Project: Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports

Radoslav Adzic

Brookhaven National Laboratory

 Co-PIs: Jia Wang, Miomir Vukmirovic, Kotaro Sasaki, Brookhaven National Laboratory
 Yang Shao-Horn Massachusetts Institute of Technology
 Rachel O'Malley, David Thompsett, Sarah Ball, Graham Hard Johnson Matthey Fuel Cells

DOE Projects Kickoff Meeting

September 30 , 2009

a passion for discovery

Project Overview

- 1. Objectives: Developing high performance fuel cell electrocatalysts for the oxygen reduction reaction (ORR) comprising contiguous *Pt monolayer* on stable, inexpensive metal or alloy nanorods, nanowires, nanobars and carbon nanotubes (CNT)
- 2. Barriers: Durability (cathode electrocatalyst) Costs (cathode electrocatalyst) Electrode Performance (cathode electrocatalyst, ORR kinetics)

3. Technical targets:

- Platinum group metal loading: 0.2 mg_{PGM} /cm² (cathode) (0.3 mg_{PGM} /cm² both electrodes)
- Activity (PGM catalysts): 0.44 A/mg_{Pt} at 0.90 V_{iR-free} 720 µA/cm² at 0.90 V_{iR-free}
- Durability with cycling: 5,000 hours at T ≤ 80°C, 2,000 hours at T > 80°C
- ESA loss: < 40%; Cost: < 5 \$/kW</p>

4. Timeline:	Start date: July 2009			End date: September 2013		
5. Budget:	FY09	FY10	FY11	FY12	FY13	Total
in \$K	615	267	882	882	882	3,529

APPROACH

1. Prior work

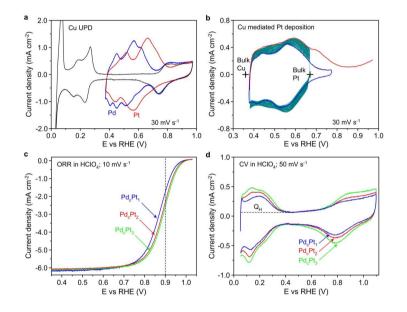
Pt monolayers on metal or alloy nanoparticles (NPs) are verified as the very high-activity, high durability and the lowest Pt content ORR electrocatalysts.

2. Our experimental and DFT data

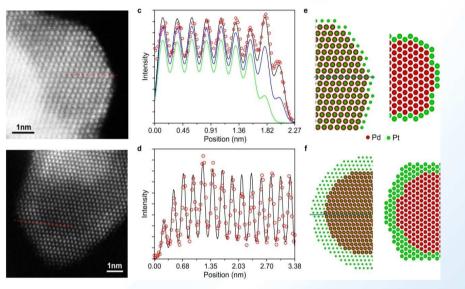
Pt atoms with high coordination are less susceptible to PtOH formation. They are, thus, more active for the ORR than low-coordination ones.

3. Further improvement

Improvements are likely with Pt as a contiguous monolayer on smooth surfaces of nanorods, nanowires, nanobars or NPs of selected metals, alloys, or CNTs.

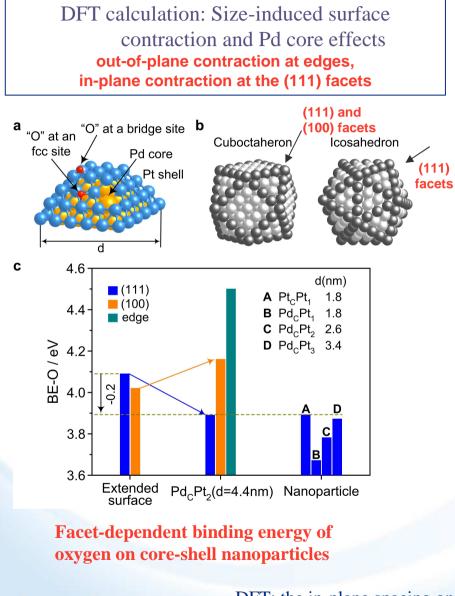

4. Methods

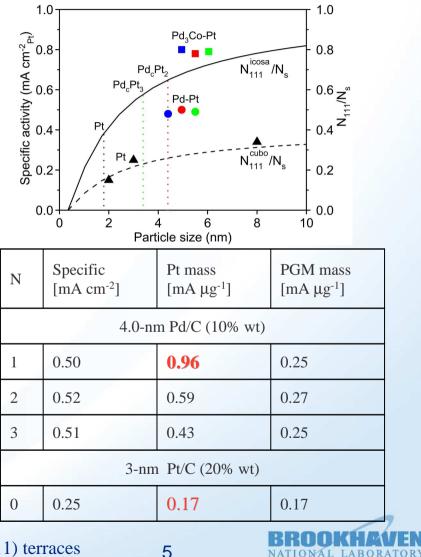
We have developed: i) the method for depositing uniform, close-packed Pt MLs. ii) the method for removing low-coordination atoms without changing the size of nanoparticles used as support for Pt.


iii) cation adsorption/reduction/adatom replacement method Techniques for extensive catalyst characterization exist at BNL, JMFC, MIT. Several synthetic approaches are explored, such as BNL's sonolysis of refractory metal salts.

