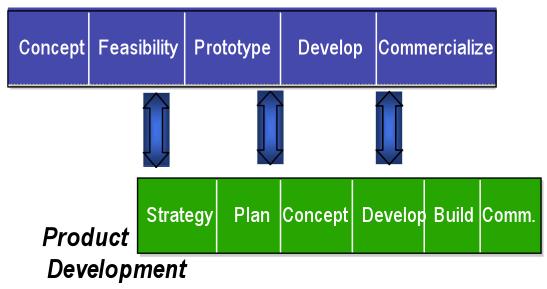
Development of a Renewable Hydrogen Energy Station

Edward C. Heydorn – Air Products and Chemicals, Inc. Pinakin Patel – FuelCell Energy, Inc. Fred Jahnke – FuelCell Energy, Inc.

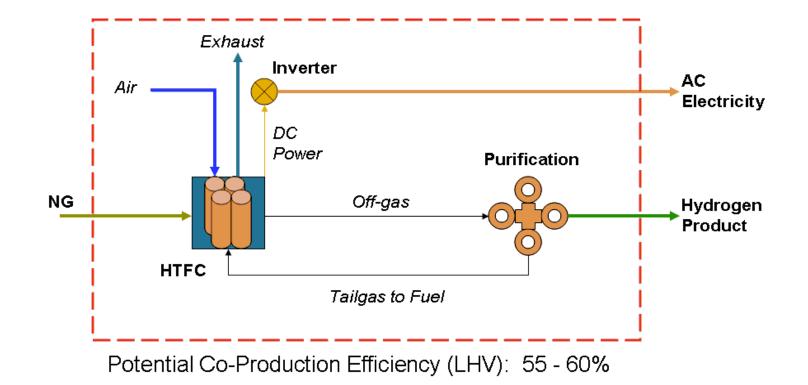
"Delivering Renewable Hydrogen – A Focus on Near-Term Applications" Palm Springs, CA 16 November 2009

Presentation Outline

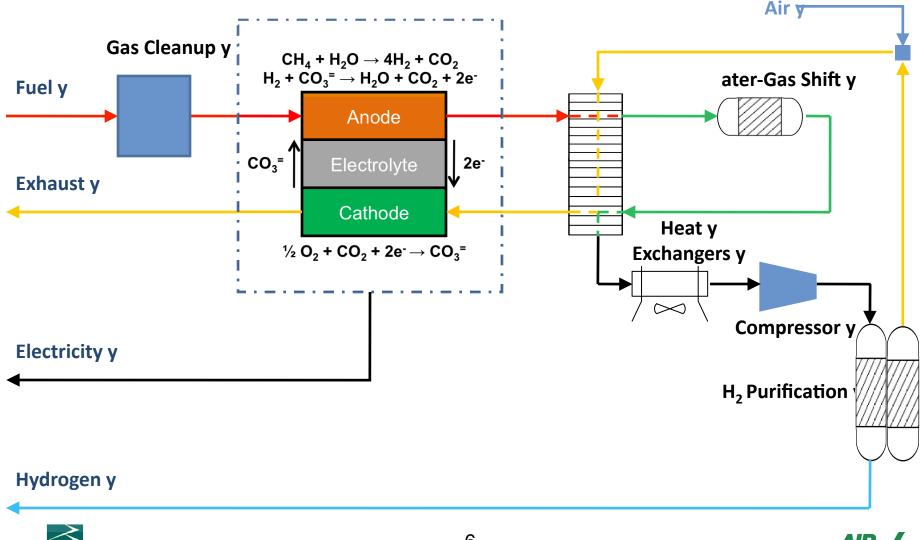
- Hydrogen Energy Station Technology Overview
- Process Description
- Performance and Economic Parameters
- Proposed Demonstration on Renewable Feedstock
- Status of Shop Validation Test
- Conclusion



 Determine the economic and technical viability of a hydrogen energy station designed to co-produce power and hydrogen


Utilize technology development roadmap to provide deliverables and go/no-go decision points

