## **Fuel Cell Technologies Program**





# DOE Hydrogen & Fuel Cell Overview

January 5, 2011

## **Dr. Sunita Satyapal**

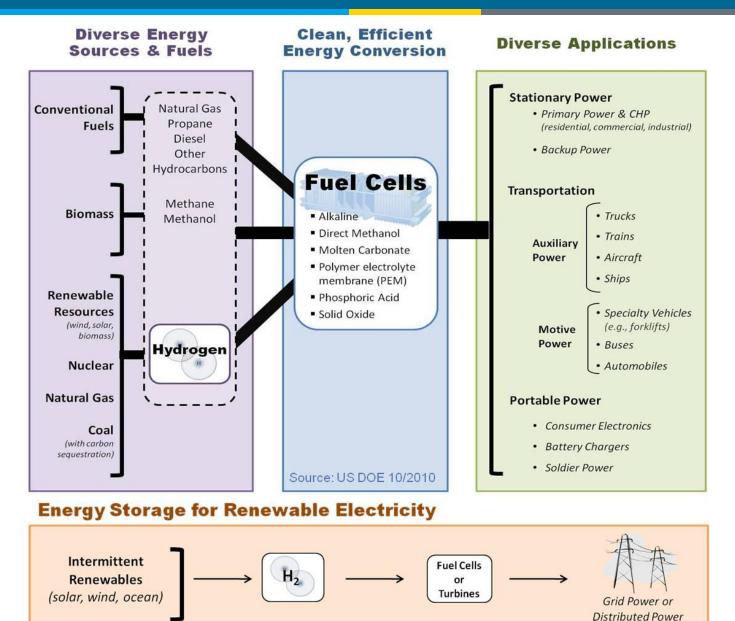
Program Manager
U.S. Department of Energy
Fuel Cell Technologies Program

# Agenda: DOE Fuel Cell Technologies Program



- Overview
  - Goals & Objectives
  - Technology Status & Key Challenges
- Progress
  - Research & Development
  - Deployments
  - Recovery Act Projects
- Budget
- Key Publications




The mission of the Hydrogen and Fuel Cells Program is to enable the widespread commercialization of a portfolio of hydrogen and fuel cell technologies through basic and applied research, technology development and demonstration, and diverse efforts to overcome institutional and market challenges.

## **Key Goals**: Develop hydrogen and fuel cell technologies for:

- 1. Early markets such as stationary power (prime and back up), lift trucks, and portable power
- 2. Mid-term markets such as residential combined-heat-andpower systems, auxiliary power units, fleets and buses
- 3. Long-term markets including mainstream transportation applications with a focus on light duty vehicles, in the 2015 to 2020 timeframe.

Source: US DOE 10/2010- draft Program Plan Includes basic science through the Office of Science and applied RD&D through EERE, FE, NE

## Fuel Cells: Addressing Energy Challenges



#### Fuel Cells for Stationary Power, Auxiliary Power, and Specialty Vehicles

The largest markets for fuel cells today are in stationary power, portable power, auxiliary power units, and forklifts.



~24,000 fuel cells shipped in 2009 (> 40% increase over 2008).

Fuel cells can be a cost-competitive option for critical-load facilities, backup power, and forklifts.





## **Production & Delivery of Hydrogen**

In the U.S., there are currently:

- **~9 million metric tons** of H₂ produced annually
- > **1200 miles** of H<sub>2</sub> pipelines

**Source: US DOE 09/2010** 

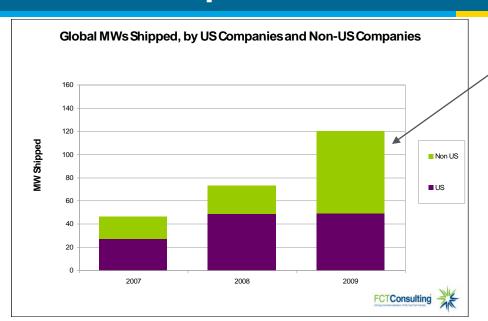


## Fuel Cells for Transportation

In the U.S., there are currently:

- > 200 fuel cell vehicles
- ~ 20 active fuel cell buses
- ~ 60 fueling stations

Sept. 2009: Auto manufacturers from around the world signed a letter of understanding supporting fuel cell vehicles in anticipation of widespread commercialization, beginning in 2015.



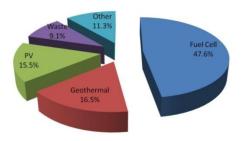








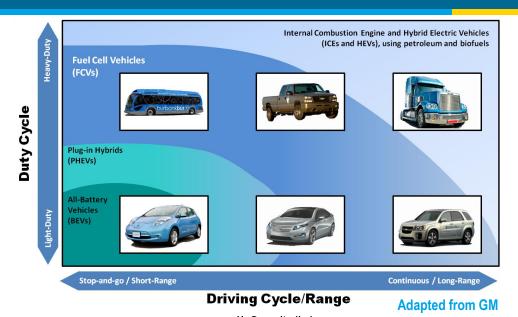




Preliminary market analysis

## International Landscape favors H<sub>2</sub> & Fuel Cells

- Germany (>\$1.2B; 1,000 H<sub>2</sub> stations)
- European Commission (>\$1.2B, 2008-2013)
- Japan (2M vehicles, 1,000 H<sub>2</sub> stations by 2025)
- Korea (plans to produce 20% of world shipments & create 560,000 jobs in Korea)
- China (thousands of small units; 70 FCVs, buses, 100 shuttles at World Expo, Olympics)
- Subsidies for jobs, manufacturing, deployments (e.g. South Africa)

Significant increase in MW shipped by non-US companies in just 1 year >40% market growth in just one year Example: Seoul's Renewable energy generation plan includes ~


48% fuel cells
Anticipated Renewable Energy Generation in Seoul,

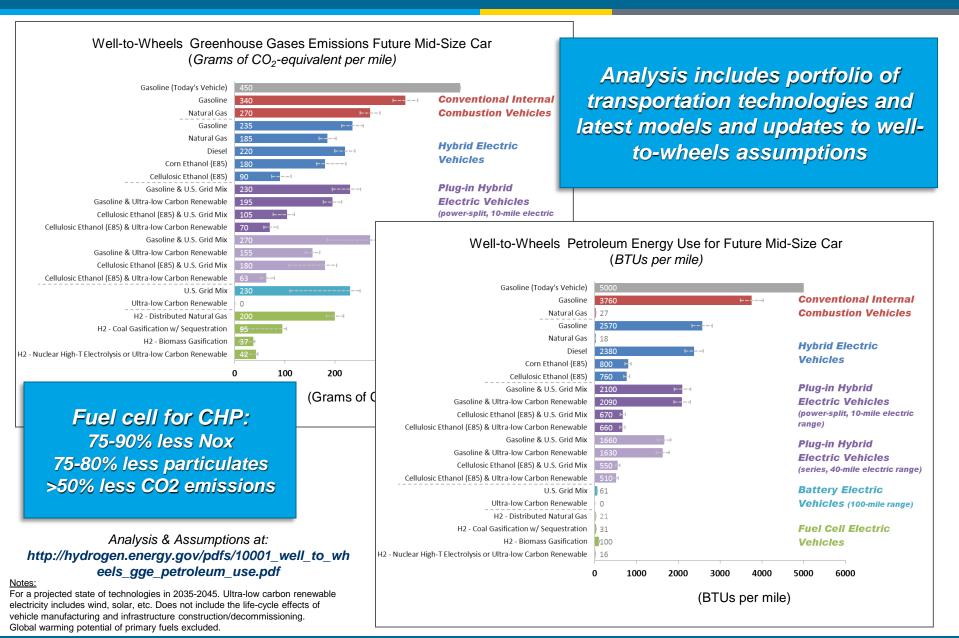


Example: Denmark

Backup Power Deployments






H<sub>2</sub> Capacity (kg) H2-Fuel Cell Systems vs Batteries At DOE/USABC Targets 300 250 System Mass (kg) 200 150 100 JSABC Minimum for Commercialization 50 50 100 150 200 250 300 350 400

- A variety of technologies including fuel cell vehicles,
  extended-range electric
  vehicles (or "plug-in
  hybrids"), and all-battery
  powered vehicles are under
  development to meet our
  diverse transportation needs.
- The most appropriate technology depends on the drive cycle and duty cycle of the application.

At extended driving ranges, benefits of fuel cell vehicles become more pronounced.

