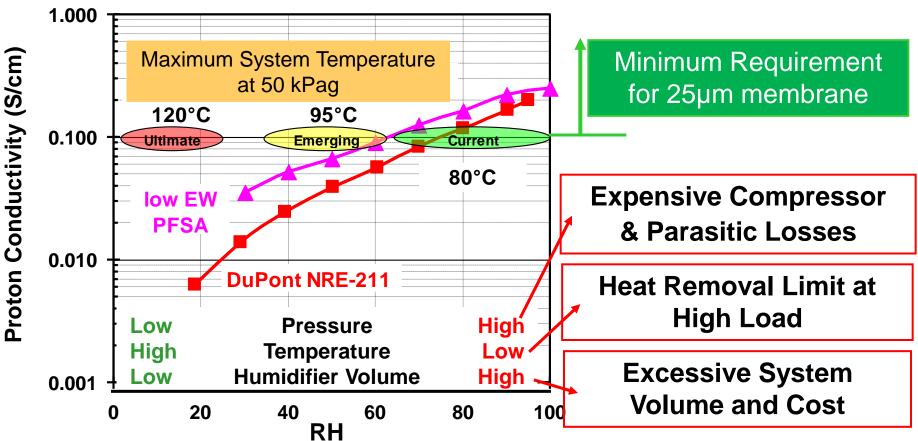
Automotive Perspective on PEM Evaluation

Craig Gittleman Lab Group Manager – Membrane and Ionomer

> General Motors Fuel Cell Research Lab 10 Carriage St., Honeoye Falls, NY 14472

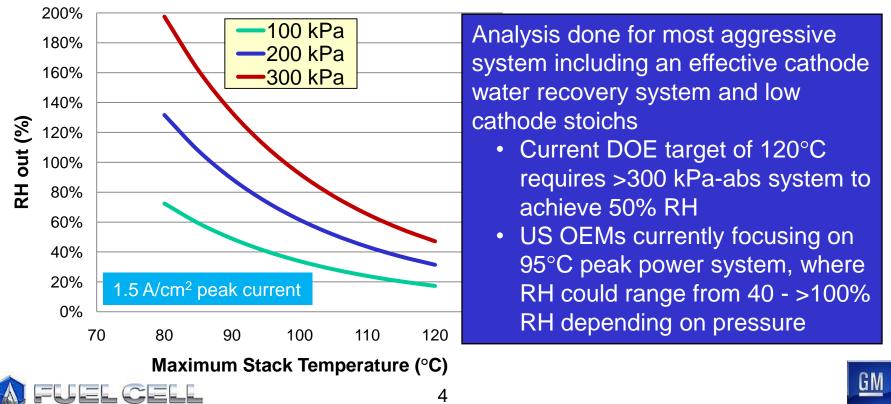
High Temperature Membrane Working Group Meeting May 18, 2009

Outline

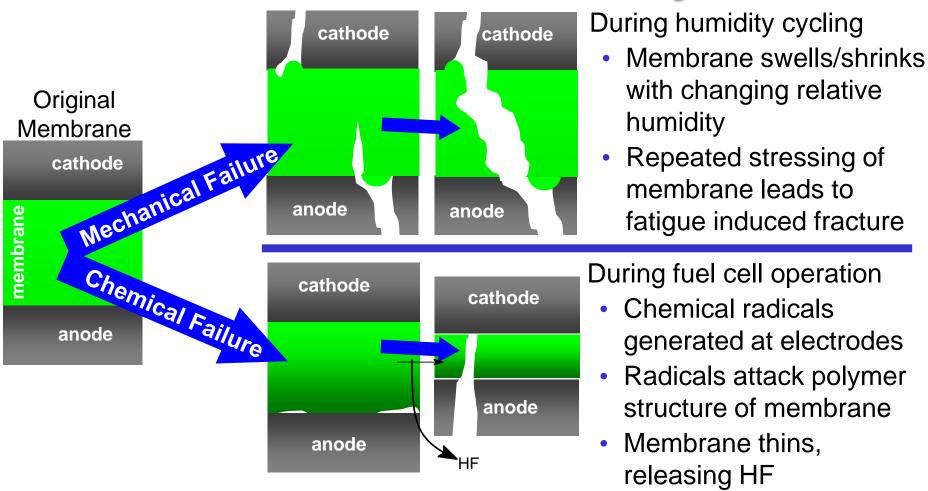

- Automotive PEM FC Operating Conditions
- Performance Durability Tradeoffs
- Automotive PEM Requirements
- Evaluation Test Methods
- Performance Considerations
 - Proton Transport Resistance
 - Fuel Cell Performance
 - Freeze Start
- Durability Considerations
 - Mechanical Durability
 - Chemical Durability
 - Shorting
- Summary
- Acknowledgements

