

A Brief Overview of Hydrogen Storage Issues and Needs

George Thomas and Sunita Satyapal

Joint Tech Team Meeting Delivery, Storage and Fuels Pathway Tech Teams May 8-9, 2007

Storage Tech Team Roles & Responsibilities

Automotive Industry

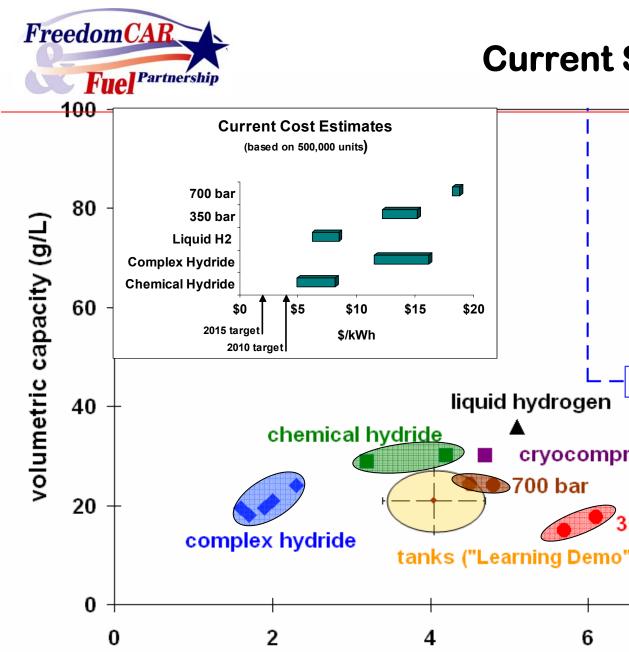
Scott Jorgensen (GM) – Industry Co-Chair Mei Cai (GM) – Materials Properties Modifications Don Siegel (Ford) – Basic Science Liaison

(Theory/Modeling) – Basic Science Liaiso

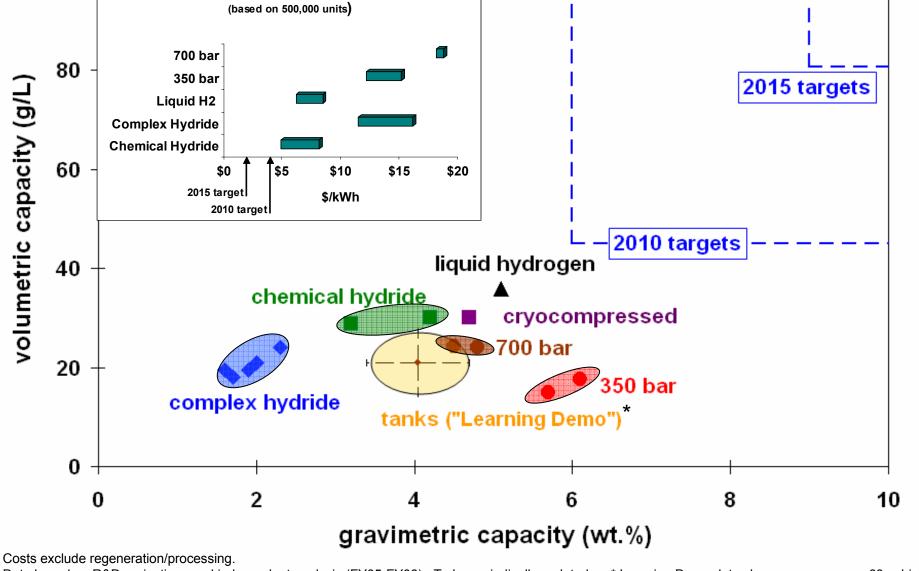
Andrea Sudik (Ford) – High Surface Materials

Mark Mehall (Ford) – Triad Representative

Tarek Abdel-Baset (DCX) - Fuel Cell Team Liaison (Water/thermal management)


Scott Freeman (DCX) – BPG Representative

Fuel Industry


 Farshad Bavarian (Chevron) – Fuel Industry Tech Team Lead + SC&S Liaison
 Paul Meier (ConocoPhillips) – Delivery Team Liaison
 Alexei Gabrielov (Shell) – International Activities
 Joe Kaufman (ConocoPhillips) – Fuel Operating Group Representative
 Silvia Boschetto (BP) – BP Hydrogen Technology Manager- Systems/Balance of Plant Issues

