BREAKOUT GROUP 2: MEAS, COMPONENTS AND INTEGRATION PARTICIPANTS

NAME	ORGANIZATION		
Jeff Allen	Michigan Tech		
Guido Bender	National Renewable Energy Laboratory		
Don Connors	Ballard Material Products		
James Cross	NUVERA		
Rick Daniels	Advent Technologies North America		
Mark Debe	3M		
Emory DeCastro	BASF Fuel Cell		
Mohammad Enayotullah	Trenergi Corporation		
Jim Fenton	University of Central Florida/FSEC		
Ashok Gidwani	CFD Research Corporation		
Craig Gittleman	General Motors		
Matthew Goshe	Battelle		
Steve Hamrock	3M		
Mike Hicks	IdaTech		
Xinyu Huang	University of South Carolina		
Will Johnson	W. L. Gore & Associates		
Christina Johnston	Los Alamos National Laboratory		
Yuseung Kim	Los Alamos National Laboratory		
Shanna Knights	Ballard Power Systems		
Caglan Kumbur	Drexel University		
Shawn Lister	Carnegie Mellon		
Tom Madden	UTC Power		
Cortney Mittelsteadt	Giner		
Jason Morgan	Ballard Material Products		
Joe Newkirk	Missouri University of Science and Tech.		
Madeleine Odgaard	IRD Fuel Cells		
Dennis Papadias	Argonne National Laboratory		
Kelly Perry	Oak Ridge National Laboratory		
Bill Richards	U.S. Genera Fuel Cell Corporation		
Pete Rieko	Pacific Northwest National Laboratory		
Chris Roger	Arkema Inc.		
Bob Sievers	Teledyne		
Dick Snaider	U.S. General Fuel Cell Corp		
Jim Waldecker	Ford		
Adam Weber	Lawrence Berkeley National Laboratory		
David Wood	Oak Ridge National Laboratory		
Jason Marcinkoski (Facilitator)	U.S. Department of Energy		
John Kopasz (Scribe)	Argonne National Laboratory		

BREAKOUT GROUP 2: MEAS, COMPONENTS AND INTEGRATION KEY TECHNICAL BARRIERS

FUNDAMENTAL	Соѕт	PERFORMANCE	DURABILITY
 Fundamental understanding of proton transport in electrodes Theoretical limitations of PEM conductivity vs. RH Fundamental understanding of GDL structure Understanding of Pt-O coverage versus V Water phase change - evaporation and condensation in non-wetting porous materials Fundamental understanding of transport mechanisms in catalyst layers (unresolved loss mechanisms) Idealized performance with H₂ & O₂ (non-reformed) 	 Low volume targets 100s/yr - for catalyst loading, seal, membrane, plate, GDL Integration - MEAs currently assembled from discrete parts – need new concept on how to manufacture MEAs Reduction of component mass to save costs Low-cost electrode processing Getting to high volume (to reduce cost) Reducing costs of GDMs to necessary levels with current technology One key approach to reducing cell resistance is reduction of membrane thickness – can crossover be controlled at e.g. 5-10 µm? Seal – MEA concepts that allow integrating seals in a one-step process MEA subcomponents designed for manufacture 	 High current density H₂/air performance of low loaded electrodes Water management for thin electrodes Reduce gas crossover Insufficient CO tolerance and tolerance to other impurities GDL compatibility with MEA requirements Understanding catalyst layer structure and structure-function relationships Durability of high temperature MEA, performance in HT MEA Low temperature operating conditions (LTOC), meeting requirements for military operations under varying conditions Will "system solutions" for protecting catalysts really work under real world environments? 	 Catalyst durability with start/stop cycle Impact of real life operations Durability of HTMEAs (need for accelerated tests, protocols) Performance and durability under a wide range of temperatures and % RHs both dry and wet Control of electrode structure for durability and water management Membrane degradation localization mechanisms – effects of electrode, GDL, operation conditions MEA component interactions on FC durability Durability - polymer integrity in electrode structures focus (most work so far is focused on catalyst) Understanding of H₂ crossover effects on Pt dissolution Effect of electrode roughness on PEM durability Durable sealing for operation at 120°C - 200°C Stack compressive stress state affects performance – what is influence on stack durability?