Fuel Cell Membrane Needs

Membranes Need Water to Conduct Protons


- Current membranes enable 80°C, low pressure system, but this limits maximum vehicle power due to heat removal capacity (radiator size)
- Minimum 95°C peak power operation needed for heat rejection

u IVI


Automotive Operating Conditions

Automotive FC systems must be designed for their peak power operating point

- The hottest (& driest) conditions will exist at peak power
 - > >90% of the time system will run colder &, thus, wetter
- Humidity will depend on system pressure
 - While there is no universal agreement among OEM's on automotive FC system pressure, systems are not expected to operate above 300 kPa-abs.
- The most desirable membranes will enable low pressure systems

Membrane Durability

Membrane shorting – electronic current passes through membrane

- Caused by over-compression and/or high local potentials
- Can lead to extreme temperatures and thermal decomposition

Performance Durability Tradeoffs

Pathways to lower proton transport resistance

- More sulfonation increased IEC (reduced EW)
 - Leads to high swelling mechanical durability issues
- Thinner membranes
 - Higher gas crossover (efficiency penalty, accelerates failure)
 - Reduced shorting resistance
- Non-polymeric additives [Ceramics (SiO₂, ZrO, etc.), to increase water retention, Heteropolyacids for improved conductivity]
 - May embrittle membrane
 - May leach out and poison electrodes
- Improved membrane chemistry/morphology
 - Better pathways for proton & water transport
 - Potential to also improve durability

Performance Durability Tradeoffs

Pathways to Improved Durability

- Composite membranes [polymer supports, elastomer blends]
 - Non-conductive component increases proton transport resistance
- Chemical stabilizing additives [Ce³⁺, Mn²⁺]
 - Can bind to acid sites and lower conductivity
 - Can move to electrodes during operation and impact performance
- External Reinforcement
 - Can add additional electron and gas transport resistances to cell
- Lower compression (for shorting)
 - Increased contact resistance at material interfaces
- Improved membrane chemistry/morphology
 - Reduced swelling & improved strength
 - Potential to also improve performance

Proton Exchange Membrane Targets

Characteristic		Units	DOE 2010 target	DOE 2015 target	GM target
Maximum operating temperature		°C	120	120	95
	Maximum operating temp and water partial pressures from 40 to 80 kPa	Ohm cm ²	0.02	0.02	.025
Area specific proton transport resistance	80°C and water partial pressures from 25 - 45 kPa	Ohm cm ²	0.02	0.02	.025
	30°C and water partial pressures up to 4 kPa	Ohm cm ²	0.03	0.03	NA
	-20°C	Ohm cm ²	0.2	0.2	NA
Maximum Oxygen cross	S-over ^b	mA/cm ²	2	2	NA
Maximum Hydrogen cro	ss-over ^b	mA/cm ²	2	2	5
Minimum Electrical resis	stance	Ω*cm ²	1000	1000	1000
Cost (500K veh/yr)		\$/m ²	20	20	10 ^a
Mechanical Durability		RH Cycles	20,000	20,000	20,000
Chemical Durability		hours	500	500	500
Unassisted start from	(MEA target w/ membrane impact)	°C	-40	-40	-40

^a 1MM veh/yr

^b Tested in MEA at 1 atm O₂ or H₂ at nominal stack operating temperature

GM testing of PEMs

Ex-situ Membrane Tests

Test	Properties	
Water Mass Uptake	Liquid Water Capacity	
Water Isotherms	λ vs. RH	
Dimensional Stability	Volumetric Swelling & Shrinking in Water	
Tensile Tests	Elastic Modulus, Yield Strength, Tensile Strength, Elongation	
Tear Tests	Fracture Toughness	
Blister Test	Burst Strength, Biaxial Fatigue	
Dynamic Mechanical Analysis	Storage/Loss E, T _g , Master Curve, Shift Factor	
Shrink Tension	Residual Stress	
Ion Exchange Capacity	Concentration of SO_3H (or other acid)	
In-plane Conductivity	Conductivity vs T, RH (including freeze to -40°C)	