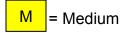
<u>Government</u>

Sunita Satyapal (DOE) – Government Co-Chair Walt Podolski (ANL) – Fuel Cell Team Liaison (Contaminant Specifications, SAE Liaison) George Thomas (SNL) – Basic Materials & Materials Testing

Current Status vs. Targets

Data based on R&D projections and independent analysis (FY05-FY06). To be periodically updated. * Learning Demo data shows range across 63 vehicles

Summary of Current Assessment


Challenges are technology specific: Pros and Cons for each Progress is being made but too early to eliminate whole areas

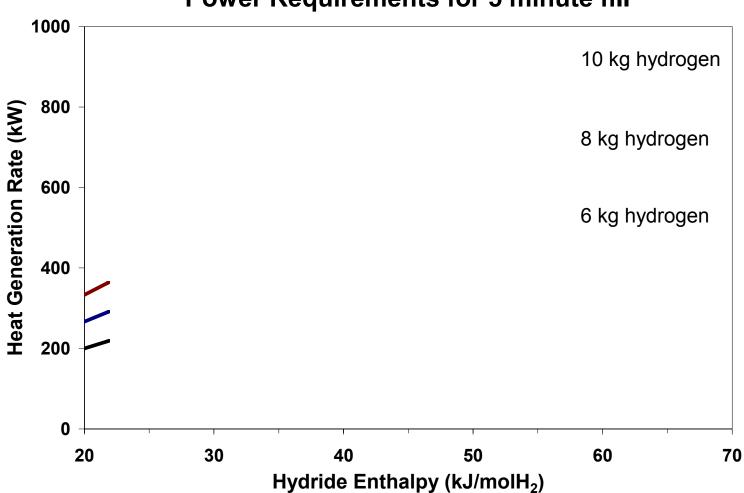
	Key 2010 Targets:	High P Tanks	Chemical Hydrides	Metal Hydrides	Carbon/ Sorbents
	Volume (1.5 kWh/L)	Н	М	М	M/H
	Weight (2.0 kWh/kg)	М	М	M/H	М
	Cost (\$4/kWh)	M/H	M/H ¹	M/H	M/H
	Refueling Time (3 min, for 5 kg)	L ²	L	M/H	М
Mgmt: es	Discharge Kinetics (0.02 g/s/kW)	L	М	М	L/M
Ĺ	Durability (1000 cycles)	L	М	М	М

Thermal Mgm Key Issues for MH (CH, C)

= High (Significant challenge)

= Low (minimal challenge)

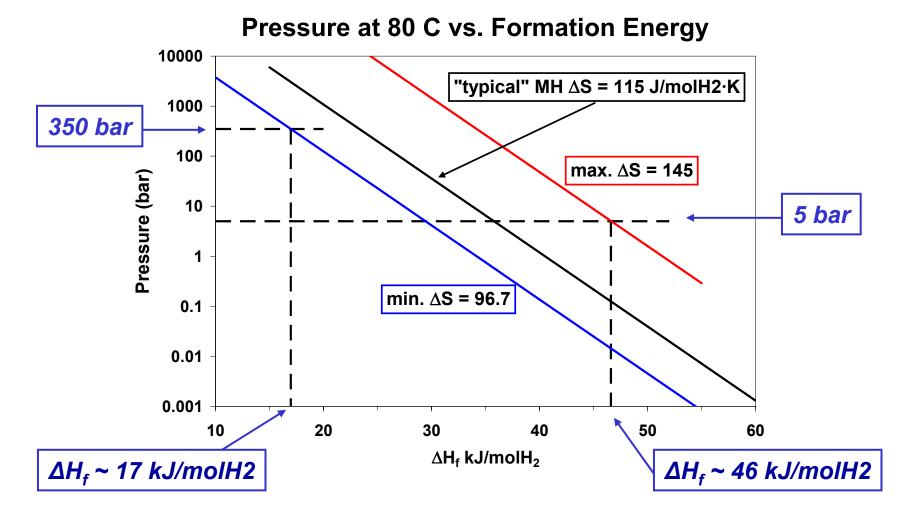
For CH, MH and S- assessment based on potential to meet targets, though systems not yet demonstrated in most cases.


¹For CH: Storage system may meet cost but fuel cost of \$2-\$3/kg is challenge for CH regeneration.