BREAKOUT GROUP 2: MEAS, COMPONENTS AND INTEGRATION CRITICAL R&D NEEDS

MEMBRANE	IONOMERS	MEASUREMENTS/ CHARACTERIZATION	SEALS	MEA
 Development of low-cost membranes that meet 2015 performance and durability targets operating at 95°C. Durability and performance to be characterized at ex-situ, single cell and stack level High Temperature, low Relative Humidity membranes Develop, test, integrate robust low cost membrane technology to handle impure reformate in manufacturable durable low cost systems 	Develop ionomers for electrodes	 Experimental methods for in-situ measurement of properties related to transport and reaction in catalyst layers (potentials, concentration) In-situ submicron CL diagnostics to determine proton and water production and movement Development of novel imaging techniques to quantify interface structure and location/amount of water accumulation In situ techniques to observe at microns scale In-situ measurement of electrode water content in- situ to assist proton resistance studies 	 Durable low cost seals - materials, integration with MEA, low-cost processes Develop or identify sealing materials or concepts for MEAs operating at 120° - 150°C 	 Develop MEAs that are stable under dynamic operating conditions (membrane, electrode, GDL, and interface stability) High temperature PEM MEA (150-200°C) optimization capability – accelerated stress test development, failure mode prediction as a function of system operation, degradation as a function of MEA parameters Mechanistic understanding of voltage decay in H₂/Air systems at high (>1.5 A/cm²) current density Chemical and structural analysis across interfaces (GDL/MPL electrode (ionomer)/membrane) to elucidate performance relationship and degradation mechanisms Performance and durability of high temperature (150-200°C) MEA: demonstration in stacks/ systems

BREAKOUT GROUP 2: MEAS, COMPONENTS AND INTEGRATION CRITICAL R&D NEEDS (CONT'D)

ELECTRODES	INTERFACE	CORRELATING REAL WORLD TO LAB PERFORMANCE AND DURABILITY	MECHANICAL TESTING/ ANALYSIS
 Electrodes that are operable over a wide temp/RH range, are manufacturable, have optimized ionomer/support structures, and an understanding of the interface as it relates to transport and durability Structural and transport relationships in electrodes at the nanoscale Improved low temperature performance from tailoring of electrode/MPL/GDL surface energies and structures (for loadings meeting DOE targets) Quantification of Pt dissolution versus ionomer structure and H₂ crossover (with relevant electrodes) Fundamental study of electrodes and ionomers in electrodes 	 Design and development of tailored interfaces for high performance and durable operations Development of novel diagnostic tools, performance testing protocols and models to evaluate and quantify the interface Develop understanding of relation between interfaces and durability Techniques for measurements of protonic/electrical/thermal interfacial resistances that are validated versus in-situ performance (including effects of compression) Answer the question "what are the key characteristics of a good interface?" Investigate membrane - electrode, electrode - GDL, GDL - plate, or ionomer - catalyst. Might require the development of new characterization methods, expertise in microscopy, and surface science 	 Develop accelerated durability tests that will correlate to real world decay mechanisms for all components. (How do we know our current tests are adequate?) Determine degradation as a function of - current, temperature, RH, dynamic operation, start/stop and contaminant exposure Standardized accelerated testing 	 Stress/FEA model of integrated electrochemical package, including an experimental campaign and protocols regarding mechanical properties of MEA, CL, GDL and flow field/plates, as a function of (dimensions, chemical/mechanical composition, RH/λ, temp) Develop methods to measure MEA mechanical and physical properties in a stack at BOL and EOL. Relate changes to stack performance and durability Mechanistic understanding of MEA durability as it applies to the optimization of performance under all operating conditions Membrane stress-strain model within MEA during transient operation, with linkages to membrane properties

BREAKOUT GROUP 2: MEAS, COMPONENTS AND INTEGRATION CRITICAL R&D NEEDS (CONT'D)

GDL	Analysis, Cost, Targets, Risk	TRANSPORT	STACK/MEA INTEGRATION	MISCELLANEOUS
 Gas diffusion media integration - develop and standardization of MPL and catalyst layer interface characterization methods, link interface characteristics to MEA performance and component durability Development of low-cost GDLs with tailored properties to enable robustness to dry and wet conditions (relevant electrode/PEM context) 	 Identify and develop material properties that impact manufacturing cost (membrane, GDL, sealing) for MEA Develop catalyst components (catalysts, supports, membrane integration) that can exceed current and projected performance durability and cost targets with realistic safety margins for automotive FC commercialization Carbon inventory approach/model development to facilitate long term material selection for reduction of GHG production 	 Sensitivity of transport (proton, electron, thermal, species and water) to gradients in compression, temperature, and species with integrated components Improved method for measuring water transport as a function of RH, T - diffusion and electro-osmotic drag coefficient (EODC) 	 Integration of advanced materials (low loaded catalysts), robust membranes, etc. to enable achievement of MEA and stack cost performance and durability targets - project criteria: system level testing, scalable (manufacturable) integration methods Determine GDL requirements to identify and address interfacial issues with new membrane technologies and produce rolled products for integration into MEAs for 2015 targets Develop standard for stack MEA - border, dimensions, seal For portable power application - thinner components affect seals, clamping pressure, membrane interaction, etc. Studies to integrate thinner components and assemble them, and for swelling and clamping of interactions Integrated demos that meet/excess 2010/15 targets (>0.6V - 2A/cm²) - freeze start 30 s at -30°C, DFM design - path to cost (study), 50 kW stack demo, 2000+ hrs cycle 	 Large scale deployment ~ 5,000 systems Development of non- SS BPP which are lower cost, higher performance, longer life