GM testing of PEMs

In-situ Membrane Tests

Test	Properties
Gas Permeability Tests	H ₂ , N ₂ , O ₂ permeability/crossover
Water Transport	Water permeability
Electrical Resistance	Membrane shorting
Electrical Impendence Spectroscopy (MEA)	Through-plane membrane resistance and electrode proton transport resistance
 Fuel Cell tests (MEA) Polarization curves Temperature sensitivity RH sesnsitivity Pressure sensitivity 	Fuel Cell performance
 Fuel Cell durability (MEA) RH cycling OCV degradation High Voltage – Pressure Ramp Accelerated Durability Charge Storage (MEA) 	 Membrane mechanical durability Membrane chemical durability Accelerated shorting resistance All of the above Water capacity during freeze start

Membrane Shorting and Crossover tests

<u>Objective</u>: Evaluate membrane for shorting and gas crossover

Method: 50 cm² fuel cell test

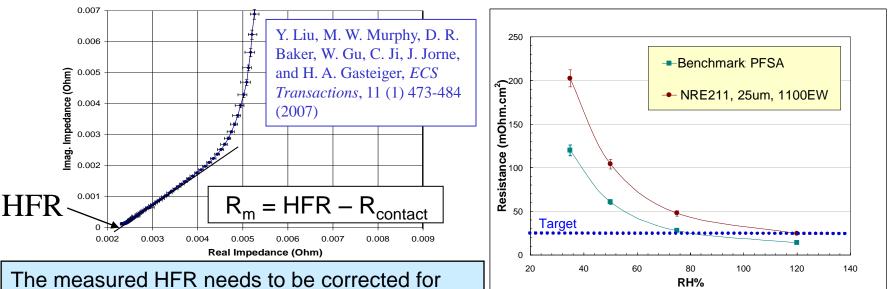
Standard electrodes, carbon fiber GDM with MPL

- Compress to 20% GDM strain
- Standard test: Fully humidified, room temperature, no back pressure
- Also test under range of FC operating conditions

Shorting: N_2/N_2 , 0.5V DC

H₂ Cross-over: H₂/N₂, 0.5V DC

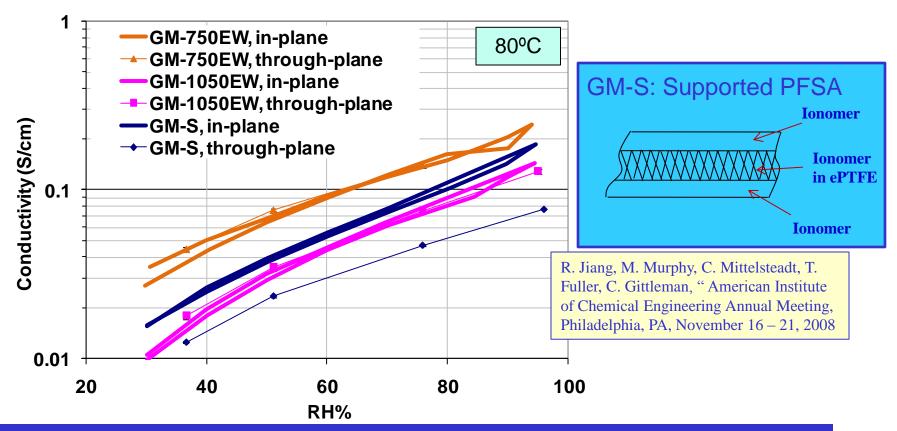
Targets	
Shorting:	> 1000 Ω⋅cm²
<u>H₂ Cross-over</u> :	< 5 mA/cm ² .atm


Targets should be met at beginning of life and after durability testing

In-Situ Proton Transport Resistance using AC Impedance

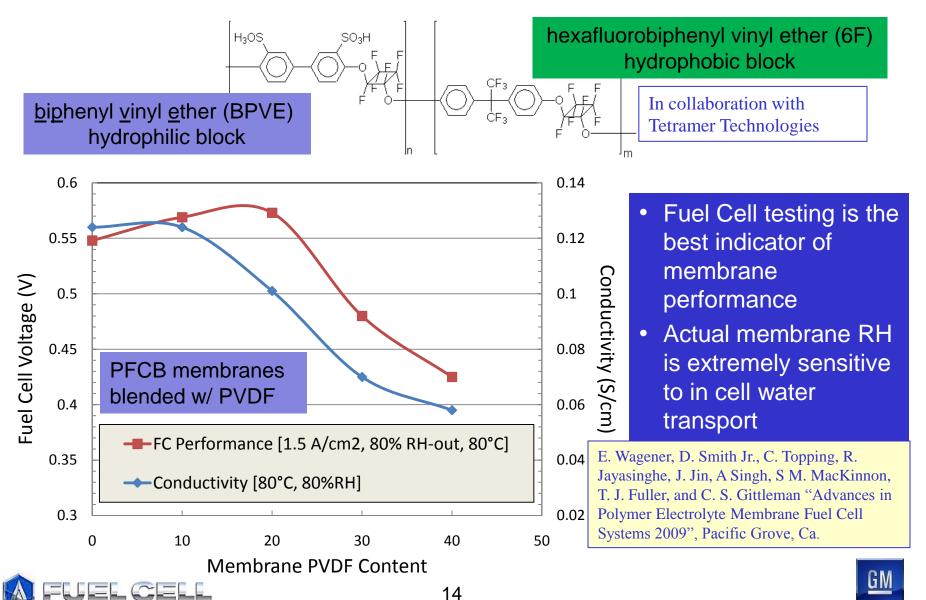
Through plane membrane resistance is best indicator of membrane performance – accounts for membrane thickness & proton conductivity

