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The Challenge 

Lower cost means less platinum group metals (PGM). 

Less PGM means  

– higher performance catalyst (in Ag-1 Pt) 

– reduced durability (especially SU/SD) 

– reduced tolerance to impurities. 

 
Optimization focussed upon:- 
– Fundamental materials properties 
– Component integration into MEA 

• Catalyst layer structure/ performance relationship 
– Stack/system trade-offs (for operational durability) 
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Performance 

There is a need to reduce Pt loadings to <300mgcm-2 in order to 
meet automotive cost targets without any loss in performance. 
 

A internal target was established to reach a 4x improvement in ORR 
activity for cathode catalysts 
 
There have been many studies of Pt-transition metal alloys that 
have enhanced activity but these have not been supplier-led. 
 
AFCC has compared the activity of the catalysts of several suppliers 
using ex-situ RDE screening in 0.1M HClO4 at 30°C. 
 
So far none have met the 4x target but we have been able to make 
progress internally with a ternary alloy.  Supplier scale-up requires 
more work. 
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Catalyst durability 

Start-up causes high potentials due to hydrogen entering 
an air-filled fuel flow-field.  

 

Potentials can reach 1.8V which can damage the cathode 
catalyst. 
 
AFCC has pursued two materials approaches to mitigate 
this damage (independent of system mitigation). 
 
1. Alternative catalyst supports resistant to oxidation. 

 
2. Adding a selectively conducting component to the anode 

electrode structure to limit the potential transients. 
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Non-carbon supports 

Oxide supports may be stable to oxidation but must also be:- 

– Electrically conductive 

– High surface area 

– Cost effective 

– Potentially interactive with the catalyst (SMSI) 

 

Common options are ITO, ATO but these have been found to 

have stability issues. 

 

AFCC has demonstrated baseline performance and enhanced 

SU/SD durability with an oxide supported Pt cathode catalyst. 
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Platinum on oxide support 
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Selective oxide on the anode 

Tin oxide (SnO2) may be switched from a conductive state 
in hydrogen, to a resistive state in air. 

The speed of switching may be enhanced by the addition of 
Pt onto the oxide surface. 

Six orders of 
magnitude! 
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SnO2 layer in the anode  

When an SnO2 layer in placed between the anode catalyst 
layer and the GDL it is conductive during normal operation. 

 

When in an air state, however, it is resistive, limiting in-
plane currents and holding the anode potential lower during 
the start-up transient. 

 

This keeps the cathode from going to damaging, high 
potentials and reduces cathode performance degradation. 



AFCC Confidential Information 

Fuel cell start-up/shut down cycles 
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Summary of catalyst progress 

In-house ternary alloys have demonstrated >4x ORR mass 
activity over Pt/C baselines using RDE (ex-situ). 

 

Durability of the catalyst during start-up transients may be 
enhanced by:- 

 

– an oxide layer in the anode that changes from conductive to 

resistive depending upon its environment, and/or 

 

– a conductive oxide catalyst support for the cathode that resists 

oxidation. 
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Catalyst layer characterization/ optimization 

In order to design the catalyst layer to provide the required transport 
properties for a high performing catalyst it is necessary to first be able 
to characterize the catalyst layer in terms of:- 
– Catalyst structure 
– Ionomer structure 
– Pore structure 

 
Then modeling may be used to design the optimum three phase 
structure. 
 
Methods being developed through academic collaborations are:- 
– E-tomography (3D imaging with HRTEM) 
– FIB/ HRSEM (Focussed ion beam sectioning) 
– STXM (scanning transmission X-ray microscopy) 

 
These will be used as design tools for the next generation of fuel cell 
stacks. 
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Methods of catalyst layer characterization 

FIB tomography  
 
Sample size: 5 x 3 x 2 um 
 
Voxel: 20x20x20 nm 
 
 
Speciation: no chemical info 

STXM  
 
Sample size: 5 x 3 x 0.2 um 
 
Voxel: 30x30x200 nm 
 
 
Speciation: C + ionomer + Pt  

E-tomography  
 
Sample size: 0.5 x 0.2 x 0.1 um 
 
Voxel: nm x nm x nm 
 
 
Speciation: Pt + Carbon 

E-tomography of catalyst 
 
Sample size: 0.2 x0.2 x 0.1 um 
 
Voxel: nm x nm x nm 
 
 
Speciation: Pt + C 
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E-tomography of catalyst particles 

TEC10-V50E-C+Pt- 80k-ali.avi • Individual catalyst agglomerates 

on TEM grid. 