Hydrogen Energy Station Concept



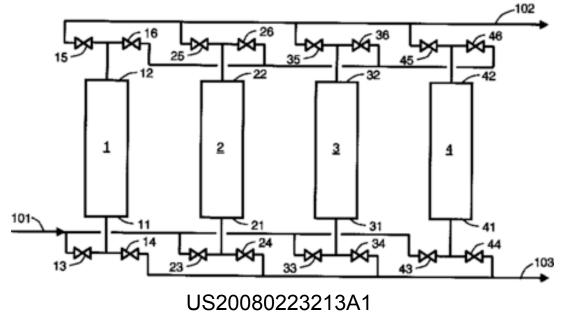
Approach

- Air Products Cooperative Agreement with U.S. DOE • (30 September 2001) defined 4 phases:
 - Phase 1 Feasibility: Evaluate PEM and HTFC
 - Completed FY04
 - Phase 2 Preliminary System Design —
 - Completed FY06
 - Phase 3 Detailed Design and Construction
 - Completed March 2009
 - Phase 4 Operation, Testing, Data Collection Ongoing

Hydrogen Energy Station

PRODUĈ

Hydrogen Energy Station Projected Performance by Phase


	Units	Phase 1	Phase 2	Phase 3
Overall Effi ciency	LHV	60%	66%	66%
(Net Power + H2 Product) / (Fuel)				
Power Efficiency	LHV	49%	49%	50%
<u>Net Power / (Total Fuel – H2 Product)</u>				
Hydrogen Effi ciency	LHV	68%	68%	77%
(H2 Product – Purifi cation Power) / H2 Product				
Hydrogen Product	Kg/day	~ 88	~ 175	~ 175
Net Power w/o & w/ Hydrogen	kW	~ 247 /	~ 300 /	~ 300 /
		207	243	250
Natural Gas Flow	Nm3/hr	~ 55	~ 74	~ 74

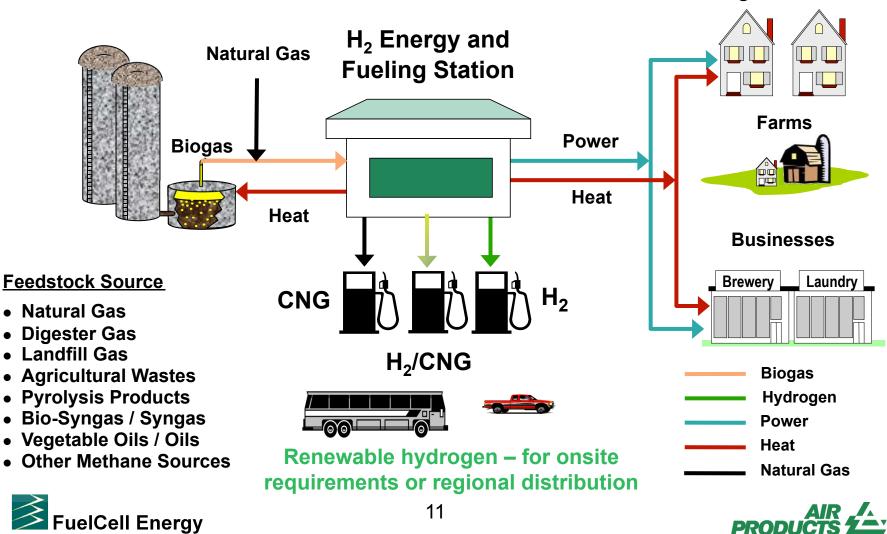
Process Improvements during Design Phase

- Improvement in hydrogen purification cycle:
 - Phase 1: 300 psig inlet, 75% H2 recovery
 - Phase 3: 150 psig inlet, > 85% H2 recovery
- Patent application filed