- Principle: AC impedance spectrum to measure High Frequency Resistance (HFR) at real axis intercept in H₂/N₂ cell
- Run tests as a function of temperature and RH



- The measured HFR needs to be corrected for contact resistance
- Run "Blank" cells using gold foil instead of PEM
- Run membranes with various thickness and extrapolate to zero thickness
- In-situ resistance of Nafion NRE-211 meets target at >100% RH
- Benchmark PFSA meets target at 75% RH

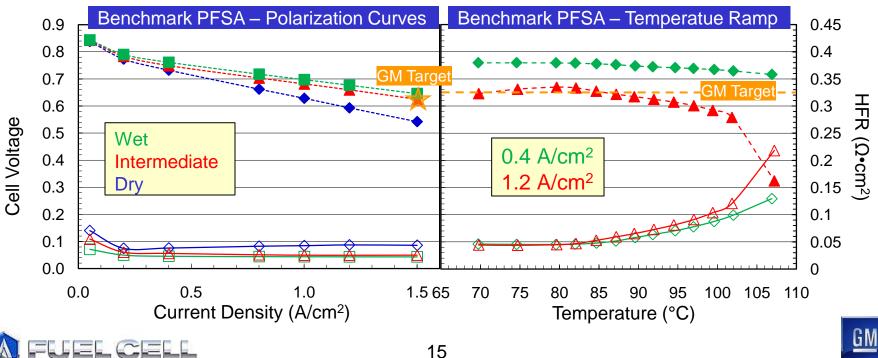
Proton Conductivity: In-Plane vs. Through-Plane



- Homogeneous membranes: GM-750 and GM-1050, through-plane conductivity agrees with the in-plane conductivity.
 - Indication of good determination of R_{contact}
- Non-homogeneous membrane GM-S with support layer: in-plane conductivity is about twice (50%RH) the though-plane conductivity.
 > Due to high resistance of support layer and swelling anisotropy

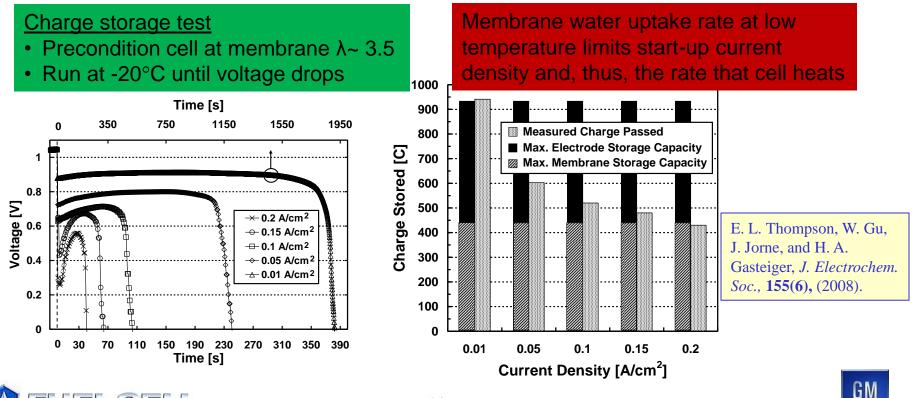
Beware of Focusing Solely on Conductivity

Sulfonated Perfluorocyclobutane (PFCB) Block Coploymers



Membrane Performance Screening

50 cm² H₂-Air fuel cell test (Standard GM flowfields, electrodes & GDM, counterflow)


