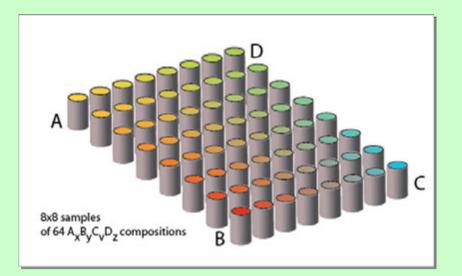
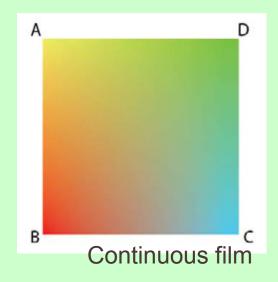
Combinatorial approaches for hydrogen storage materials

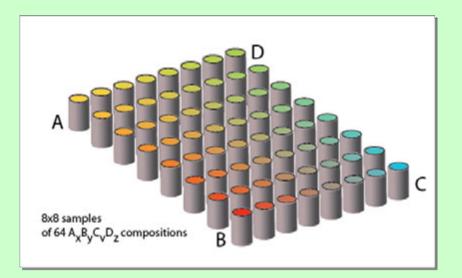
Leonid Bendersky

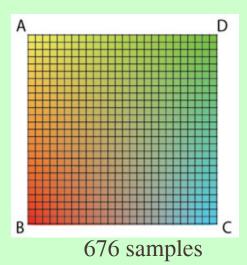
Materials Science and Engineering Laboratory NIST, Gaithersburg MD


Contributors: G. Downing, E. Mackey, R. Paul, R. Greenberg (NIST:CSTL); L. Cook, M. Green (NIST:MSEL) R. Cavicchi (NIST:CSTL); I. Takeuchi, H. Oguchi (UMd)

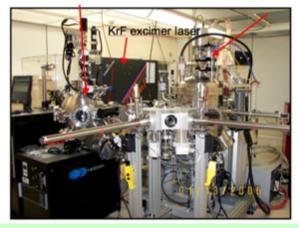

Two Main Challenges to Combinatorial Analysis of Hydrogen Storage Materials

- Design and fabrication of appropriate materials libraries
- Rapid, quantitative measurements of hydrogenation phenomenon

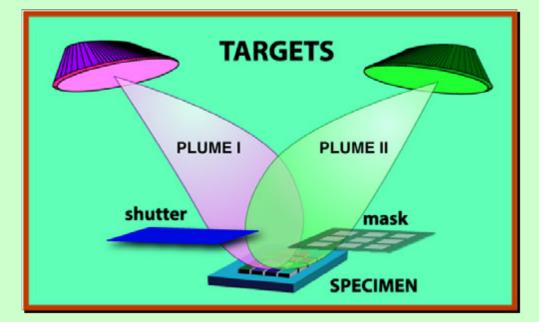

We are attacking both of these problems at NIST

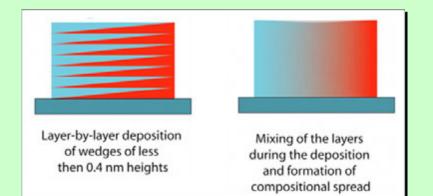

Combinatorial Library Fabrication

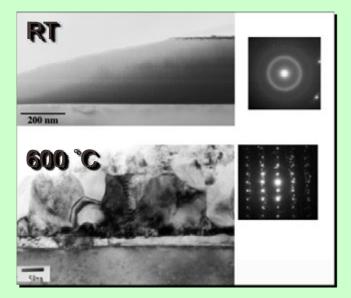
Combinatorial Library Fabrication



Density of samples are determined by the spatial resolution and sensitivity of a measuring probe