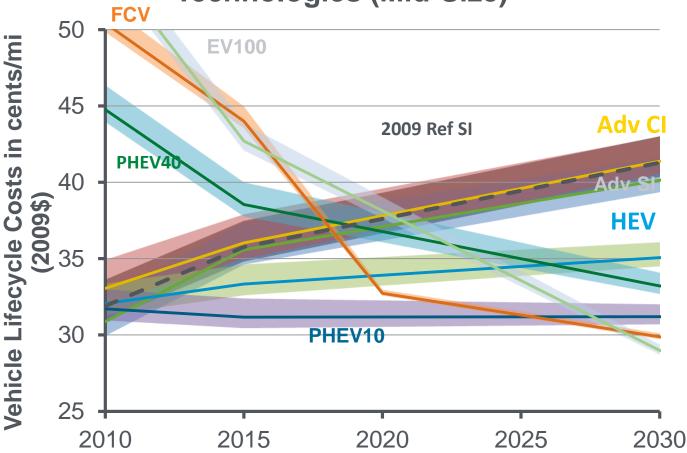
Range (miles @ 3 miles (kWh)-1)
FC targets: http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel cells.pdf ; H<sub>2</sub> Storage targets:
http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets onboard hydro storage.pdf;

Rattery targets: http://www.ueere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets onboard hydro storage.pdf;



## Lifecycle Costs: Light Duty Vehicles

## **Preliminary Analysis**


2015

- Lifetime cost of diesel ownership is roughly equivalent to an SI ICE
- HEVs and PHEV10s are competitive.
- Energy storage costs are still high for PHEV40s and EVs

### 2030

- Hybrid, electrified, and fuel cell vehicles are competitive
- Diesels cost is still roughly equivalent to an SI ICE

# Advanced Light Duty Vehicle Technologies (Mid-Size)



<sup>\*</sup> No state, local or utility incentives are included. Federal subsidy policies (e.g., Recovery Act 09 credits for PHEVs) are also excluded. Fuel prices follow AEO09 high oil projections (gases rises from \$3.07 in 2010 to \$5.47 in 2030; diesel increases from \$3.02 in 2010 to \$5.57 in 2030); fuel taxes are included in EIA estimates. The vehicle cost range represents a range of potential carbon prices, from \$0 to \$56 (the centerline is plotted at a carbon price of \$20). Technology costs are estimated based on a 50% ("average") likelihood of achieving program goals.

Source: Presentation to ERAC, November 30, 2010

## **Key Challenges**



The Program has been addressing the key challenges facing the widespread commercialization of fuel cells.

# Fechnology Barriers\*

## **Fuel Cell Cost & Durability**

Targets\*:

Stationary Systems: \$750 per kW, 40,000-hr durability

Vehicles: \$30 per kW, 5,000-hr durability

## **Hydrogen Cost**

Target\*: \$2 - 3 /gge, (dispensed and untaxed)

## **Hydrogen Storage Capacity**

Target: > 300-mile range for vehicles—without compromising interior space or performance

## Technology Validation:

Technologies must be demonstrated under real-world conditions.

# Economic & Institutional Barriers

**Safety, Codes & Standards Development** 

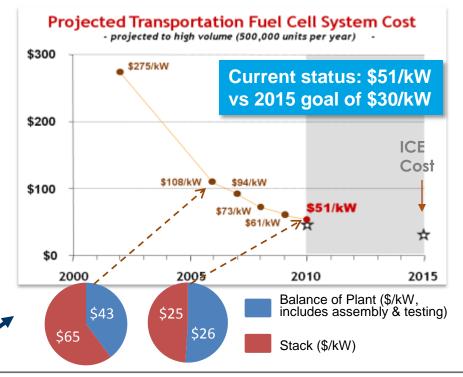
**Domestic Manufacturing & Supplier Base** 

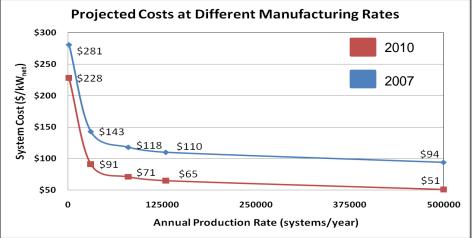
**Public Awareness & Acceptance** 

**Hydrogen Supply & Delivery Infrastructure** 

### Market Transformation

Assisting the growth of early markets will help to overcome many barriers, including achieving significant cost reductions through economies of scale.


<sup>\*</sup> Targets and Metrics are being updated in 2010.


# **Progress**

# Projected high-volume cost of fuel cells has been reduced to \$51/kW (2010)\*

- More than 30% reduction since 2008
- More than 80% reduction since 2002
- 2008 cost projection was validated by independent panel\*\*

As stack costs are reduced, balance-of-plant components are responsible for a larger % of costs.





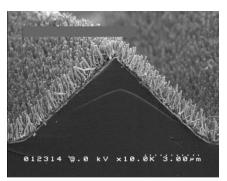
<sup>\*</sup>Based on projection to high-volume manufacturing (500,000 units/year).

<sup>\*\*</sup>Panel found \$60 – \$80/kW to be a "valid estimate": http://hydrogendoedev.nrel.gov/peer\_reviews.html

## Fuel Cell R&D — Progress



The Program has reduced PGM content, increased power density, and simplified balance of plant, resulting in a decrease in system cost.


From 2008 to 2010, key cost reductions were made by:


- Reducing platinum group metal content from 0.35 to 0.18 g/kW
- Increasing power density from 715 to 833 mW/cm<sup>2</sup>
- Simplifying balance of plant
  - → These advances contributed to a \$22/kW cost reduction.

Key improvements enabled by using novel organic crystalline whisker catalyst supports and Pt-alloy whiskerettes.

There are ~ 5 billion whiskers/cm<sup>2</sup>.

Whiskers are ~ 25 X 50 X 1000 nm.







Whiskerettes: 6 nm x 20 nm

Source: 3M

**Source: US DOE 08/2010** 

## **Hydrogen Threshold Cost Analysis**

\$10



High volume projected costs for hydrogen production technologies continue to decrease. Low volume/early market costs are still high. Hydrogen cost range reassessed – includes gasoline cost volatility and range of vehicle assumptions.

## **Projected High-Volume Cost of Hydrogen (Dispensed)—Status**

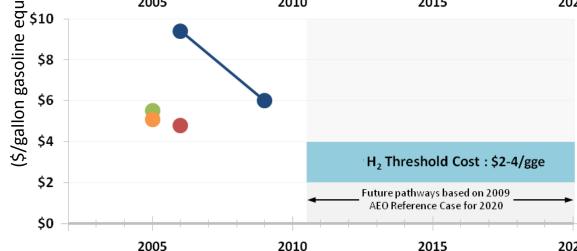
#### **NEAR TERM:**

#### **Distributed Production**

- ▲ Natural Gas Reforming
- ▲ Ethanol Reforming
- ▲ Electrolysis

#### Low-volume (200 kg/day)

- ▲ Steam Methane Reforming
- ▲ H₂ from Combined Heat, Hydrogen, and Power Fuel Cell


#### \$8 equivalent [gge], untaxed) \$6 \$4 H<sub>2</sub> Threshold Cos : \$2-4/gge \$2 Future pathways based on 2 AEO Reference Case for 2020 \$0 2005 2010 2015 2020

Being updated to address gasoline cost volatility and range of vehicle assumptions

#### LONGER TERM:

#### Centralized Production

- Biomass Gasification
- Central Wind Electrolysis
- Coal Gasification with Sequestration
- Nuclear

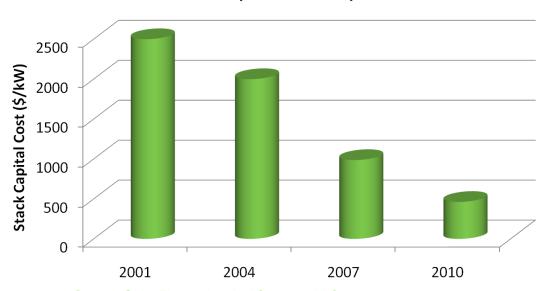


2010

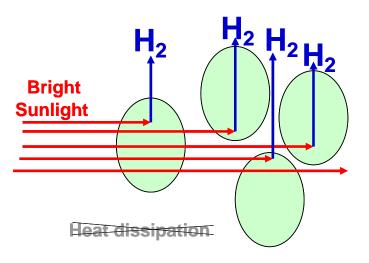
2015

#### Notes:

2020


Data points are being updated to the 2009 AFO reference case.