APPROACH - Method for depositing smooth, uniform Pt MLs

Cu UPD-mediated deposition of Pt Monolayers


HAADF-STEM images of the Pd(core)-Pt(shell) NPs having 1 ML and 4MLs of Pt on Pd/C


Controllable deposition of uniform 1, 2, 3 Pt MLs using Cu UPD-mediated method Intensity profiles from the scan lines in (a) and (b) (open circles), and the best fits (black lines), based on the structure models shown in (e) and (f)

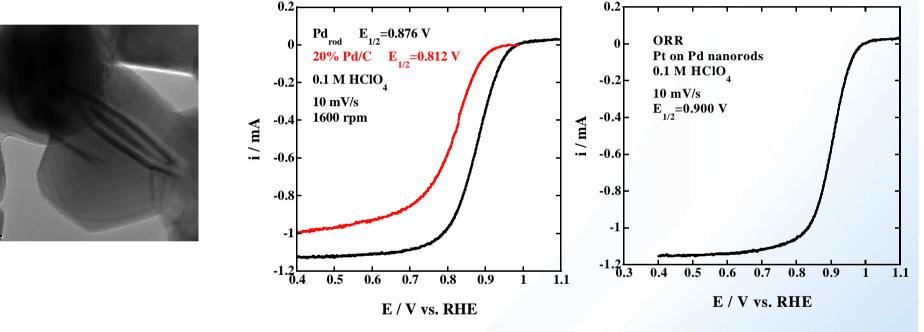
APPROACH - The (111)-oriented, slightly contracted Pt best for the ORR

Activity and surface fraction of atoms on the (111) facets as a function of particle size.

Brookhaven Science Associates

DFT: the in-plane spacing on the (111) terraces compared to the extended Pt(111) surface (-4.2%).

5

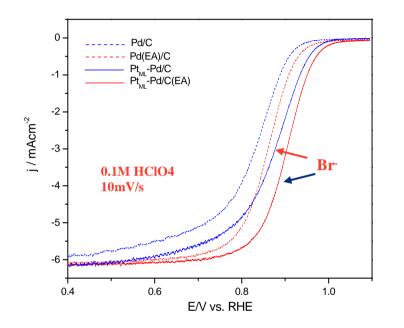

Preliminary results: Enhanced ORR Kinetics on Smooth Surfaces

Pt ML on Pd nanorods with smooth surfaces

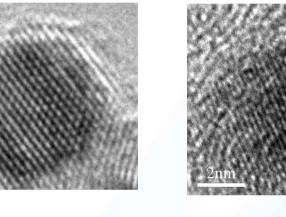
Pd/C

Pt mass activity = 1.03 A/mg

Pt_{ML}/Pd/C


Synthesis of Pd wires is underway; success with Pt – wires with diameters bellow 2 nm

Brookhaven Science Associates


6

Preliminary results: Enhanced ORR Kinetics on Smooth Surfaces

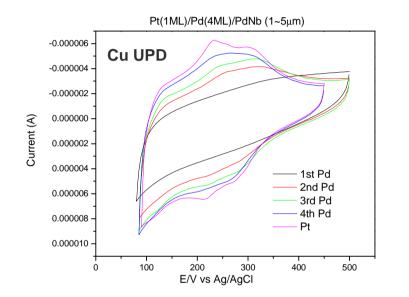
Improving catalytic activity of Pd and Pt_{ML}/Pd by removing low- coordination atoms

Adsorbing Br- on Pd nanoparticles and desorbing the adsorbate removes low-coordination atoms.

(a)

(b)

Polarization curves for the ORR on Br⁻ - treated and untreated Pd/C, and Pt_{ML}-Pd/C


Pd: $E_{1/2} = 831 mV$ $E'_{1/2} = 859 mV$ Pt/Pd: $E_{1/2} = 876 mV$; $E'_{1/2} = 903 mV$ Low-coordination Pt atoms are susceptible to formation of PtOH species (ORR inhibitor) and are points of attack in dissolution of electrocatalysts