• Sample rotated  and  multiple 

images taken. 

• Composite of images produces 

3D representation of Pt particles 

on carbon support. 

• Advantage over 2D image is that 

position of individual Pt particles 

on support surface  can be 

determined. 

• No ionomer in sample. 



AFCC Confidential Information 

Visualization of the catalyst layer structure by FIB tomography 

 
Catalyst layer cross-sections are made by application of focused ion beam (FIB) and imaged by high 
resolution secondary electron microscope (HRSEM).   

X 

Z 

Y 

Sectioning of the CL is done 
by application of the 
focused ion beam (FIB). CL 
is bombarded with 
accelerated Ga ions. 
 
FIB tomography: FIB slicing 
and subsequent HRSEM 
imaging to get the 3D CL 
model.  
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3D representation of the catalyst layer 
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Electron tomography summary 

HRTEM tomography can be used to show 3D structure of the Pt/carbon 

structure of the catalyst agglomerates. 

It can also be used to generate 3D representations of the catalyst layer 

structure showing the Pt and pore distribution. 

No chemical speciation can be done so cannot distinguish between carbon 

support and ionomer. 

FIB tomography can be used to generate larger scale representations of 

the pore structure within the catalyst layer. 

Can only separate solids and pores. 

 

A method to distinguish between Pt, carbon, ionomer and pores is needed. 
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Soft X-ray STXM 

• Chemical speciation through X-ray absorption spectra 
(NEXAFS) 

• Spatial resolution ~30 nm;  Energy resolution < 0.1 eV 

• Quantitative chemical mapping (Beer’s law) 

• All elements (100-2500 eV) 

• Transmission requires thin samples ⇒ microtomed 
sections (~100 nm thick) 

 
Beamlines 5.3.2 &11.0.2 at the Advanced Light Source, USA 

Beamline 10ID1 at the Canadian Light Source, Canada 
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STXM Methodology for Ionomer Imaging in CL 
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 For mapping of the ionomer in the 
catalyst layer must record X-ray 
transmission images at two different 
X-ray absorption energies for 
carbon (C) and fluorine (F). 

 

 C 1s map provides information on 

the carbon support 

 

 F map provides info on fluoride- 

containing species in the catalyst 

layer (ionomer, PTFE) 
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2D Reconstruction of the catalyst layer 

membrane 

carbon support  

platinum 

ionomer 

Note: each pixel 
contains a complete 
NEXAFS spectrum of 
the species present.  
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3D imaging of the catalyst layer using STXM 

STXM allows for chemical speciation within the catalyst 
later thin section. 

Can differentiate between carbon, platinum, ionomer, 
pores. 

 

This 2D capability can be used tomographically to generate 
a 3D representation of all these species by rotating a FIB 
section of the catalyst layer and recording multiple images. 
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CCM sample preparation for the 3D STXM 
tomography (FIB sample prep.) 
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Now Rotate the CL Sample for +/- 60o and 
Record the C and F maps every 2 Degrees.  
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FIB-1 sample: 2071 TPM BOL cathode, height~8 um, width~4um, thickness~200 nm  

Every pixel in these images contains a 
spectrum characteristic for the chemical 
species. 
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Summary of STXM 

Thin sections may be analyzed to differentiate between 
platinum, carbon support, ionomer and pores. 
 
By rotating the thin section 3D tomographic representation 
may be constructed from multiple images. 
 
Carbon and ionomer 3D structures have been 
demonstrated. 
 
Work continues. 
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Conclusions & path forward 

Significant progress has been made in the development of 
MEA components (catalyst, membrane, etc.) that address 
the challenges that must be overcome for 
commercialization of PEMFCs for automotive applications. 

 

Tools are being developed to understand the structure of 
the catalyst layer and these will be critical in the design of 
the next generation of MEAs. 

 

The fundamental materials and the means to put them 
together in an optimized way are at hand and the path 
forward is exciting! 
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Questions for the future 

Will it ever be possible to eliminate PGMs from the cathode of 
a PEMFC? 
 
DOE targets:- 
– Does an EOL performance and a BOL cost target define the target 

sufficiently? 

EOL  
performance 

High BOL performance 
High degradation 
Makes EOL target but at high cost 

Operational lifetime 

Low BOL performance 
Low degradation 
Makes EOL target at lower cost 

This approach tends to focus 
upon the durability of the 
catalyst layer and its 
degradation rate at cost. 
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