² Assumes communication protocols

Metal hydride ΔH_f impacts refueling

higher *AH*_f increases cooling requirements



Power Requirements for 5 minute fill

ΔH_{f} , ΔS define hydride operating pressure

higher *AH*_f results in lower equilibrium pressure

Range of ΔS values estimated from hydride database $_{6}$

All storage technology options are currently open

Storage option

- Compressed gas 350 bar, 700 bar
- Cryocompressed gas ~350 bar, ~20 – 100 K
- Liquid hydrogen ~20 K, <200 psi
- Sorbents
 ~77 K, <100 bar
- Metal hydride reversible, < 350 bar
- Chemical hydride offboard regeneration

Potential forecourt needs

Compressors, hi P onsite storage, gas cooling? (for rapid refueling)

Liquid H2, liquid N2, onsite cryogenic storage, cryo hi P gas/liquid delivery

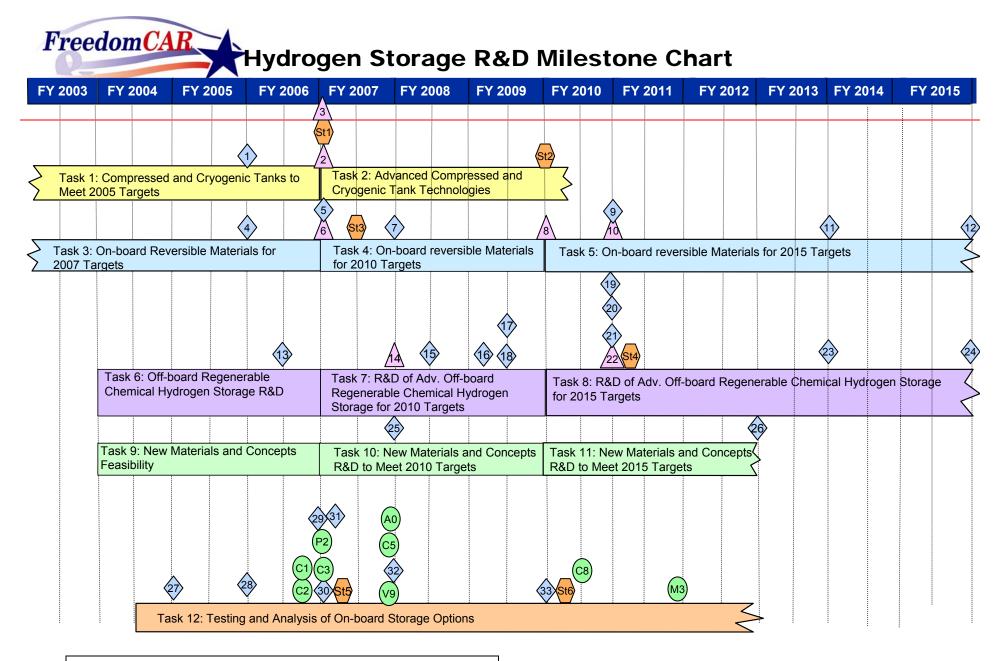
Liquid H2, onsite cryogenic storage, cryogenic liquid delivery

Liquid H2 or liquid N2, onsite cryogenic storage, cryogenic gas delivery

Low/hi P onsite storage, up to 350 bar H2, heat exchanger (up to ~ 500 kW)

Charged carrier storage, spent carrier storage, delivery/removal method

- hydrogen pre-processing required for all storage options (e.g., liquefaction, pressurization, cooling)
- there will be efficiency gains from using consistent storage methods


production	→ <u>delivery</u> -	forecourt —	→ <u>onboard</u>				
LH2	LH2	LH2	LH2				
CHG	CHG	CHG	CHG				
LH2	LH2	LH2	sol. state				
LH2	LH2	sol. state	sol. state				
chem. carrier ़ ⇐ chem. carrier ⇐ chem. carrier ⇐ chem. carrier							
chem. carrier c hem. carrier 2 chem. carrier							

- Regeneration efficiency for H carriers
 Round-trip efficiency analysis
- Low T needs at fueling station for sorbents
 Energy, cost requirements, liq. N2
- Cryo-compressed refueling needs
 - Liquid H2, cryo-high and low P options
- Energy cost analysis for metal hydrides
 - High ΔH vs. high P