E-beam system with automated moving shutter/mask control

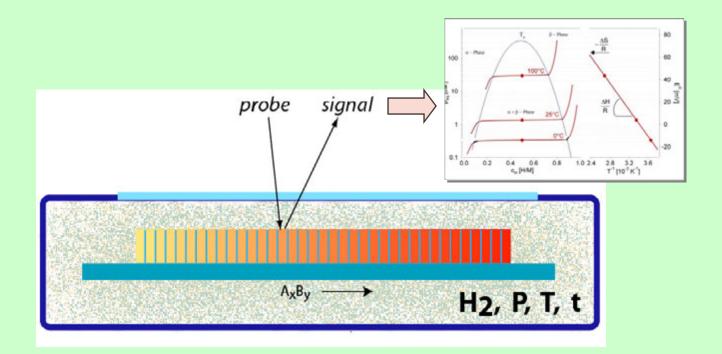

Natural-Spread Combinatorial PLD System Shutter-based Combinatorial sputtering System


Dual PLD/Sputtering

Combinatorial Library Fabrication

NIST Success in Combinatorial Methods

Studied systems	Properties	Synthesis	HTP Tools
* BaTiO ₃ - SrTiO ₃	High dielectric material	PLD, Precursors,	Scanning microwave
	for microwave	multilayers	microscope
* ZnO-MgO	band gap of ZnO	PLD	Optical transmission
	semiconductor	multilayers	
* LaMnO ₃ - CaMnO ₃	CMR material, magnetic	PLD	Magneto-optical
	diagrams	multilayers	imaging
* BaTiO ₃ -CoFeO ₄	Multiferroic material	PLD	Scanning SQUID
		multilayers	Scanning microwave
			microscope
Metals on GaN	Electric contacts	e-beam	Electrical measurements
* $Fe_{(1-x)}Ga_x$ (x=0-0.4)	Magnetostriction	Sputtering	Micromachined
		Co-deposition	cantilevers
Fe ₂ Ti-FeTi-Ti ₂ Fe	Hydrogenation	e-beam	IR imaging
		multilayers	
Mg-Mg ₂ Ni-MgNi	Hydrogenation	e-beam	IR imaging
		multilayers	
LaNi5, FeTi, Pd	Hydrogenation	PLD, Sputtering	Nanocalorimetry
TaN - AIN	Advanced gate stack for	Reactive Sputtering	Automated C-V analysis
	Si CMOS		
$(Ca_{1-x-y}Sr_xLa_y)_3Co_4O_9$	Thermoelectric	PLD	Automated Seebeck
	(Seebeck coefficient)		coefficient
			measurements


* - in collaboration with Prof. I. Takeuchi, UMD

High-throughput metrology for

combinatorial analysis of hydrogenation

Ultimate Goal

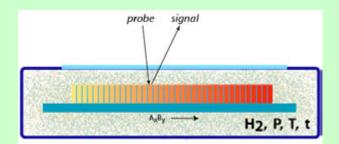
To measure the hydrogenation process in a library element (A_XB_Y) (amount of H in the material at given P, T and time)

High-throughput metrology for

combinatorial analysis of hydrogenation

Ultimate Goal

To measure the hydrogenation process in a library element (A_XB_Y) (amount of H in the material at given P, T and time)

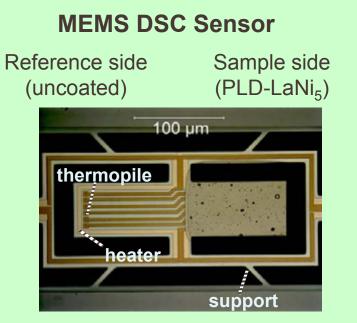

Indirect measurements of H concentration:

Changes in physical properties due to hydrogenation; in-situ; correlation between the amount of hydrogen and the physical property:

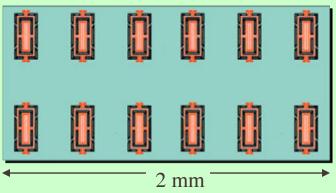
- Optical transmission (metal-to-insulator) *Prof. Griessen group*;
- Cantilever bending (stress changes) Ludwig;
- IR emissivity GM, GE, NIST;
- Micro-Raman NIST;
- MOKE (NIST-Boulder);

Limitations:

