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Outline

 Effect of Constraints on Water Uptake

 Modeling and Role of Temperature

 Validation: Experimental Data
 Neutron Imaging (in-situ and ex-situ)
 Mechanical Testing
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Motivation and Objective
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OBJECTIVE

 Water uptake of Compressed Membrane

 Modeling and Experimental Validation

 Fundamentals of sorption of constrained membranes

 Interested in pressure higher than assembly pressure

Free Membrane
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L = Sample length 
b = Domain spacing (e.g. Bragg distance)

Swelling Pressure in Ionomer Membranes
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 Multi-Scale Model:
 For PFSA Membranes
 Morphology dependent
 Bridges macroscopic and 

microscopic swelling behavior
 Compression is introduced:
 Pressure deforms the polymer 

backbone, and therefore limits 
sorption in hydrophilic domains

 Extension of previous work

Swelling Equilibrium

Mechanical Model

Polymer Matrix 
Deformation + Compression 

Effect

Chemical Potentials

Flory-Huggins Theory

Equilibrium Swelling
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Model Predictions for Sorption Isotherms

 Good agreement between data and model
 Model: Hydrophilic domains are cylindrical at higher humidities
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 Constraints due to Hydration loads
 Displacement-based constraints

 Compression due to Mechanical Loads
 Force-based constraints

Origins of Constraints in Fuel Cells
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 Constraints due to Hydration loads
 Displacement-based constraints

 Compression due to Mechanical Loads
 Force-based constraints

Pressure : swelling induced

Pressure : externally applied

Origins of Constraints in Fuel Cells

8

eP

Dry – Unconstrained 
Membrane

Dry – Constrained Wet – Constrained

Wet – UnconstrainedDry – Unconstrained 
Membrane

Wet – Compressed

eP

cP
High Temperature

Membrane relaxes, 
Deforms less

Creates less pressure
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Easier to Deform

Creates more deformation

Role of Temperature
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Liquid-Equilibrated
Vapor-Equilibrated

Role of Temperature on Water Uptake
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Constrained Membrane Compressed Membrane

High Temperature

Membrane relaxes

Swelling Pressure drops

High Temperature

Membrane relaxes

Internal Pressure increases
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Validation

 Experimental Data on Water uptake of Compressed 
Membrane
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1. Membrane in fuel cell Neutron Imaging LANL/NIST

2. Membrane (ex-situ) Mechanical Testing GM

3. Membrane (ex-situ) Neutron Imaging LBL/MNRC
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In-situ Water uptake of Membrane

 Sorption Isotherms at 80oC
 Restricted Membrane : 1 MPa
 Compressed Membrane : 3 MPa
 Data from Neutron Imaging (LANL)

 Normalized water content

 Determined as:
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Membrane in Fuel Cell: Compression in this range does not impact uptake
unless under liquid equilibration

Ref: Spernjak et al. Measurement of Water Content in Polymer Electrolyte Membranes using High Resolution Neutron Imaging
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Swelling Pressure: Data vs. Model

 GM’s experimental setup
 Measures the internal pressure
 Budinski and Cook

 Swelling vs. Applied Pressure
 Good agreement between 

measured data and model
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Upper Bound

Lower Bound
Severe constraint
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Neutron Imaging of Compressed Membrane

 Neutron Imaging
 MNRC at UC Davis
 Resolution: 0.1 mm

 Samples: 30 mil thick membrane
 Custom-made by Ion Power 
 1100 and 1000 EW

 Procedure
 Dry and Wet membranes
 Wet – Compressed (6-10 MPa)
 Between aluminum plates

 Wet – Pre-constrained
 Membrane is constrained between 

polycarbonate plates and then 
equilibrated in water for 1 day

 Edge-on images
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Water Content of Compressed Membrane
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Water 
Droplets

Water 
Droplets

Dry Wet Wet - Compressed

1000 EW

1100 EW

Water uptake is limited by Compression

 15 – 25% decrease in water content

 > 40% of this water loss is in droplet form

Applied Pressure
6-10 MPa

Pre-Constrained 
& soaked in water
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What happens to Transport Properties?

 Compression is effective at high 
humidities, especially in water
 Theory and Validations

 Current and Future Work
 Sorption, conductivity and 

morphology
 Fundamentals of material behavior –

membrane level

 Transport properties and Fuel 
cell performance
 Fuel cell model with compression 

effect – cell level
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Weber and Newman (2004), ECS,151Compression 
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