- Polarization Curves (V vs. i) over range of RH & temperature (50 kPag) 1.
 - Wet (110% RH out, 80°C)
 - Intermediate (85% RH out 80°C) \geq
 - Dry (55% RH out, 95°C)
- Humidity Sweep at fixed temperature & current (50 kPag) 2.
 - 1.5 A/cm² 80°C, 95°C \succ
- 3. Temperature Ramp with fixed inlet humidification (62°C dew pt., 50 kPag)

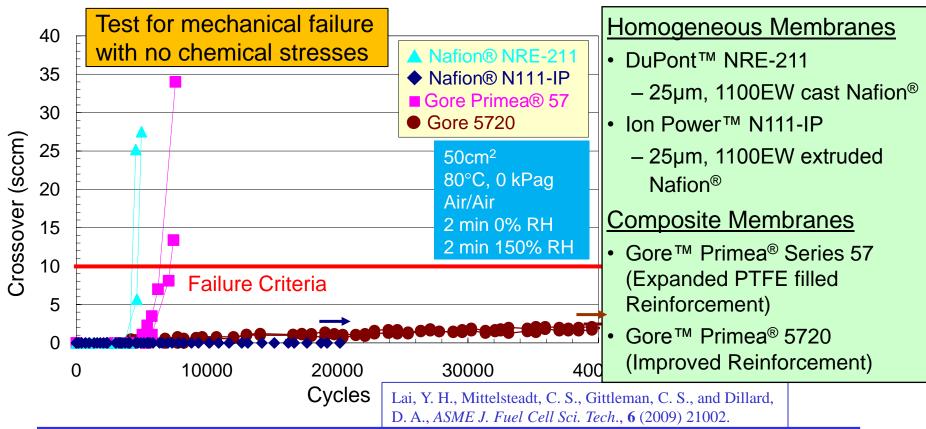
 0.4 A/cm^2 1.2 A/cm² & 1.5 A/cm² \geq

Freeze Start Considerations

- Membrane must conduct protons at low temperatures (to -40°C) to enable freeze start – but proton transport resistance is not limiting
- Membrane must have significant capacity for water so the water generated by ORR does not freeze in electrode pores & GDL during freeze start (thus cutting off O₂ transport) before cell gets hotter than 0°C.
- Both considerations are strongly dependent of hydration state of membrane at shutdown and startup strategy (especially current density).

16

Membrane Mechanical Durability


	Table 4 Membrane Mechanical Cy (Test using a M				
Cycle 0% RH (2 min) to 90°C dewpoint (2 min), single cell 25-50 cm ²					
Total time	otal time Until crossover >2 mA/cm ² or 20,000 cycles				
Temperature	80°C	80°C			
Relative Humidity	Cycle from 0% RH (2	Cycle from 0% RH (2 min) to 90°C dew point (2 min)			
Fuel/Oxidant	Fuel/Oxidant Air/Air at 2 SLPM on both sides				
Pressure	e Ambient or no back-pressure				
Metric	Frequency	Target			
Crossover*	Every 24 h	$\leq 2 \text{ mA/cm}^2$			
Shorting resistanceEvery 24 h>1,000 ohm cm^2					

* Crossover current per USFCC "Single Cell Test Protocol" Section A3-2, electrochemical hydrogen crossover method

- Results very sensitive to cell design and specific operation
 - Flow field geometry, compression, GDL, MEA processing, wetting & drying rates
- Recommend to benchmark against NRE-211 with specific set-up
 - NRE-211 should fail at ~5000 cycles

Humidity Cycling of PFSA Membranes

- Humidity cycling accelerates mechanical failures in the absence of electrochemical degradation
- Different processing methods for same polymer dramatically effects humidity cycling durability
- Mechanical reinforcement can help prevent humidity cycling induced crossover leak, but is not required

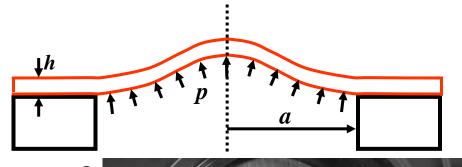
ELCEL

GΝ

Tensile Properties of PFSA Membranes

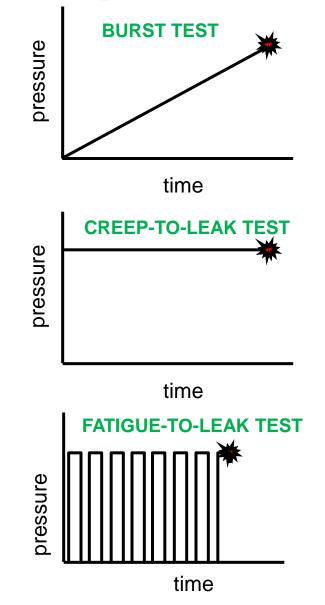
• ASTM method D882

Gittleman, C.S., Lai, Y.H., and Miller D., *Proceedings from the 2005 AIChE Annual meeting*, Cincinnatti, OH (2005)