The 2010 Technology Validation results show a cost range of \$8-\$10/gge for a 1,500 kg/day distributed natural gas and \$10-\$13/gge for a 1,500 kg/day distributed electrolysis hydrogen station.


**Source: US DOE 09/2010** 

## **R&D Progress - Examples**

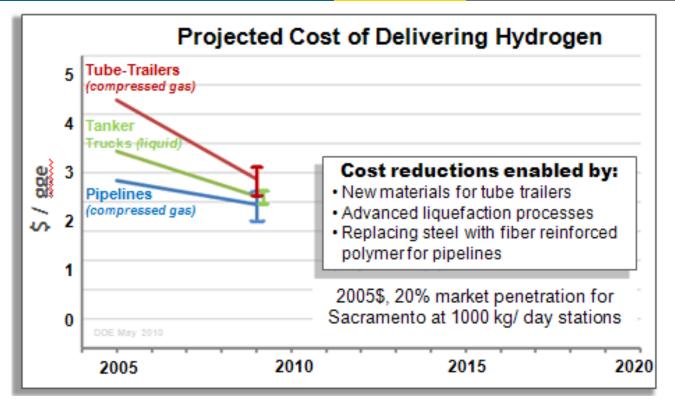
Production: Reduced Electrolyzer Stack Cost by over 80% since 2001<sup>2</sup>







**UC** Berkeley


- Source: Giner Electrochemical Systems, LLC <sup>2</sup> Total cost of delivery hydrogen (\$/kg) in H2A Model Rev. 2.0 is \$5.20 (Cost of delivery in Rev. 1.0.11 is \$0.69; Rev 2.0, \$1.92
- □ Improved photosynthetic solar –to-chemical energy conversion from 3 to 25% for photobiological hydrogen production by truncating the chlorophyll antenna size (Berkeley)
- □ Demonstrated bandgap tailoring in photoactive MoS₂ nanoparticles. Increased bandgap from 1.2eV to 1.8 eV for more optimal photoelectrochemical (PEC) water splitting (by quantum effects). (Stanford U.)

**Source: US DOE 12/2010** 

## **Hydrogen Delivery R&D**



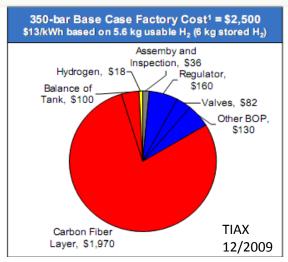
The Program is developing technologies to deliver hydrogen from centralized production facilities, efficiently and at low cost.



We've reduced the cost of hydrogen delivery\* —

- ~30% reduction in tube trailer costs
- >20% reduction in pipeline costs
- ~15% reduction liquid hydrogen delivery costs

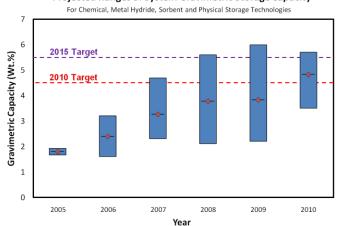
\*Projected cost, based on analysis of state-of-the-art technology


## H<sub>2</sub> Storage R&D



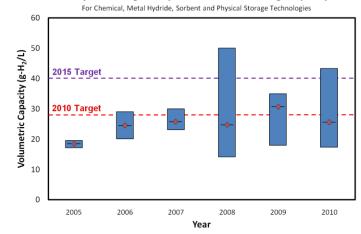
Significant progress has been made but meeting all weight, volume, performance and cost requirements is still challenging.

Compressed gas storage offers a near-term option for initial vehicle commercialization and early markets


- Validated driving range of up to ~ 430 mi
- Cost of composite tanks is challenging
  - carbon fiber layer estimated to be >75% of cost
- Advanced materials R&D under way for the long term



<sup>&</sup>lt;sup>1</sup> Cost estimate in 2005 USD. Includes processing costs.

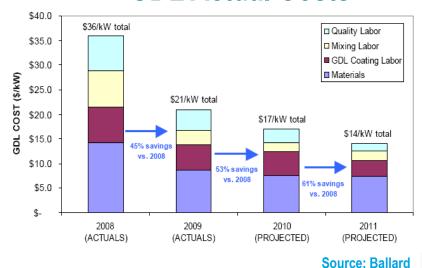

## Projected Capacities for Complete 5.6-kg H<sub>2</sub> Storage Systems

Projected Ranges of System Gravimetric Storage Capacity



Based on analysis using the best available data and information for each technology analyzed in the given year.

Projected Ranges of System Volumetric Storage Capacity




Based on analysis using the best available data and information for each technology analyzed in the given year

## Manufacturing R&D

- Fuel Cell MEA Measurement R&D (NREL)
  - Developed IR-based test stand to detect defects such as pinholes, shorts, and electrode thickness in variations
- High Speed, low cost fabrication of gas diffusion electrodes for MEAs (BASF)
  - Developed an innovative on-line XRF
  - Developed a predictive model for electrode variation and defect impacts on MEA performance
- Developed process model for controlling GDL coating conditions (Ballard)
  - Significant improvement in quality yields and GDL cost reduction estimated at 53% to-date in 2 years

## **GDL Actual Costs**



Effective Testing of Fuel Cell Stacks (PNNL, UltraCell)

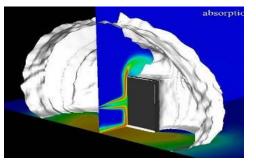
Effective Measurement of Fuel Cell Stacks (NREL, NIST)

## **Near-term Goal for Early Markets**

Lower fuel cell stack manufacturing cost by \$1000/kW (from \$3,000/kW to \$2,000/kW, for low-volume manufacturing)

### **Project Emphasis**

- Electrode Deposition (BASF, PNNL)
- High Pressure Storage (Quantum Technologies)
- MEA Manufacturing (Gore, LBNL, RPI)
- Gas Diffusion Layer (GDL) Fabrication (Ballard)

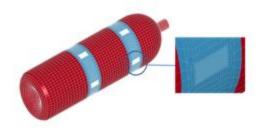

## Safety, Codes & Standards R&D

#### Separation Distances

Provided technical data and incorporated riskinformed approach that enabled NFPA2 to update bulk gas storage separation distances in the 2010

edition of NFPA55

Barrier walls reduce separation distances – simulated position of allowable heat flux iso-surface for 3-minute employee exposure (2009 IFC).




#### Fuel Quality Specification

- Draft International Standard (DIS) was submitted to ISO TC197 Nov 2010
- Technical Specification (TS) published and harmonized with SAE J2719, Committee Draft (CD) prepared
- Developing standardized sampling and analytical methodologies with ASTM

#### Materials and Components Compatibility

- Performed testing of forklift tank materials to enable design qualification
- Added two additional Nickel alloy chapters to the Technical Reference



#### Safety Sensor Development

 Completed extensive life testing - 4,000 hrs and 10,000 thermal cycles - of a robust, ceramic, electrochemical Hydrogen safety sensor with exceptional baseline stability and resistance to H2 signal degradation

| Technical Performance Requirements                 |                                                                            |  |  |  |
|----------------------------------------------------|----------------------------------------------------------------------------|--|--|--|
| Sensitivity: 1 vol% H <sub>2</sub> in air          | Temperature: -40°C to 60°C                                                 |  |  |  |
| Accuracy: 0.04-4%<br>±1% of full scale             | Durability: 5 yrs without calibration                                      |  |  |  |
| Response time: <1 min at<br>1%<br>And <1 sec at 4% | Low cross-sensitivity to humidity, H <sub>2</sub> S, CH <sub>4</sub> , CO, |  |  |  |
| Recovery <1 min                                    | and VOCs                                                                   |  |  |  |

Demonstrations are essential for validating the performance of technologies in integrated systems, under real-world conditions.