Back up slides

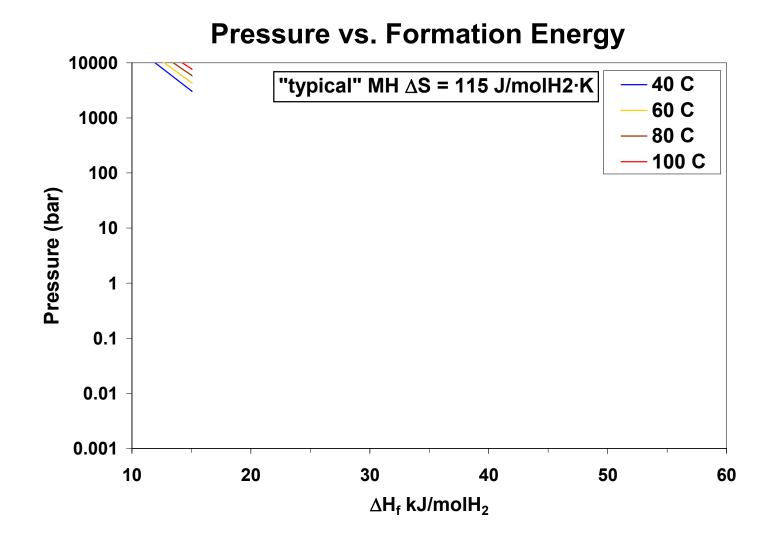
Hydrogen Storage R&D Milestones

Milestones

	1	Complete preliminary feasibility study of cryogenic adsorbent tank concept (4Q 2005)
	2	Go/No-Go: Decision on compressed and cryogenic tank technologies for on-board vehicular applications (4Q 2006)
	3	Independent evaluation of gravimetric and volumetric capacities of cryo-compressed tanks (4Q 2006)
	4	Reproducibly demonstrate 4wt% material capacity on carbon nanotubes (4Q 2005)
	5	Complete prototype metal hydride system and evaluate against 2007 targets (4Q 2006)
	6	Go/No-Go: Decision point on carbon nanotubes (4Q 2006)
	7	Down-select on-board reversible metal hydride materials (4Q 2007)
	8	Go/No-Go: Decision point on advanced carbon-based materials (4Q 2009)
	9	Complete materials-based lab-scale prototype system and evaluate against 2010 targets (4Q 2010)
	10	Go/No-Go: Decision on reversible metal hydride R&D (4Q 2010)
	11	Down-select on-board reversible hydrogen storage materials with potential to meet 2015 targets (4Q 2013)
	12	Complete lab-scale prototype system and evaluate against 2015 targets (4Q 2015)
	13	Complete preliminary estimates of efficiency for off-board regeneration (2Q 2006)
	14	Go/no-go: Decision point on sodium borohydride (4Q 2007)
- 1	15	Down-select chemical hydrogen storage materials and accompanying regeneration processes (2Q 2008)
	16	Demonstrate regeneration processes at laboratory-scale, and estimate efficiency (1Q 2009)
- 1	17	Complete chemical hydrogen storage life-cycle analyses (2Q 2009)
	18	Down-select chemical hydrogen storage approaches for 2010 targets (2Q 2009)
	19	Complete lab-scale prototype chemical hydrogen storage system and evaluate against 2010 targets (4Q 2010)
	20	Demonstrate multiple cycle regeneration at laboratory-scale (4Q 2010)
	21	Identify advanced regeneration laboratory process with potential to meet 2015 targets (4Q 2010)
	22	Go/No-Go: Decision point on chemical hydrogen storage R&D (4Q 2010)
	23	Down-select chemical hydrogen storage approaches for 2015 targets (4Q 2013)
	24	Complete chemical hydrogen lab-scale prototype and evaluate against 2015 targets (4Q 2015)
ł		
	25	Down-select from new material concepts to meet 2010 targets (4Q 2007)
	26	Down-select the most promising new material concepts with potential to meet 2015 targets (4Q 2012)
ľ	27	Complete construction of materials test facility (4Q 2004)
	28	Complete verification of test facility for adsorbent materials (4Q 2005)
	29	Complete verification of test capabilities for metal hydride materials (4Q 2006)
	30	Complete baseline analyses of on-board storage options for 2010 targets (4Q 2006)
	31	Establish testing capabilities for chemical hydrides (1Q 2007)
	32	Update onboard storage targets (4Q 2007)
	33	Complete analyses of on-board storage options for 2010 and 2015 targets (4Q 2009)
	00	

