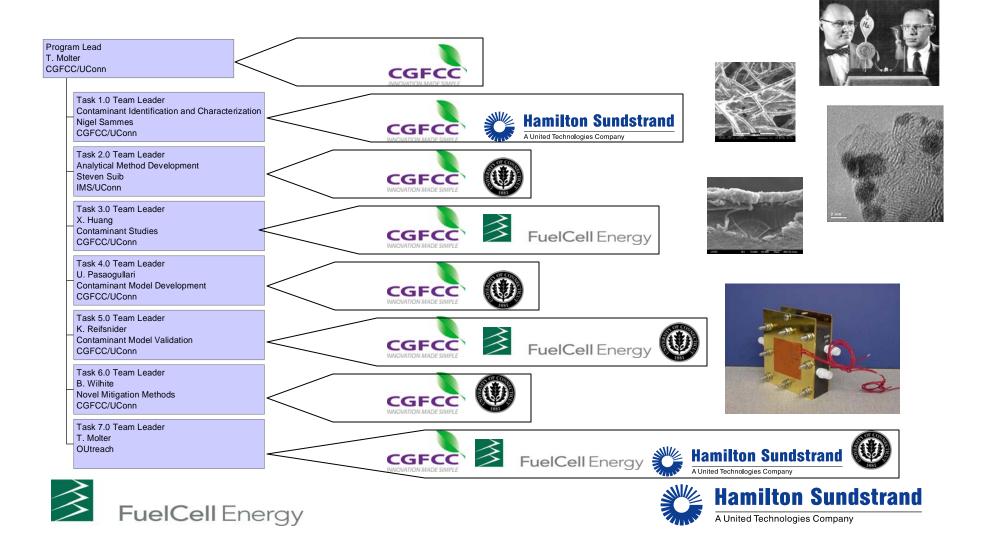


CGF

INNOVATION MADE SIMPLE

Roles of Participants

Hamilton Sundstrand


CGFCC

INNOVATION MADE SIMPLE

Task Participants

Facilities and Equipment

- 4 24 Foot High Bay Test Areas With Air/Water/Ventilation, Overhead Doors and a 220/480 Electrical Bus
- 4 Physical Wet-Lab Areas With Air/Water/Ventilation and 110/220 Electrical Service
- 2 Classrooms
- Conference Room
- Administrative Offices
- Access to Main Campus Facilities Including the Institute for Materials Science

Facilities and Equipment **CGFCC**

- Surface Studies
- **Gas Analysis** —
- Additional **Capabilities at FuelCell Energy/UTC** Will Be Leveraged to **Support Program Activities As Required**

FuelCell Energy

Surface

Leybold XPS/SIMS/AES/ISS

Catalysis

In Situ Photoreactors

Spectrometer	Regions	In Shirt Hotoreactors
Leybold XPS/ISS/TPD Spectrometer	Spex Raman	Transient Reactor with Nuclide Mass Spec./GC
PHI 610 SAM	Spex Fluorolog	Batch and Flow Thermal Reactors
PHI Monochromatic XPS	ISA/JY CCD Spectrometer	HP GCMS
Nanoscope 4 AFM/STM	Raman Imaging	
Structural	Thermal	Analytical
Scintag XDS 2000 Diffractometer, in Situ Heating Stage	DuPont TGA	Inductively Coupled Plasma Mass Spec
In Situ XRD	DSC	Fast Atom Bombardment Mass Spec.
Thermo ARL/Anton Parr	Cahn Balance	Energy Dispersive X-Ray Analyzer
	Home-Built Temperature Program	GCMS
	Desorption/Reduction/Reaction	
Sorption	Home-Built Microbalance	TOF Maldi MS
Omnisorp and Micromiretics BET		Atomic Absorption
		Chromatography
Morphological JEOL 2010 FasTEM HRTEM	Magnetic Varian E-3 EPR	ISCO HPLC System -Single-Pump Ternary Gradie Programmer, Programmable Pump -V ⁴ Variable UV/VIS Detector.
Philips EM400T Transmission Electron Microscope	X/Q Band Bruker Spectrometer	HP6890 GC Equipped With TCD and FID Detectors
Nikon Optical Metallurgical Microscope	Spin Echo NMR	HP6890 GC With Sulphur Specific PPE
AMRAY 1810 D SEM	Vibrating Sample Magnetometer	
JEOL 6335F FESEM		
AMRAY 9800 EDX		

Nicolet 750 FTIR, Near, Mid and Far

Optical

Summary

- Contaminants Affect Fuel Cell Performance in Many Ways
- A Deeper Understanding of the Effects of Specific Contaminants on Fuel Cell Performance is Necessary for Successful Commercialization
- Our Experienced Team Will Leverage Existing Knowledge and Will Systematically Investigate Certain Fuel Contaminants of Interest
- Empirical and Detailed Analytical Models Will Be Created to Predict the Fate of Specific Contaminants and Their Effect on Fuel Cell Performance
- Data Will Be Shared Through Papers, Workshops, Working Groups, Etc.