#### **RECENT PROGRESS**

#### **Vehicles & Infrastructure**

- 152 fuel cell vehicles and 24 hydrogen fueling stations
- Over 2.8 million miles traveled
- Over 114 thousand total vehicle hours driven
- 2,500 hours (nearly 75K miles) durability
- Fuel cell efficiency 53-59%
- Vehicle Range: ~196 254 miles (independently also validated 430 mile range)

#### Buses

- DOE is evaluating real-world bus fleet data (DOT collaboration)
- H<sub>2</sub> fuel cell buses have a 41% to 132% better fuel economy when compared to diesel & CNG buses

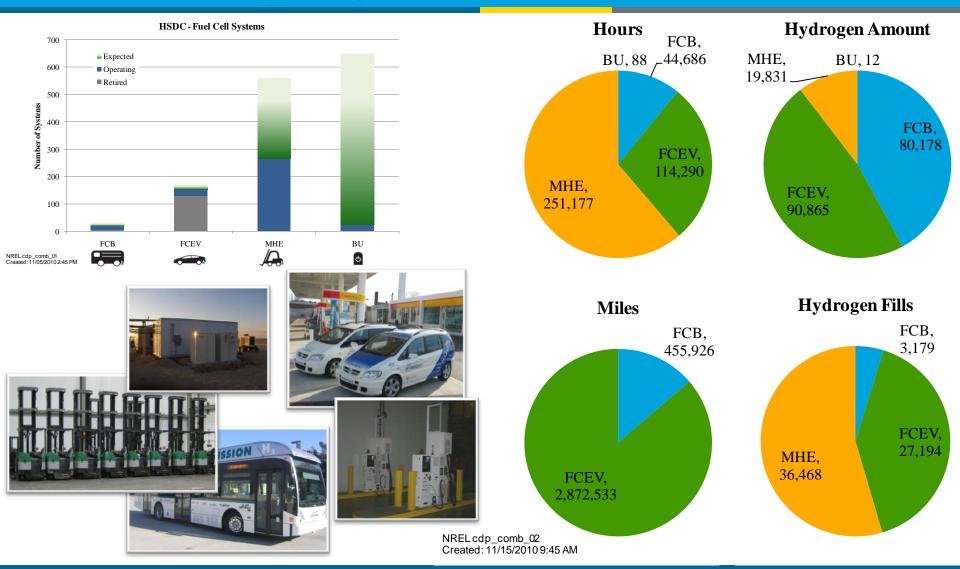
#### **Forklifts**

Over 18,000 refuelings at Defense Logistics Agency site

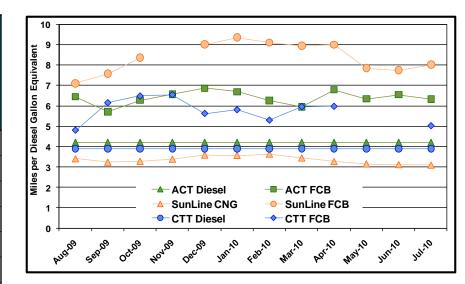
#### **Recovery Act**

 DOE (NREL) is collecting operating data from deployments for an industry-wide report









## **Technology Validation**



Demonstrations are essential for validating the performance of technologies in integrated systems, under real-world conditions.



| Site                       | AC Transit                 | SunLine                   | CTTRANSIT                 |         |
|----------------------------|----------------------------|---------------------------|---------------------------|---------|
| Technology                 | UTC Power/Van<br>Hool/ISE  | UTC Power/Van<br>Hool/ISE | UTC Power/Van<br>Hool/ISE |         |
| Project Status             | Complete, Buses<br>Retired | In operation              | In operation              | Totals  |
| Data Period                | 4/06 - 7/10                | 1/06 - 9/10               | 4/07 - 9/10               |         |
| Number of buses            | 3                          | 1                         | 1                         | 8       |
| Number months              | 52                         | 57                        | 43                        |         |
| Total Miles                | 253,166                    | 110,118                   | 46,468                    | 449,960 |
| Total Hours                | 25,244                     | 8,411                     | 7,235                     | 44,109  |
| Hydrogen used (kg)         | 41,317                     | 15,365                    | 9,585                     | 79,171  |
| Avg Speed (mph)            | 10                         | 13                        | 6.4                       |         |
| Fuel Economy Mi/kg         | 6.12                       | 7.17                      | 4.85                      |         |
| Fuel Economy<br>Mi/DGE     | 6.92                       | 8.10                      | 5.48                      |         |
| Baseline technology        | diesel                     | CNG                       | diesel                    |         |
| Fuel Economy<br>difference | 65%                        | 132%                      | 41%                       |         |



- ✓ Fuel economy consistently better than baseline buses.
- √ ~450,000 miles travelled since 2005

\*Missing data from VTA buses from '05-'06

Note: Blue shaded columns indicate completed projects – data are final

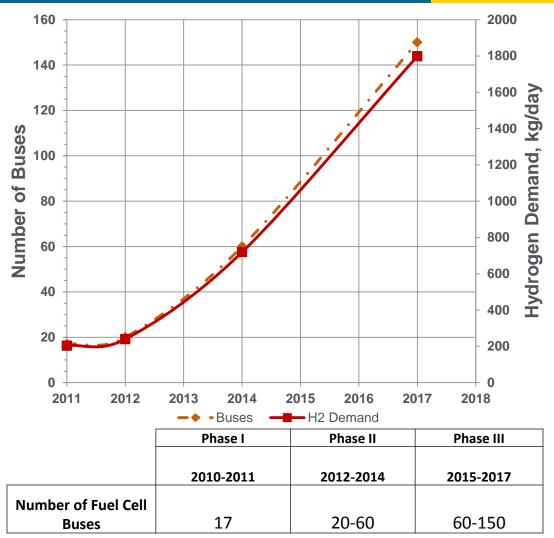
Same FCB Technology at these three locations










National Renewable Energy Laboratory

Innovation for Our Energy Future

## Fuel Cell Bus Example



Potential deployment strategies envisioned for Fuel Cell Buses deployment scenario analysis identified in California's Action Plan.

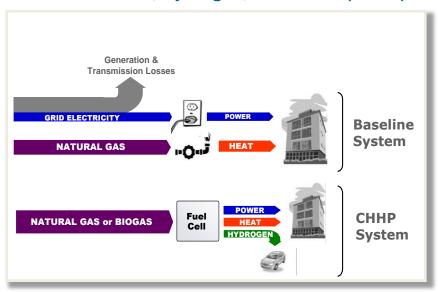


## **Assumptions**

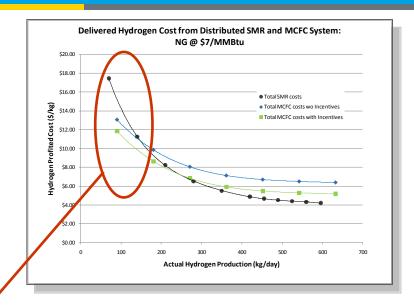
- Fuel cell bus fuel economy: 8 mpgge <sup>a</sup>
  - ~2x diesel bus fuel economy <sup>a</sup>
- Fuel cell fuel storage capacity is ~30 kg. <sup>a</sup>
- Annual miles traveled: 35,000
- Fuel demand based on fuel cell bus rollout rates.

a DOE Joint Fuel Cell Bus Workshop Summary Report

http://www1.eere.energy.gov/hydrogenandfuelcells/wkshp\_fcbus10.html


http://www.cafcp.org/sites/files/FINALProgressReport.pdf

## Combined Heat, Hydrogen & Power (CHHP)



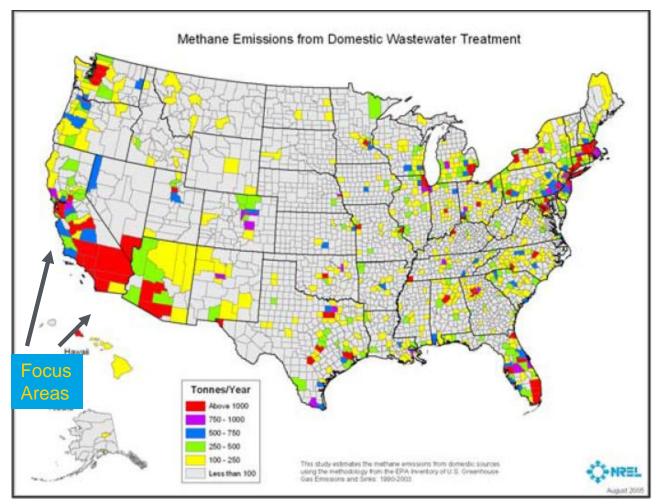

The cost of hydrogen production from CHHP can be comparable to distributed SMR at low volumes.

#### Combined Heat, Hydrogen, and Power (CHHP)



- CHHP is an innovative approach that can :
  - Help establish an initial infrastructure for fueling vehicles, with minimal investment risk
  - Produce clean power and fuel for multiple applications
- The Program is demonstrating a CHHP system using biogas.