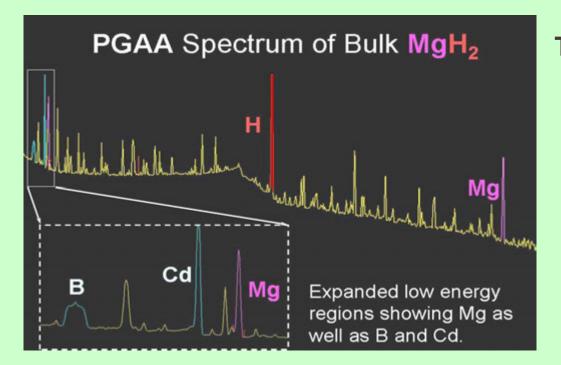
- Not universal (material-dependent)
- Difficult to estimate the amount of hydrogen



Thin-Film Nanocalorimetry of Hydrogen Absorption


- Calorimetric signatures:
 △H (absorption) -> exothermic
 △H (desorption) -> endothermic
- Sensors will measure:

 enthalpy,
 activation energy
 of hydrogenation in thin-films
- Sensor size is suitable for combinatorial arrays


L. Cook, M. Green (MSEL, NIST) R. Cavicchi (CSTL, NIST)

Propose Array of DSC Sensors

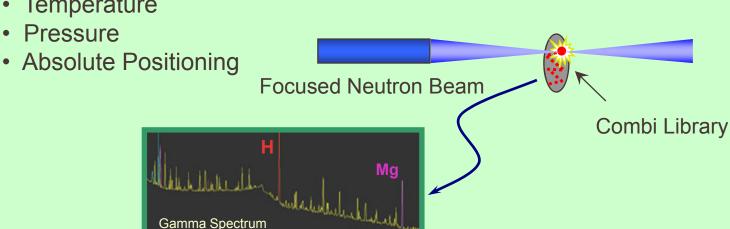
DIRECT Measure of Hydrogen Content Prompt Gamma Activation Analysis

Technique Features:

- Quantitative
- Multi-element Analysis (H)
- Non-destructive
- Easy Sample Preparation

PGAA: non-destructive, multi-elemental analysis technique

- Neutron Beam irradiation of sample $\rightarrow \gamma$ -ray emission
- γ-ray spectra give elemental composition and concentration (even hydrogen!)
- Quantitative when calibrated with elemental standards


Chemical Science and Technology Laboratory (NIST: CSTL)

Making the PGAA Combi

Three Analytical Challenges

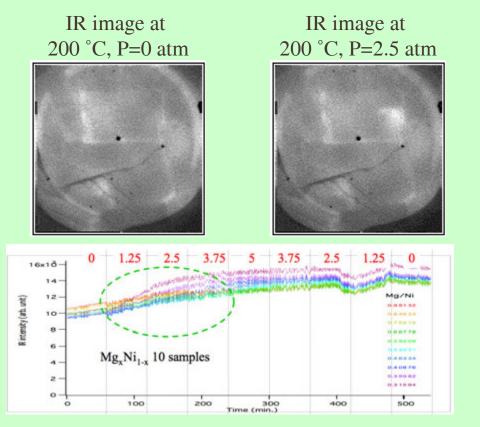
Analysis of thin film specimens

- Target: Library Arrays $0.3 \ \mu m$ to $4 \ \mu m$ thick films
- Elemental: phase diagrams
- Environmental Control
 - Temperature
 - Pressure

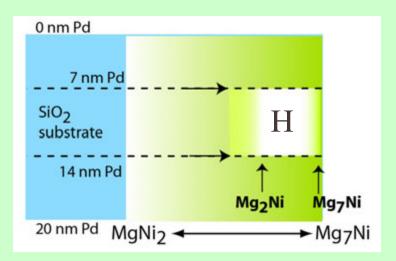
- Spatial Mapping
 - Neutron Optics
 - Gain in Quantitation
 - Gain in Resolution

Summary

NIST Library Fabrication

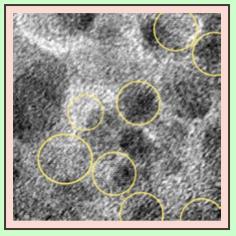

- Library deposition facilities suitable for metallic specimens in place
- New chambers will work with Li, Ca, $B \rightarrow$ borates, amides...