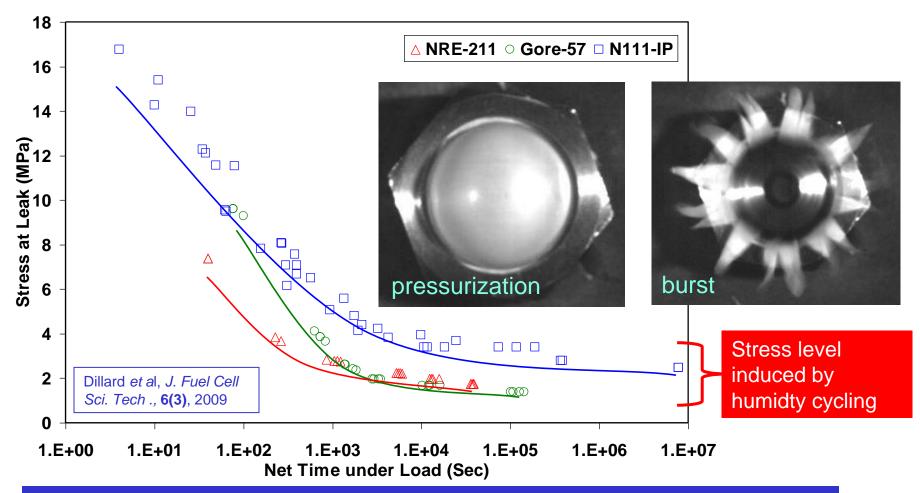

Membrane		NRE-211		N111-IP		Gore Primea® 57	
	units	MD	TD	MD	TD	MD	TD
50% RH, 23°C							
Tensile Strength	MPa	30.5	28.0	32.6	37.5	35.0	32.3
Yield Strength (2% offset)	MPa	14.4	14.0	14.1	14.9	18.0	15.6
Elongation	%	253	235	176	141	196	147
Young's Modulus	MPa	272	253	304	319	324	340
submerged, 80°C							
Tensile Strength	MPa	8.9	9.5	17.2	16.1	18.4	15.1
Yield Strength (2% offset)	MPa	4.4	4.6	5.0	5.3	5.2	4.1
Elongation	%	159	188	193	127	153	157
Young's Modulus	MPa	23.9	25.1	45.0	51.5	58.0	28.3

Tensile properties of N111-IP not superior to other PFSA membranes

Cannot use tensile tests as predictor for mechanical durability



Blister Membrane Strength Test

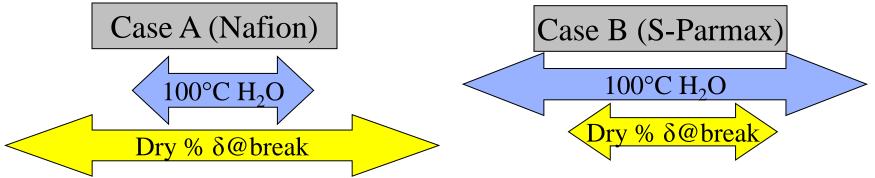


Dillard, D. A., Li, Y., Grohs, J., Case, S. W., Ellis, M. W., Lai, Y. H., Budinski, M. K., and Gittleman, C. S., *J. Fuel Cell Sci. Tech.*, **6(3)**, 2009

Creep Blister Strength of PFSA Membranes

- At stress levels expected during automotive operation extruded Nafion 111-IP oulasts Gore-Select 57 & Nafion NRE-211 by 10-100X
- This ranking agrees with the ranking from humidity cycling tests.