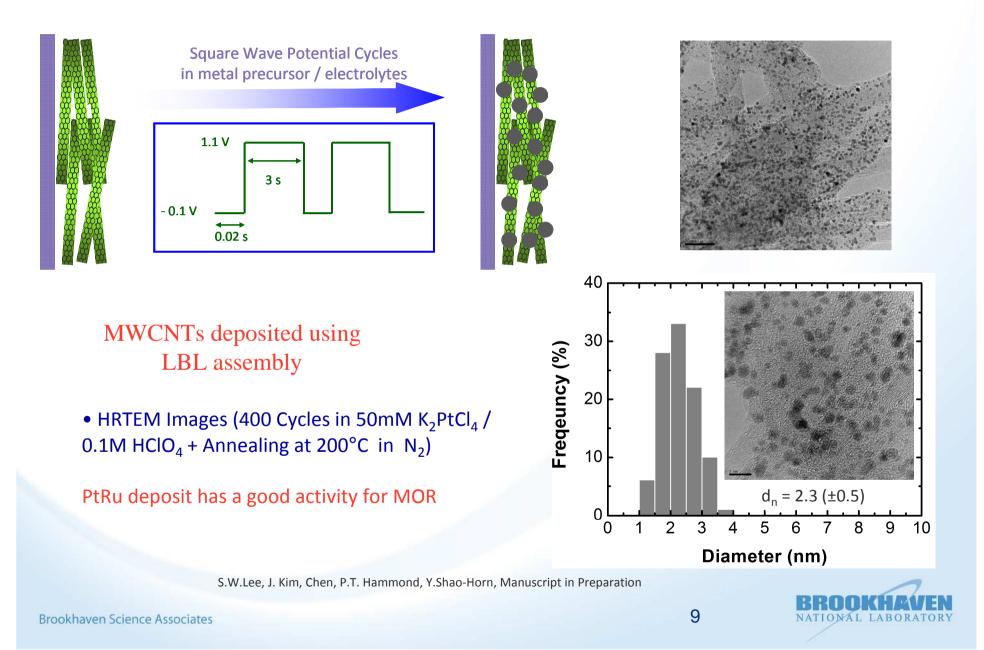
Preliminary results: ORR on a Pt ML on Pd deposits on Nb particles

Learning about Pd deposition on Nb

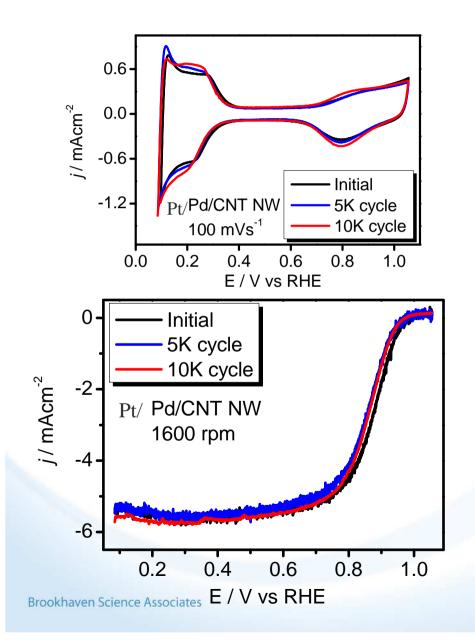
Deposition of Pd on Nb particles $(1-4 \mu m)$ has been accomplished

0.0 -Pt/Pd_{4MI}/PdNb -0.2 -0.4 Current / mA E_{1/2}=798mV -0.6 -0.8 1600rpm, 10mV/s 0.1M HCIO₄ -1.0 -0.0 1.2 0.2 0.4 0.6 0.8 1.0 E/V vs RHE

Synthesis of Nb nanoparticles is underway $I_s (0.9V)=0.23 \text{mA/cm}^2$ $I_m (0.9V)=0.5 \text{mA/}\mu\text{gPt}$


> I_s (0.85V)=0.88mA/cm² I_m (0.85V)=2.07mA/μgPt

> > 8



Brookhaven Science Associates

Preliminary results: In-situ NPs Synthesis Using Square-Wave Pulse Potential

Preliminary results: ORR on a Pt ML on Pd deposits on CNTs

Initial:

Pt loading: $2.3 \ \mu g/cm^2$ Pt mass activity: $1.13 \ mA/ \ \mu g_{Pt}$ at 900 mV Specific activity: $0.54 \ mA/cm^2_{ESA}$ E'_{1/2} = 874 mV vs RHE

After 10K cycles:

E.S.A, No observable loss

Pt mass activity: 0.72 mA/ μg_{Pt} at 900 mV Specific activity: 0.34 mA/cm²_{ESA} E'_{1/2} = 859 mV vs RHE

Almost all the loss occurred within the first 5K cycles

Project Timeline

START July 2009 Sept 201	10 Sept 20	11 Sept 20	END 012 Sept 2013
		1	1
TASK 1 Syntheses: Pt ML on Nanorods, Nanowires of selected metals, alloys, CNT; refractory metal NPs Tests: RDE, MEA activity, stability (preliminary) Scale-up: Synthesis 20g of selected catalyst (JMFC delivers) 50cm ² single-cell tests Go/No Go scale-up not successful – return to start BNL, MIT, JMFC	 TASK 1 Scale-up: Improved scale-up, single-cell tests 50cm², Catalyst, MEAs delivered to UTC for durability testing Go/No Go activity < 0.44 A/mg_{Pt}, - return to start BNL, JMFC, MIT, UTC TASK 2 Syntheses: Metalized refractory metal nanorods and CNT, tests, scale up, single-cell tests 	TASK 3MEAs: Catalyst selectionfrom 1 and 2; scale up to50-100g , catalyst layeroptimization, MEAfabrication, tests cell>50cm². H_2 /AIR testingJMFC delivers optimizedMEAs to UTCGo/No Goactivity < 0.44A/mg _{Pt} ordurability low -end projectJMFC, BNL,UTC, MIT	TASK 4 Stacks: MEAs for Stacks delivered to UTC Ex situ MEA testing Stack built Stack testing UTC, JMFC, BNL, MIT

BROOKHAVEN NATIONAL LABORATORY