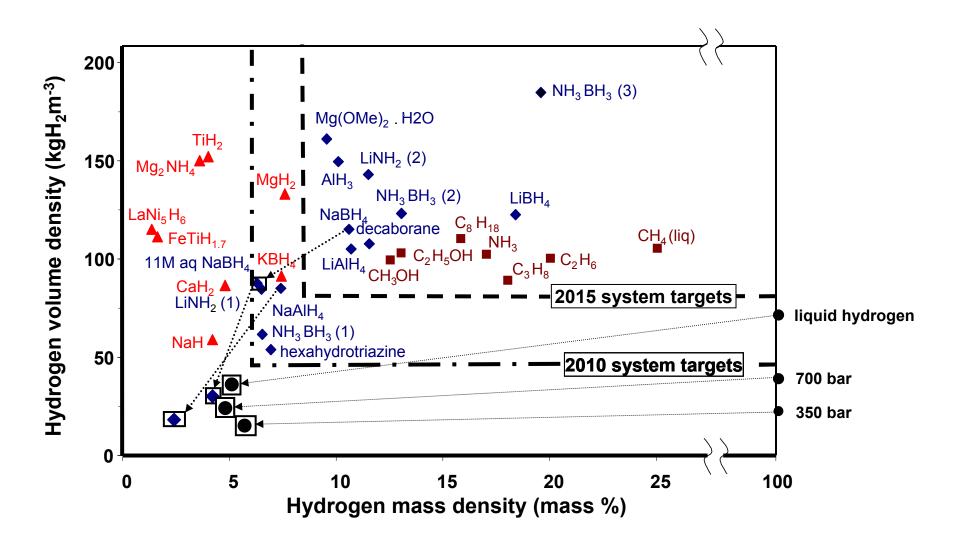
Outputs

- St1 Output to Technology Validation: Report on compressed/cryogenic liquid storage tanks and evaluation against 1.5 kWh/kg and 1.2 kWh/L (4Q 2006)
- St2 Output to Technology Validation: Report on advanced compressed/cryogenic tank technologies (4Q 2009)
- St3 Output to Fuel Cells and Technology Validation : Report on metal hydride system and evaluation against 2007 targets (2Q 2007)
- St4 Output to Delivery, Fuel Cells and Technology Validation: Report on full-cycle chemical hydrogen system and evaluation against 2010 targets (1Q 2011)
- St5 Output to Delivery, Systems Analysis and Systems Integration: Baseline hydrogen on-board storage system analysis results including hydrogen quality needs and interface issues (1Q 2007)
- St6 Output to Delivery, Systems Analysis and Systems Integration: Final on-board hydrogen storage system analysis results of cost and performance (including pressure, temp, etc) and down-select to a primary on-board storage system candidate (1Q 2010)



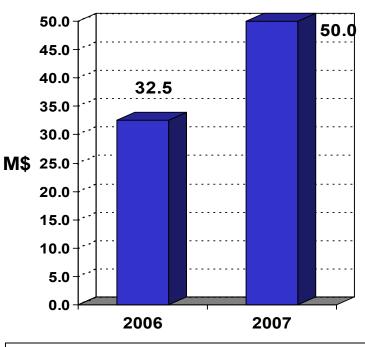
<u>Inputs</u>

- C1 Input from Codes and Standards: Hydrogen fuel quality standard as ISO Technical Specification (3Q2006).
- C2 Input from Codes and Standards: Technical assessment of standards requirements for metallic and composite bulk storage tanks (3Q2006).
- P2 Input from Production: Assessment of fuel contaminant composition (4Q2006).
- C3 Input from Codes and Standards: Final standards (balloting) for fuel dispensing systems (CSA America) (4Q2006).
- V9 Input from Technology Validation: Final report on safety and O&M of three refueling stations (4Q2007).
- C5 Input from Codes & Standards: Materials compatibility technical reference (4Q2007).
- A0 Input from Systems Analysis: Initial recommended hydrogen quality at each point in the system (4Q2007).
- C8 Input from Codes and Standards: Final hydrogen fuel quality standard as ISO Standard (2Q2010).
- M3 Input from Manufacturing: Report on fabrication and assembly processes for highpressure H2 storage technologies that can achieve a cost of \$2/kWh (4Q2011).



Pressure Swing with Temperature

Examples of material capacities in comparison to system targets



Hydrogen Storage Budget

DOE-EERE FY2007 Budget Request = \$34.6M FY2006 Funding = \$26.0M NEED TO PUT IN TO FY08 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 2004 2005 2006 2007 Carbon-based Materials Advanced Metal Hydrides Chemical Hydrogen Storage Tanks Other New Materials & Concepts Test/Analysis/Support Budget Request

DOE- Office of Science

FY2007 Budget Request = \$50.0M* FY2006 Funding = \$32.5M*

* For Basic Science within the Hydrogen Fuel Initiative, including hydrogen storage, membranes, catalysts, etc.

Planned funding for Basic Science in Hydrogen Storage in FY06: ~\$7.5 M

FY 08 Request: \$43.9M for hydrogen storage