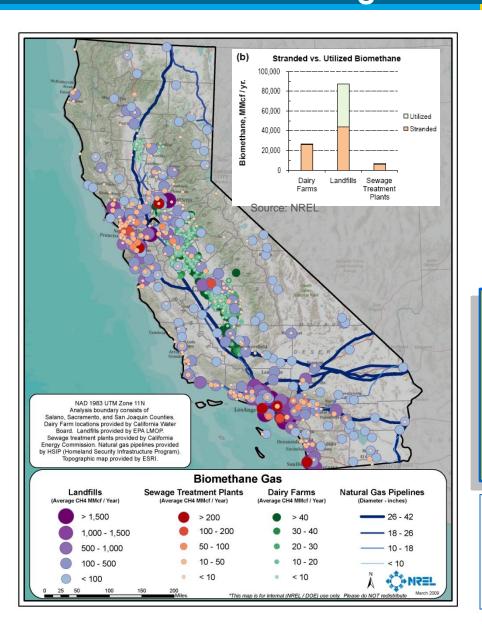

In cases where there is a low demand for hydrogen in early years of FCV deployment, CHHP may have cost advantages over on-site SMR production.

#### **Model Calculation of Energy Cost**

- Calculated cost of energy (electricity, heat, and hydrogen)
- Electricity assumed to have the same value as purchased electricity
- Heat valued at 1/2 value of electricity
- Hydrogen value calculated by difference

# Biogas Resource Example: Methane from Waste Water Treatment

Biogas from waste water treatment plants is ideally located near urban centers to supply hydrogen for fuel cell vehicles.




Source: NREL report A Geographic Perspective on Current Biomass Resource Availability in the United States, 2005

- 500,000 MT per year of methane available from waste water treatment plants in U.S.
- Majority of resource located near urban centers.
- If ~50% of the biomethane was available, ~340,000
   kg/day of renewable hydrogen could be produced from steam methane reforming.
- Renewable hydrogen is enough to fuel
   ~340,000 fuel cell vehicles per

day.

# GIS Map of California Potential Sources of Biogas



- Select categories of biogas resources: Landfills, sewage treatment plants, and dairy farms.
- California landfills offer greater biogas potential at ~1.6 million tons/yr of bio-methane.
- ~50% of the landfill biomethane is utilized currently.
- Sewage treatment plants in California produce ~0.1 million tons/yr of bio-methane.
- Pipelines are reasonably accessible to most of biogas sources.
- Exact locations of the number of potential applications for CHHP are being identified.
- Increased demand for DG: Annual distributed power installed has increased from ~9.5 MW to ~70 MW between 2004 and 2009.
- Focuses on 2 urban areas (LA, San Fran.) with extremely high grid congestion.
- Focus on the other top urban areas with highest population density and most likely for early deployment of early market fuel cell buses.

a Energy Information Administration, *Electric Power Annual 2007*, Table 2.7.C: "Total Capacity of Dispersed and Distributed Generators by Technology Type, http://www.eia.doe.gov/cneaf/electricity/epa/epaxlfile2\_7\_c.pdf <u>AND</u> Fuel Cell Today, 2009.

b DOE, Office of Electricity, National Electric Transmission Congestion Study, August 2006, http://nietc.anl.gov/documents/docs/Congestion\_Study\_2006-9MB.pdf c Hydrogen Fuel Cell Vehicle and Station Deployment Plan: A Strategy for Meeting the Challenge Ahead, April 2010, California Fuel Cell Partnership

# Market Transformation activities seek to overcome barriers to commercialization



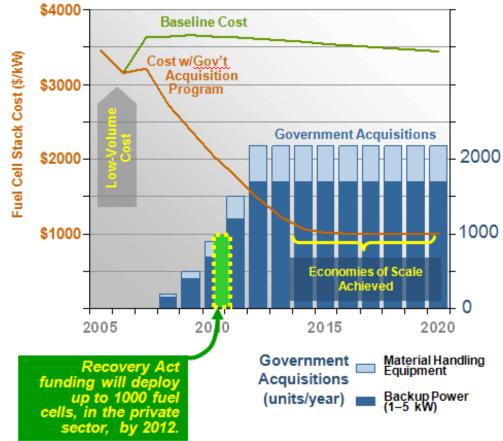
#### **BARRIERS** Market/Industry Lack of domestic supply base and high volume manufacturing. Estimated backlog > 100 MW Low-volume capital cost is >2-3x of targets Policies — e.g., many early adopters not eligible for \$3,000/kW tax credit Significant investment needed— **Delivery** ~\$55B gov't funding required over Infrastructure 15 years for ~5.5M vehicles (\$~10B for stations)\*

## Codes and Standards

Complicated permitting process. 44,000 jurisdictions

H<sub>2</sub>-specific codes needed; only 60% of component standards specified in NFPA codes and standards are complete

Need for domestic and international consistency


#### Education

In spite of >7,000 teachers trained and online tools averaging 300-500 visits/month, negative public perception and safety concerns remain.

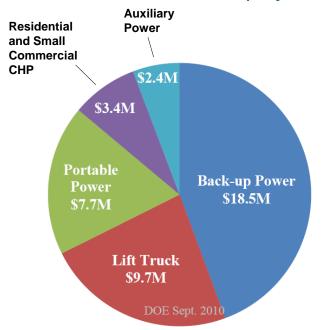
\*2008 National Academies Study, *Transitions to Alternative Transportation Technologies—A Focus on Hydrogen* 

#### **ADDRESSING BARRIERS—Example:**





Source: David Greene, ORNL; K.G. Duleep, Energy and Environmental Analysis, Inc., Bootstrapping a Sustainable North American PEM Fuel Cell Industry:

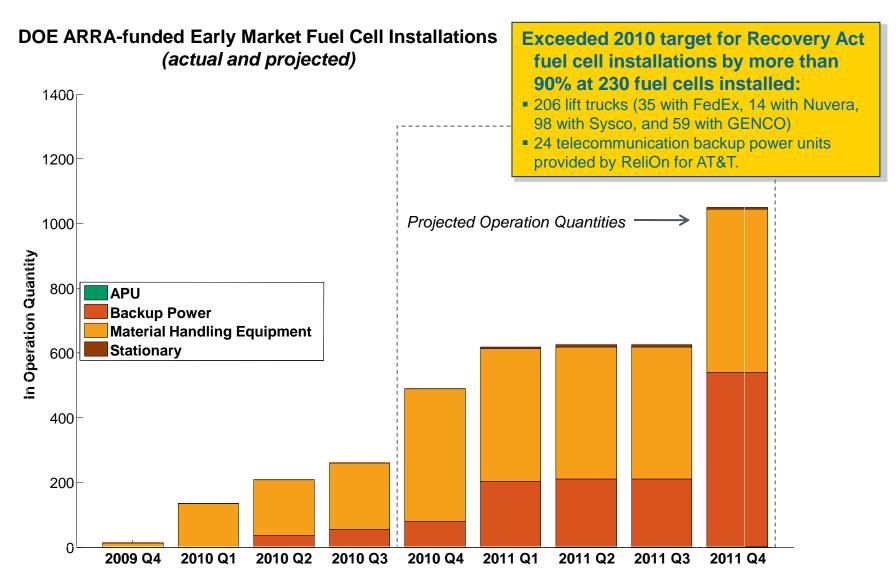

Could a Federal Acquisition Program Make a Difference?, 2008.

## **Recovery Act Funding for Fuel Cells**

More than \$40 million from the 2009 American Recovery and Reinvestment Act to fund 12 projects to deploy up to 1,000 fuel cells

## FROM the LABORATORY to DEPLOYMENT:

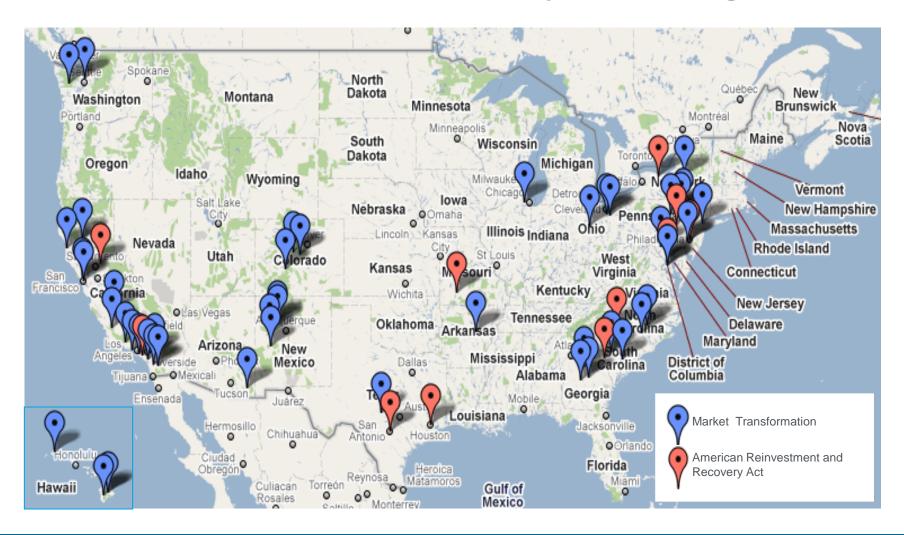
DOE funding has supported R&D by <u>all</u> of the fuel cell suppliers involved in these projects.