Emissions Performance of DFC® Molten Carbonate Fuel Cell

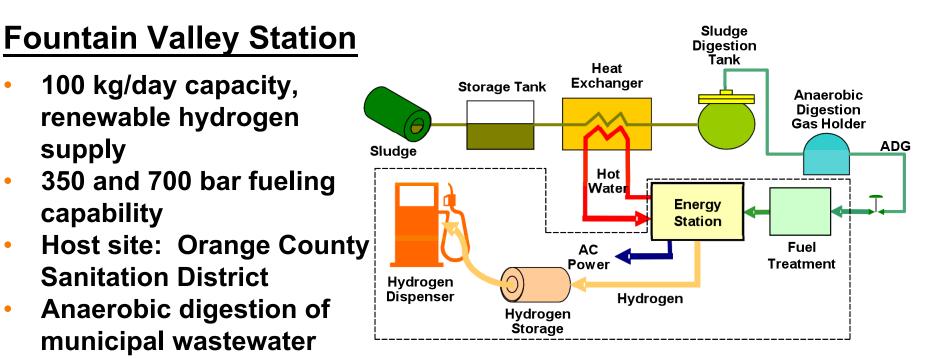

	NO _X (lb/MWh)	SO _X (lb/MWh)	CO ₂ (lb/MWh)
Average US Fossil Fuel Plant	4.200	9.21	2,017
Microturbine (60 kW)	0.490	0	1,862
Small Gas Turbine (250 kW)	0.467	0	1,244
DFC Fuel Cell 47% efficiency	0.016	0	967
DFC Fuel Cell – CHP 80% efficiency	0.016	0	545

NO_x and SO_x are negligible compared to conventional technologies


Hydrogen Energy Station Economics

Hydrogen Energy Station Vision

Neighborhoods


Demonstration of Hydrogen Energy Station Vision

- DOE Program Natural Gas Feed
- Potential Host Site Identified OCSD
 - Orange County Sanitation District, Fountain Valley, CA
 - Municipal Wastewater Treatment
 - Existing CNG Refueling Station
 - Ability to Achieve Production of both Renewable Hydrogen and Electricity
 - Renewable Hydrogen Available for Use

Proposal to California Air Resources Board (June 2008)

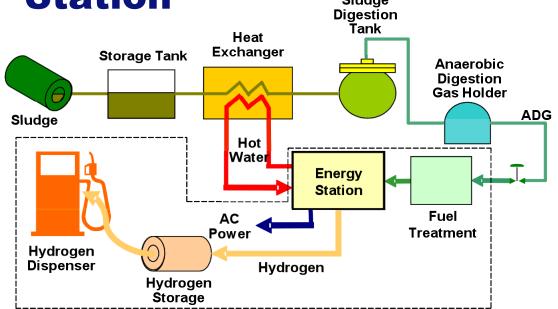
Hydrogen production using Hydrogen Energy Station

Hydrogen Energy Station Shop Validation Test – DFC[®] System

All DFC[®]-H₂-PSA Equipment Installed and Commissioned

Hydrogen Ready Fuel Cell Module

- Verified operability of hydrogenready DFC[®]300
- Developed procedures for startup, shut-down and off-normal events
- Achieved stable operation at various loads up to 200 kW-net AC
- Fuel cell with water-gas shift in operation > 6,000 hours

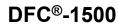

Mechanical Balance of Plant (MBOP)

Fountain Valley Renewable Hydrogen Station

Tri-Generation Results

- Produced 5 to 10 lb/hr hydrogen with > 200 kW electricity
- Estimated hydrogen recovery at 80 to 85%
- Product purity <0.2 ppm CO; <2 ppm CO2
- Operation with simulated digester gas feed
- PSA operating map developed (cycle time vs. feed rate)
- Implemented automated integration/deintegration

Anode Exhaust Processing and H₂ PSA



Future Work

- Operation of Hydrogen Energy Station – Lessons learned from shop test, field trial
- Validation of process economics
- Following DOE Program:
 - Product development activities – Process improvements for second generation system
 - Scale-up based on existing fuel cell products –
 - DFC[®]-1500 400 to 500 kg/day hydrogen plus 1.0 to 1.2 MW
 - DFC[®]-3000 800 to 1,000 kg/day hydrogen plus 2.0 to 2.4 MW

Summary

- Determine the economic and technical viability of a hydrogen energy station designed to co-produce power and hydrogen
 - Concept defined FuelCell Energy's molten carbonate fuel cell plus Air Products' hydrogen purification system
 - Design and fabrication of demonstration unit completed
 - Shop test at FuelCell Energy's facilities in Danbury, CT
 - Plans for demonstration operation on renewable feedstock at Orange Co. Sanitation District, Fountain Valley, CA
 - Hydrogen refueling station under DOE's California Hydrogen Infrastructure Project
 - Other funding: California Air Resources Board, South Coast Air Quality Management District
 - Validate process economics based on system performance

Acknowledgement & Disclaimers

This material is based upon work supported by the Department of Energy (Energy Efficiency and Renewable Energy) under Award Number DE-FC36-01GO11087. This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

tell me more www.airproducts.com