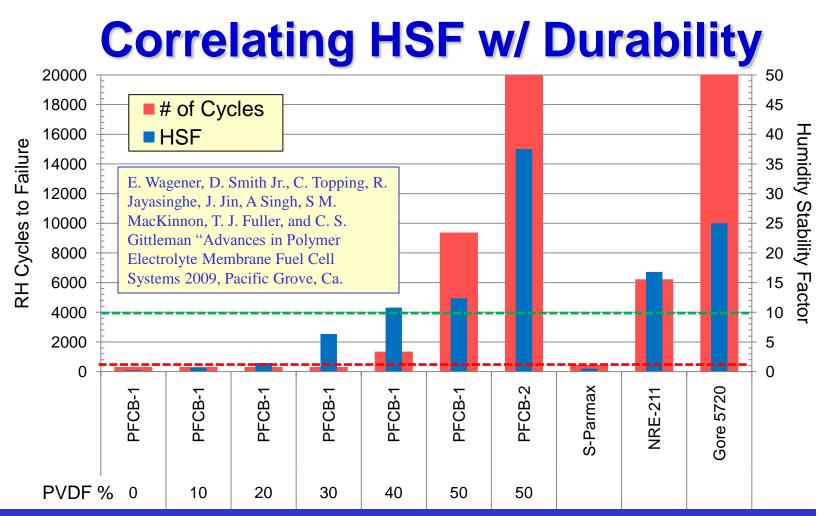
GM


Simple Mechanical Durability Screening

If facilities are not available for RH cycling or blister testing, at the very least , measure swelling and elongation to break

Tests Required

- Tensile Elongation to break at ambient conditions
- Linear Swelling in boiling water


Sanity Check: Does the membrane stretch more when dry then it swells when wet?

Humidity Stability =strain @ break (25°C, 50%RH)Factor (HSF)linear swelling (100°C H_2O)

MacKinnon, S. M., T. J. Fuller, F. D. Coms, M. R. Schoeneweiss, C. S. Gittleman, Y-H Lai, R. Jiang and A. Brenner, *Encyclopedia of Electrochemical Power Sources, Edited by Juergen Garche, Elsevier*, (2009) in press

General guidelines

- If HSF<1: find a way to reduce swelling and improve elasticity ASAP
- If 1<HSF<10: I'd still focus on reducing swelling and improving elasticity, but at least it's worth running FC tests
- If HSF>10: material may be durable enough with MEA optimization

Screening for PEM Chemical Stability

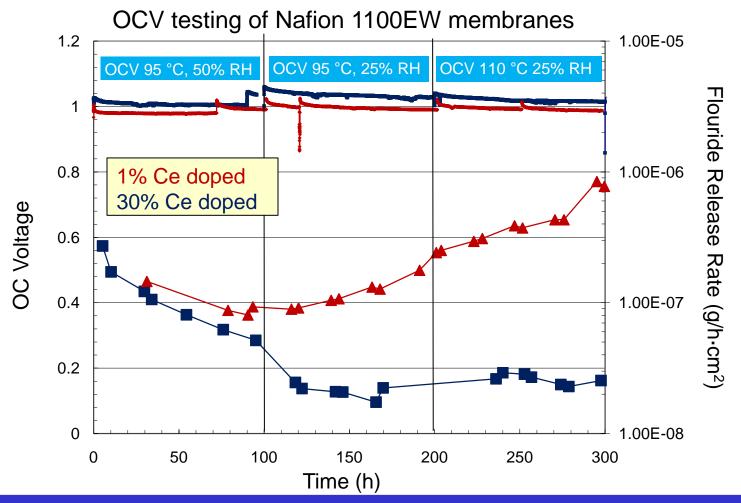
- *Ex-situ* Fenton's ageing tests are not representative of *in-situ* fuel cell degradation
- Initial H₂O₂ concentration much higher than observed in operating fuel cells
- H₂O₂ concentration decreases rapidly with time
- Absence of H₂
- Presence of liquid water

Consequences of depending on Fenton's tests

- False positives
 - End group stabilized PFSA membranes are stable in Fenton's solutions, but degrade rapidly in *in-situ* accelerated fuel cell tests [N. Cipollini, *ECS Transactions*. 11 (1), 1071 (2007); F. D. Coms, H. Liu, J. E. Owejan, *ECS Transactions*, 16 (2), 1735-1747 (2008).]
- False negatives
 - BPSH membranes degrade rapidly in Fenton's solutions, but are relatively stable in *in-situ* accelerated fuel cell tests [Sethuraman *et al*, *JECS*, **155** (2), B119-B124 2008]