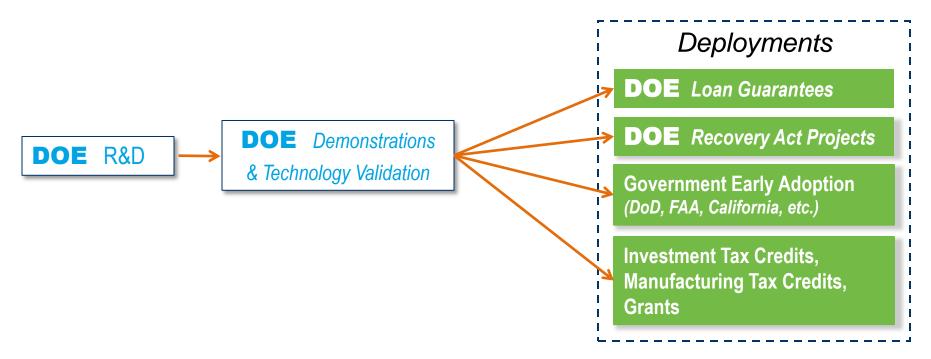

Approximately \$54 million in cost-share funding from industry participants—for a total of about \$96 million.

| COMPANY              | AWARD   | APPLICATION     |
|----------------------|---------|-----------------|
| Delphi Automotive    | \$2.4 M | Auxiliary Power |
| FedEx Freight East   | \$1.3 M | Lift Truck      |
| GENCO                | \$6.1 M | Lift Truck      |
| Jadoo Power          | \$2.2 M | Portable        |
| MTI MicroFuel Cells  | \$3.0 M | Portable        |
| Nuvera Fuel Cells    | \$1.1 M | Lift Truck      |
| Plug Power, Inc. (1) | \$3.4 M | CHP             |
| Plug Power, Inc. (2) | \$2.7 M | Back-up Power   |
| Univ. of N. Florida  | \$2.5 M | Portable        |
| ReliOn, Inc.         | \$8.5 M | Back-up Power   |
| Sprint Nextel        | \$7.3 M | Back-up Power   |
| Sysco of Houston     | \$1.2 M | Lift Truck      |

## **DOE ARRA Fuel Cell Deployments**







From National Renewable Energy Laboratory

**Source: US DOE 12/2010** 

# U.S. Fuel Cell Deployments Using DOE Market Transformation and Recovery Act Funding



## Example of RD&D to Deployments



## **Project Example:**

- Stationary fuel cells (hundreds of kW to tens of MW) for commercial applications including combined heat and power (and/or cooling).
- Multimillion \$ loan guarantee available.

What more can Government do to accelerate commercialization?

**Source: US DOE 12/2010** 

## **Recent Federal Grants and Tax Credits**

| Section 1603: Payments in Lieu of Tax Credits |                   |               |              |  |  |
|-----------------------------------------------|-------------------|---------------|--------------|--|--|
| Business                                      | Property Location | Fuel Cell MWe | Amount       |  |  |
| Gills Onions, LLC                             | California        | 0.6           | \$1,141, 560 |  |  |
| M&L Commodities, Inc.                         | California        | 0.6           | \$997,913    |  |  |
| Preservation Properties, Inc.                 | California        | 0.1           | \$300,000    |  |  |
| Logan Energy Corporation Hawaii               |                   | 0.3           | \$900,000    |  |  |
| Plug Power, Inc.                              | er, Inc. Illinois |               | \$723,334    |  |  |
| Logan Energy Corporation                      | South Carolina    | 0.05          | \$148,988    |  |  |
| Totals                                        |                   | 1.9           | \$4,211,795  |  |  |

| Section 48C: Manufacturing Tax Credit |             |                        |             |  |
|---------------------------------------|-------------|------------------------|-------------|--|
| Business                              | Location    | n Product Amo          |             |  |
| <b>UTC Power Corporation</b>          | Connecticut | Fuel Cells             | \$5,300,100 |  |
| W.L. Gore & Associates                | Maryland    | Fuel Cell<br>Membranes | \$604,350   |  |
| Total                                 |             |                        | \$5,904,450 |  |

## Sample Projects



Federal incentives, including §1603 grant-in-lieu of tax credit and §48, have helped facilitate commercial transition to fuel cell forklifts.

## Examples<sup>1</sup>:

- \$660K: Central Grocers (Joliet, IL)
- \$420K: United Natural Foods (Sarasota, FL)
- \$600K: Sysco Foods (Houston, TX)
- \$620K: Wegmans (Pottsville, PA)
- \$320K: Kimberly Clark (Graniteville, SC)
- \$400K: Coca-Cola Bottling (Charlotte, NC)
- \$390K: Whole Foods (Landover, MD)

Other examples: H-E-B, Walmart, and more

<sup>1</sup> Source: Plug Power



Super Store Industries - First Grocery Warehouse and Distributor to Deploy Methanol Fuel Cells for Material Handling Equipment

**Source: US DOE 12/2010** 



On October 5, 2009
President Obama signed
Executive Order 13514 –
Federal Leadership in
Environmental, Energy, and
Economic Performance

#### • Requires Agencies to:

- Set GHG reduction Targets
- Develop Strategic Sustainability Plans and provide in concert with budget submissions
- Conduct bottom up Scope 1, 2 and 3 baselines
- Track performance

#### **Examples:**

- Achieve 30% reduction in vehicle fleet petroleum use by 2020
- Requires 15% of buildings meet the Guiding Principles for High Performance and Sustainable Buildings by 2015
- Design all new Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030

Potential opportunities for fuel cells and other clean energy technologies....

http://www1.eere.energy.gov/femp/regulations/eo13514.html

**Source: US DOE 09/2010** 

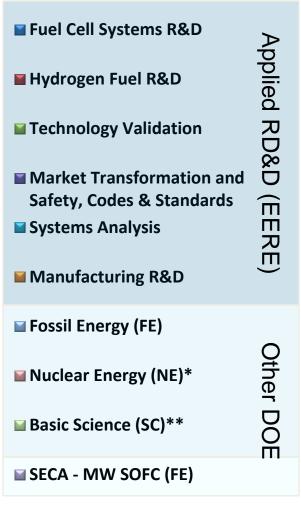
# **Budget**

## **EERE H<sub>2</sub> & Fuel Cells Budgets**




| Funding (\$ in thousands)          |           |                      |                        |                    |                  |                |
|------------------------------------|-----------|----------------------|------------------------|--------------------|------------------|----------------|
| Key Activity                       | FY 2008   | FY 2009 <sup>4</sup> | FY 2010                | FY 2011<br>Request | FY 2011<br>House | 2011<br>Senate |
| Fuel Cell Systems R&D <sup>1</sup> | -         | -                    | -                      | 67,000             | 67,000           | 67,000         |
| Fuel Cell Stack Component R&D      | 42,344    | 61,133               | 62,700                 | -                  | -                |                |
| Transportation Systems R&D         | 7,718     | 6,435                | 3,201                  | -                  | -                |                |
| Distributed Energy Systems R&D     | 7,461     | 9,750                | 11,410                 | -                  | -                |                |
| Fuel Processor R&D                 | 2,896     | 2,750                | 171                    | -                  | -                |                |
| Hydrogen Fuel R&D <sup>2</sup>     | -         | -                    | -                      | 40,000             | 40,000           | 47,000         |
| Hydrogen Production & Delivery R&D | 38,607    | 10,000               | 15,000                 | -                  | -                |                |
| Hydrogen Storage R&D               | 42,371    | 57,823               | 32,000                 | -                  | -                |                |
| Technology Validation              | 29,612    | 14,789 <sup>5</sup>  | 13,097                 | 11,000             | 11,000           | 20,000         |
| Market Transformation <sup>3</sup> | 0         | 4,747                | 15,026                 | 0                  | 0                | 20,000         |
| Safety, Codes & Standards          | 15,442    | 12,238 <sup>5</sup>  | 8,839                  | 9,000              | 9,000            | 9,000          |
| Education                          | 3,865     | 4,200 <sup>5</sup>   | 2,000                  | 0                  | 0                | 1,000          |
| Systems Analysis                   | 11,099    | 7,520                | 5,556                  | 5,000              | 5,000            | 5,000          |
| Manufacturing R&D                  | 4,826     | 4,480                | 5,000                  | 5,000              | 5,000            | 5,000          |
| Total                              | \$206,241 | \$195,865            | \$174,000 <sup>6</sup> | \$137,000          | \$137,000        | \$174,000      |