NIST Measurements


- In-situ Combi Prompt Gamma Activation Analysis (PGAA)
 - Quantitative H concentration measurements
 - Simple for interpretation, equivalent to the standard PCT measurements.
 - Leverages upgrade of NIST Center for Neutron Research
 - Lots of potential, challenges for combi
- Nanocalorimetry arrays
 - Rapid screening of hydrogen absorption
 - Parallel tracking of storage material kinetics

Infrared emission characterization of hydrogenation

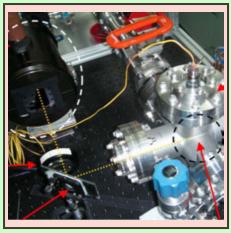
Example of hydrogenation of the Mg7Ni-MgNi2 compositional spread


Evolution of IR intensity with time for different compositions of the film (200 $^{\circ}$ C at different pressures of H₂).

Schematic drawing showing that the maximum increase in IR intensity occurred for the compositions ranging between Mg_2Ni and Mg_7Ni , and Pd coating thicker then 7 nm. According to TEM, thinner Pd coating doesn't cover Mg-Ni film and therefore oxidation prevents hydrogenation of the film.

NIST Hydrogen Storage Initiative - M³ of MSEL Tasks

Materials


Combinatorial thin films of light-weight alloys

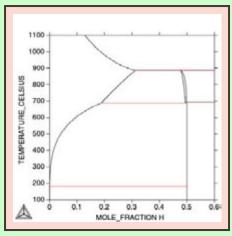
Metal-doped carbonbased thick porous films

Light-weight TCP intermetallic compound and quasicrystals

Mg bulk and rapidly solidified alloys

Measurements

High-throughput metrology for combinatorial search


- In-situ IR emissivity
- In-situ micro-Raman
- In-situ PGAA of films
- In-situ MOKE of films

TEM of hydrogenated materials

Nanocalorimetry

In-situ synchrotron studies, SANS, x-ray

Modeling

CALPHAD

Thermodynamic modeling

Thermodynamic database to support experiments

HIGH THROUGHPUT/COMBINATORIAL SCREENING OF HYDROGEN STORAGE MATERIALS

OBJECTIVES

- Assess the potential for High Throughput Screening/Combinatorial methods to benefit and accelerate Hydrogen Storage Materials R&D
- Identify the advantages and disadvantages of the application of High Throughput/Combinatorial techniques to Hydrogen Storage Materials R&D
- Match High Throughput Screening/Combinatorial techniques with specific types of Hydrogen Storage Materials
- Identify the technical challenges and limitations associated with applying these techniques to Hydrogen Storage Materials R&D
- Recommend appropriate NNext Steps, Óif any, to advance the application of these techniques to hydrogen storage materials

PRELIMINARY AGENDA

9:00am Welcome/Introductions/Objectives - Ned

9:10am Status of Hydrogen Storage Materials R&D - Sunita

- 9:30am Summaries of Present High Throughput Screening/Combinatorial Activities (20 minutes each)
 - Internatix
 - UOP
 - GE Research

1030am Break (15 minutes)

- NIST
- UCF/DoD
- Symyx Technologies
- Others from the Audience (30 minutes)

12:00pm Lunch

1:00pm Breakout Group Discussions Š Led by Carole, Grace, Ned (3groups-metal hydrides, adsorbents, chemical hydrogen storage)

- Benefits of Hi ThruPut Screening/Combinatorial Techniques
- Challenges/Disadvantages
- Matching of Techniques w/ specific storage materials

2:30pm Break

- 2:45pm Breakout Group Summaries Š Sunita or Ned
 - Action Items
 - **Open Discussion**
 - Next Steps
- 4:00pm Adjourn