Membrane Chemical Durability

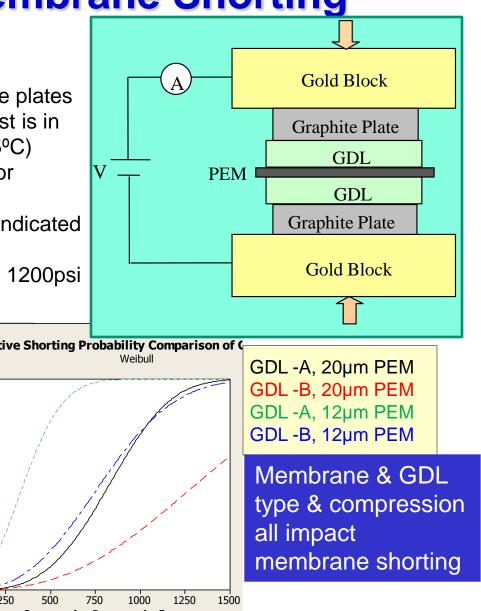
Table 3 MEA Chemical Stability and Metrics					
Test Condition	Steady state OCV, single ce	ll 25-50 cm ²			
Total time	500 h				
Temperature	90°C				
Relative Humidity	Anode/Cathode 30/30%				
Fuel/Oxidant	Hydrogen/Air at stoics of 10/10 at 0.2 A/cm ² equivalent flow				
Pressure, inlet kPa abs (bara)	Anode 150 (1.5), Cathode 150 (1.5)				
Metric	Frequency Target				
F ⁻ release or equivalent for non-	At least every 24 h	No target – for monitoring			
fluorine membranes					
Hydrogen Crossover (mA/cm ²)*	Every 24 h	$\leq 2 \text{ mA/cm}^2$			
OCV	Continuous	$\leq 20\%$ loss in OCV			
High-frequency resistance	Every 24 h at 0.2 A/cm ²	No target – for monitoring			
Shorting resistance	Every 24 h	>1,000 ohm cm ²			

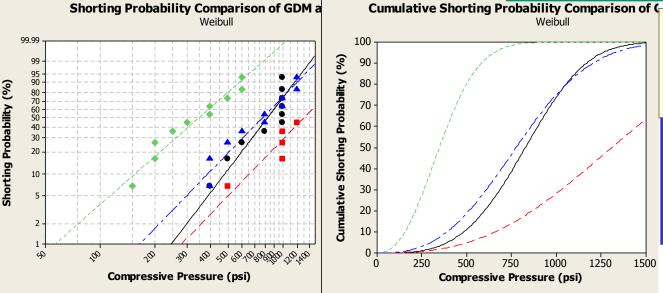

*Crossover current per USFCC "Single Cell Test Protocol" Section A3-2, electrochemical H2 crossover method

Incorporation of chemical stabilizers has enabled excellent chemical stability
 > GM has developed a new OCV test that stepwise increases stress

Step	duration	temperature	RH	
1	100 h	95°C	50%	All steps run at OCV in
2	100 h	95°C	25%	H_2 /Air with stoics of 5/5
3	100 h	110°C	25%	at 0.2 A/cm ² equivalent flow and 150 kPa-abs
A FUELCELL		2	25	

Accelerated Membrane Chemical Durability




- At short times (< 100h) & standard conditions no separation between low & high stabilization levels
- At longer times and hotter/dryer conditions, separation is observed

Accelerated Membrane Shorting

Test Procedure

- Bare membrane or non-platinized MEA
- Sandwiched between GDL and flat graphite plates
- Conditions can be controlled standard test is in air, ambient temp & RH (also test dry at 95°C)
- Ramp potential from 0-5V (0.5V/s) monitor current
- Record whether or not membrane shorts (indicated by current spike)
- Increase compression stepwise from 100 1200psi
- ~10 samples to get Weibull plot

- Performance, durability and cost must all be considered when developing materials for automotive fuel cell systems.
- Measurements must be conducted at relevant operating conditions.
 - US OEMs focusing on temperatures up to 95°C and humidities between 40-100% RH.
- A proper set of *ex-situ* tests can be used for initial screening of novel PEM materials.
 - > eg, Humidity Stability Factor and/or blister tests for mechanical durability
- *In-situ* performance and durability testing is essential for novel PEM evaluation but results are very sensitive to MEA & cell design.
 - > Appropriate benchmarking is necessary.
 - > Collaborations for MEA preparation & evaluation are needed.
- At sub-freezing temperatures, membrane rate and amount of water uptake is just as important as membrane conductivity.
- Critical membrane failure modes of mechanical degradation, chemical degradation & shorting must be all be considered.
- Please call or write your congressmen and representatives to urge their support for continued government funding for Hydrogen Fuel Cell development.

Acknowledgements

29

General Motors Fuel Cell Research Labs

Frank Coms Tim Fuller Ruichun Jiang Yeh-Hung Lai Yongqiang (Ron) Li Sean Mackinnon Dave Masten Mike Schoeneweiss Eric Thompson

Giner Electrical Systems Cortney Mittelsteadt

Virginia Tech David Dillard Scott Case Michael Ellis