<sup>&</sup>lt;sup>1</sup> Fuel Cell Systems R&D includes Fuel Cell Stack Component R&D, Transportation Systems R&D, oistributed Energy Systems R&D, and Fuel Processor R&D, <sup>2</sup> Hydrogen Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D, <sup>3</sup> Market Transformation will fund only Safety, Codes and Standards in FY 2011, <sup>4</sup> FY 2009 Recovery Act funding of \$42,967M not shown in table, <sup>5</sup> Under Vehicle Technologies Budget in FY 2009 Includes SBIR/STTR funds to be transferred to the Science Appropriation; all prior years shown exclude this funding


## Total DOE FY11 Budget Request

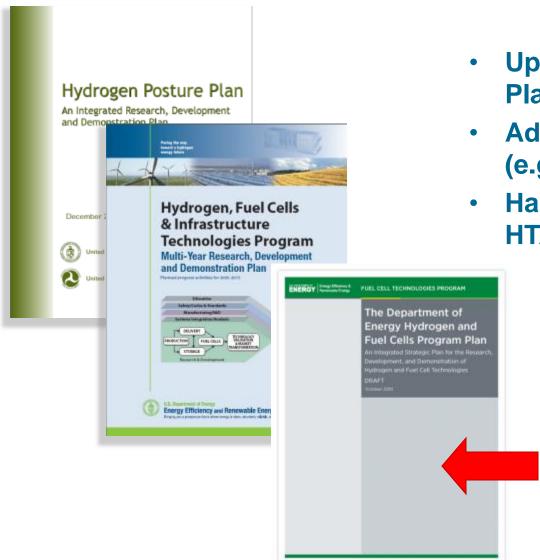


# Total DOE Hydrogen and Fuel Cell Technologies FY11 Budget Request (in millions of US\$)



**Total FY11 Budget Request \$256 Million** 




\*NE: \$5M represents FY10 funding

\*\*SC Includes BES and BER

Source: US DOE 09/2010

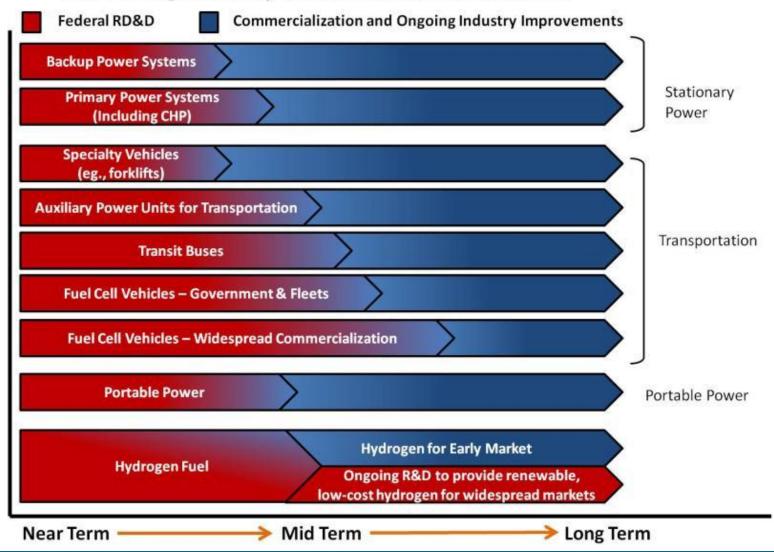
# **Key Publications**

### Describes the planned RD&D activities for hydrogen and fuel cell technologies



- Update to the Hydrogen Posture Plan published in 2006
- Addresses previous reviews (e.g. GAO, HTAC, NAS, etc.)
- Hard copy of Draft available for HTAC review and comment

Draft available 10/22/10 for stakeholder public comment until 11/30/10. Final will be published in early 2011.


DOEH2ProgramPlan@ee.doe.gov

**Source: US DOE 10/2010** 

## Program Plan includes Portfolio



### The Role of Federal Research, Development, and Demonstration



## **Key Reports Recently Published**



## The Business Case for Fuel Cells: Why Top Companies are Purchasing Fuel Cells <u>Today</u>

By FuelCells2000, http://www.fuelcells.org

Profile of 38 companies who have ordered, installed, or deployed fuel cell forklifts, stationary fuel cells or fuel cell units.

See report: http://www.fuelcells.org/BusinessCaseforFuelCells.pdf

### 2009 Fuel Cell Technologies Market Report

By Breakthrough Technologies Institute, http://www.btionline.org/

This report describes data compiled in 2010 on trends in the fuel cell industry for 2009 with some comparison to previous years. (July 2010).

See report: http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/48219.pdf

## Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

By NREL and DJW Technology, LLC

This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

See report: http://www.nrel.gov/docs/fy10osti/49072.pdf

### **Fuel Cell Today 2009 Market Analysis**

The report describes sales of fuel cells in US and worldwide.

October 2010

**Source: US DOE 10/2010** 

## **Analysis of Policies for FCEVs &** Hydrogen Infrastructure



Analysis by Oak Ridge National Laboratory explores the impacts and infrastructure and policy requirements of potential market penetration scenarios for fuel cell vehicles.

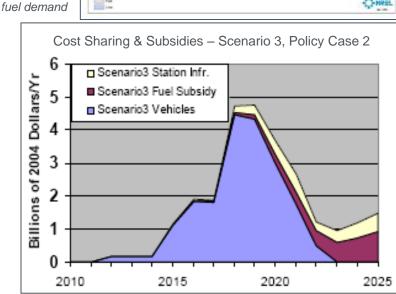
> Areas of projected

fuel cell

vehicle use-and

### **Key Findings:**

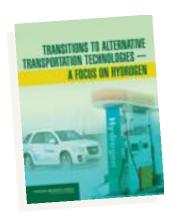
Transition to Hydrogen


Hydrogen Energy

Infrastructure Requirements

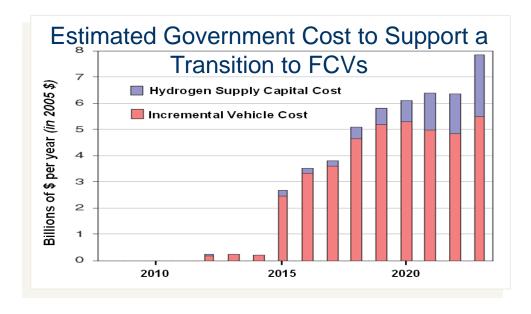
- Transition policies will be essential to overcome initial economic barriers.
- Cost-sharing & tax credits (2015 2025) would enable industry to be competitive in the marketplace by 2025.
- With targeted deployment policies from 2012 to 2025, FCV market share could grow to 50% by 2030, and 90% by 2050.
- Cost of these policies is not out of line with other policies that support national goals.
  - billion/year by 2010.
  - The annual cost would not exceed \$6 billion—federal incentives for ethanol are expected to cost more than \$5
  - Cumulative costs would range from \$10 billion to \$45 billion, from 2010 to 2025—federal incentives for ethanol have already cost more than \$28 billion, and these cumulative costs are projected to exceed \$40 billion by 2010.

http://cta.ornl.gov/cta/Publications/Reports/ORNL\_TM\_2008\_30.pdf






Projected cost of policies to sustain a transition to fuel cell vehicles and H2 infrastructure, based on the most aggressive scenario


# Analysis of Policies for FCEVs & Hydrogen Infrastructure

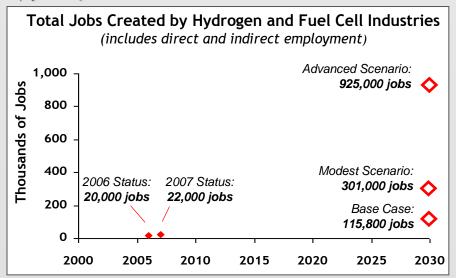
NAS study, "Transitions to Alternative Transportation Technologies: A Focus on Hydrogen," shows positive outlook for fuel cell technologies—results are similar to ORNL's "Transition Scenario Analysis."



The study was required by EPACT section 1825 and the report was released in 2008, by the Committee on Assessment of Resource Needs for Fuel Cell and Hydrogen Technologies.



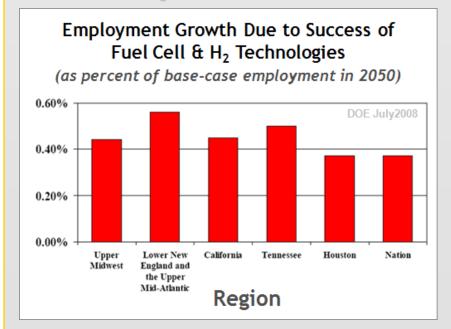



### Key Findings Include:

- By 2020, there could be 2 million FCVs on the road. This number could grow rapidly to about 60 million by 2035 and 200 million by 2050.
- Government cost to support a transition to FCVs (for 2008 2023) estimated to be \$55 billion—about \$3.5 billion/year.
- The introduction of FCVs into the light-duty vehicle fleet is much closer to reality than when the NRC last examined the technology in 2004—due to concentrated efforts by private companies, together with the U.S. FreedomCAR & Fuel Partnership and other government-supported programs around the world.
- A portfolio of technologies has the potential to eliminate petroleum use in the light-duty vehicle sector and to reduce greenhouse gas emissions from light-duty vehicles to 20 percent of current levels—by 2050.

# The fuel cell and hydrogen industries could generate substantial revenues and job growth.

### Renewable Energy Industry Study\*

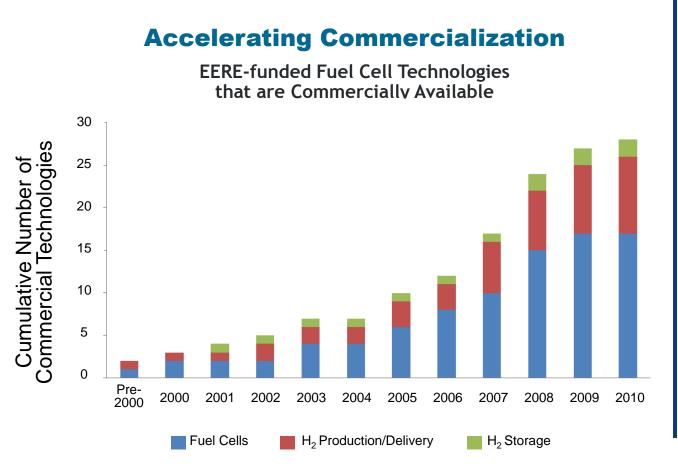

- Fuel cells are the third-fastest growing renewable energy industry (after biomass & solar).
- Potential U.S. employment from fuel cell and hydrogen industries of up to 925,000 jobs (by 2030).
- Potential gross revenues up to \$81 Billion/year (by 2030).



\*Study Conducted by the American Solar Energy Society www.ases.org/images/stories/ASES/pdfs/CO\_Jobs\_Final\_Report\_December2008.pdf

### **DOE Employment Study**

- Projects net increase of 360,000 675,000 jobs.
- Job gains would be distributed across up to 41 industries.
- Workforce skills would be mainly in the vehicle manufacturing and service sectors.




www.hydrogen.energy.gov/pdfs/epact1820\_employment\_study.pdf

# Assessing the Program Commercializing Technologies

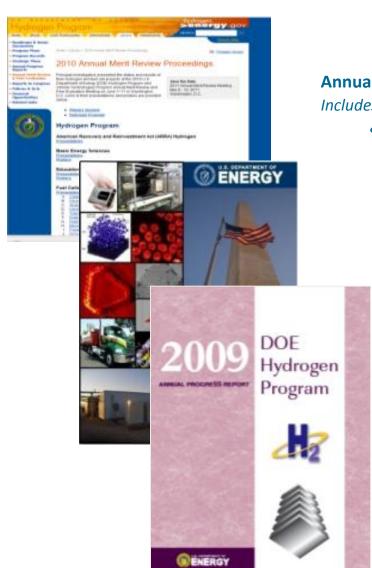


Close to 30 hydrogen and fuel cell technologies developed by the Program entered the market.



Source: Pacific Northwest National Laboratory <a href="http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/pathways\_success\_hfcit.pdf">http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/pathways\_success\_hfcit.pdf</a>

# 198 PATENTS resulting from EERE-funded R&D:


- 99 fuel cell
- 74 H<sub>2</sub> production
   and delivery
- 25 H<sub>2</sub> storage

60% are actively used in:

- 1) Commercial products
- 2) Emerging technologies
- 3) Research

Completed Fuel Cell Market Report provides an overview of market trends and profiles for select fuel cell companies

## **Key Program Documents**



#### **Annual Merit Review & Peer Evaluation Proceedings**

Includes downloadable versions of all presentations at the Annual Merit Review

• Latest edition released June 2010

www.hydrogen.energy.gov/annual\_review10\_proceedings.html

#### **Annual Merit Review & Peer Evaluation Report**

Summarizes the comments of the Peer Review Panel at the Annual Merit Review and Peer Evaluation Meeting

Released January 2011

http://www.hydrogen.energy.gov/annual\_review10\_report.html

#### **Annual Progress Report**

Summarizes activities and accomplishments within the Program over the preceding year, with reports on individual projects

• To be released 2011

www.hydrogen.energy.gov/annual\_progress.html

Next Annual Review: May 9 – 13, 2011 Washington, D.C.

http://annualmeritreview.energy.gov/

## **Collaborations**



### **Federal Agencies**

- DOC
   EPA
   NASA
- DOD
   GSA
   NSF
- DOE
   DOI
   USDA
- DOT
   DHS
   USPS
- Interagency coordination through stafflevel Interagency Working Group (meets monthly)
- Assistant Secretary-level Interagency Task Force mandated by EPACT 2005.

### **Universities**

~ 50 projects with 40 universities

### International

- IEA Implementing agreements 25 countries
- International Partnership for Hydrogen & Fuel Cells in the Economy –

17 countries & EC, 30 projects

# DOE Fuel Cell Technologies Program\*

- Applied RD&D
- Efforts to Overcome Non-Technical Barriers
- Internal Collaboration with Fossil Energy, Nuclear Energy and Basic Energy Sciences



## Industry Partnerships & Stakeholder Assn's.

- FreedomCAR and Fuel Partnership
- Fuel Cell and Hydrogen Energy Association (FCHEA)
- Hydrogen Utility Group
- ~ 65 projects with 50 companies

# State & Regional Partnerships

- · California Fuel Cell Partnership
- California Stationary Fuel Cell Collaborative
- SC H<sub>2</sub> & Fuel Cell Alliance
- Upper Midwest Hydrogen Initiative
- Ohio Fuel Coalition
- Connecticut Center for Advanced Technology

### **National Laboratories**

National Renewable Energy Laboratory P&D, S, FC, A, SC&S, TV, MN Argonne A, FC, P&D, SC&S

Los Alamos S, FC, SC&S

Sandia P&D, S, SC&S

Pacific Northwest P&D, S, FC, SC&S, A

Oak Ridge P&D, S, FC, A, SC&S

Lawrence Berkeley FC, A

Lawrence Livermore P&D, S, SC&S Savannah River S, P&D Brookhaven S, FC Idaho National Lab P&D

Other Federal Labs: Jet Propulsion Lab, National Institute of Standards & Technology, National Energy Technology Lab (NETL)

**P&D** = Production & Delivery; **S** = Storage; **FC** = Fuel Cells; **A** = Analysis; **SC&S** = Safety, Codes & Standards; **TV** = Technology Validation, **MN** = Manufacturing

# Thank you

For more information, please contact Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov

### **Additional Information**



### **Fuel Cell FOA**

- Up to \$65 million over three years to fund continued R&D on fuel cell components. Topics include:
  - 1. Balance-of-Plant components
  - Fuel Processors
  - 3. High Temperature Stack Component Research
  - 4. PEMFC MEA Integration
  - 5. Catalysts/Electrodes
  - 6. Membranes
  - 7. Innovative Concepts

Letter of Intent Due: January 28, 2011 Applications Due: March 3, 2011

**Source: US DOE 12/2010** 



### **Cost Analysis FOA**

- Up to \$9 million to conduct independent cost analyses.
   Topics include:
  - 1. Transportation PEM Fuel Cell System Cost Assessment
  - Stationary and Emerging Market Fuel Cell System Cost Assessment
  - 3. Hydrogen Storage System Assessment

**Applications Due: February 18, 2011** 

**Source: US DOE 12/2010**