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Presentation Outline
• Study Methodology and Scenarios
• Market Penetration Rates
• Oil and CO2 Savings
• Fuel, Fuel Cell, Battery and Vehicle Costs
• Timing and Transition Costs to Achieve Market   

Competitiveness for FCVs and PHEVs
• Infrastructure Issues
• Conclusions
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Goals of 2 Studies
• Establish as a goal the maximum practicable number of 

vehicles that can be fueled by hydrogen by 2020 and potential 
fuel and CO2 savings

• Determine the funding, public and private, to reach that goal
• Establish a budget roadmap to achieve the goal
• Determine the government actions required to achieve the goal
• Consider whether other technologies could achieve significant 

CO2 and oil reductions by 2020
• Completed July 2008       
--------
• Determine  the maximum practicable penetration rate for 

PHEVs and estimate the potential fuel and CO2 savings, and 
required funding

• Completed December 2009



Vehicle Penetration Rates
and Potential Fuel and CO2 

Reductions
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SCENARIOS 
1) H2 SUCCESS H2 & fuel cells play a major role 

beyond 2025
2) EFFICIENCY Currently feasible and projected 

improvements in gasoline internal combustion 
engine technology are introduced rapidly

3) BIOFUELS Large scale use of biofuels, 
including ethanol and biodiesel

4) PLUG-IN HYBRID SUCCESS PHEVs play a 
major role beyond 2025

5) PORTFOLIO APPROACH More efficient ICEVs 
+  biofuels + FCVs or PHEVs introduced
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CASE 1:  H2 SUCCESS Scenario

# of Light Duty Vehicles in Fleet (millions)
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Fuel cell @ $30/kW and H2 storage @ $10/kWh by 2025)

A Partial Success Case was also studied (FC @ $50/kW and H2 storage @ $15/kWh)
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CASE 2: ICEV EFFICIENCY

• Currently available and 
projected improvements in 
conventional vehicle 
technology used to increase 
efficiency 

• The fuel economy of 
gasoline vehicles assumed 
to improve
• 2.7 %/year from 2010-2025
• 1.5 %/year from 2026-2035
• 0.5%/year from 2036-2050

• Gasoline HEVs dominate; no 
FCVs or PHEVs

Case 2 (ICEV Efficiency): 
Number of Light Duty Vehicles (millions)
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Case 2 (ICEV Efficiency):
 Fuel Economy of New Light Duty Vehicles (mpg)
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CASE 3: BIOFUEL SUCCESS
• Grain and Sugar based ethanol - maximum potential 

12 billion gallons/year
• Sustainable biomass (million dry tons per year)*  

300 mtpy current, 500 mtpy 2030, 700 mtpy 2050
• Cellulosic ethanol has greater potential, 16 billion 

gallons/year by 2020 and 63 billion by 2050 **
• Potential for a much larger % of biomass to be 

converted to biobutanol or other advanced biofuels 
after 2020

*crop residues, energy crops, forest residues         ** maximum practicable case
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CASE 3: BIOFUEL SUCCESS
Billion gallons fuel per year)
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CASE 4: PHEV SUCCESS
• 2 mid-size vehicle types: PHEV-10s, PHEV-40s
• 2 market penetration rates: 

– Maximum Practical (same as H2 FCVs but 
start earlier (2010)

– Probable
• 2 electricity grid mixes (business as usual and 

EPRI/NRDC scenario for de-carbonized 
generation in a 2007 study)

• PHEV gasoline and electricity use based on 
estimates by MIT, NREL, ANL
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CASE 4: PHEV Market penetration
• Maximum Practical (with optimistic tech development 

estimates): 4 million PHEVs in 2020 and 40 million in 2030
• Probable (with probable technical development): 1.8 million 

PHEVs in 2020 and 13 million in 2030

12

• Many 
uncertainties, 
especially 
willingness 
and ability of 
drivers to 
charge 
batteries 
almost every 
day.
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Gasoline Use 
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Case 4 (portfolio): Number of Light Duty 
Vehicles (millions)

0

100

200

300

400

2000 2010 2020 2030 2040 2050

Year

# 
Ve

hi
cl

es
 (m

ill
io

ns
)

Gasoline ICEV
Gasoline HEV
Hydrogen FCV
TOTAL

CASE 5: PORTFOLIO APPROACH 
Efficient ICEVs + Biofuels + Adv. Veh.

FCV or PHEV

ICEVs and HEVs assumed to 
use advanced biofuels and
gasoline 
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Case 5:Portfolio Fuel Savings
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GHG Emissions EIA Grid                           
(million tonnes CO2e/yr)
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AEO 2008 High Oil Prices Case and EPRI/NRDC 2007. Environmental Assessment of Plug-
In Hybrid Electric Vehicles. Volume 1: Nationwide Greenhouse Gas Emissions. 
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GHG Emissions EPRI/NRDC Grid                           
(million tonnes CO2e/yr)
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PHEV Cost Analysis: 
Batteries are Key

Need acceptable cost for reasonable range, 
durability, and safety

19
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Batteries  

• Looked at 10 and 40 mile midsize cars
- PHEV-10s and PHEV-40s

• Battery packs with 2 and 8 kWh useable
or 4 and 16kWh nameplate energy
– Start of life, not after degradation
– 200 Wh/mile 
– 50% State of Charge range (increases to compensate 

for degradation)
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Current PHEV Battery Pack Cost* 
Estimates Compared ($/kWh nameplate)

• $700-1500/kWh (McKinsey Report)
• $1000/kWh (Carnegie Mellon University)
• $800-1000/kWh (Pesaran et al)
• $500-1000/kWh (NRC: America’s Energy Future 

report)
• $875/kWh (probable) NRC PHEV Report
• $625/kWh (optimistic) NRC PHEV Report
• $560/kWh (DOE, adjusted to same basis)
• $500/kWh (ZEV report for California)
*Unsubsidized costs
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Future Cost* Estimates Compared 
($/kWh nameplate)

• $600/kWh (Anderman)
• $400-560/kWh in 2020 (NRC PHEV)
• $360-500/kWh in 2030 (NRC PHEV)
• $420/kWh in 2015 (McKinsey)
• $350/kWh (Nelson)
• $168-280/kWh by 2014 (DOE goals adj.)
• NRC estimates higher than most but not all 
• Assumed packs must meet 10-15 year lifetime
• Dramatic cost reductions unlikely; Li-ion technology well 

developed and economies of scale limited
*Unsubsidized costs
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Vehicle Costs
PHEV-40
• Total Pack cost now $10,000 - $14,000
• Total PHEV cost increment over current conventional   

(non-hybrid) car: $14,000 - $18,000
• PHEV cost increment in 2030: $8,800 - $11,000

PHEV-10
• Total Pack cost now $2500 - $3,300
• Total PHEV cost increment over current conventional 

(non-hybrid) car  $5,500 - $6,300
• PHEV cost increment in 2030: $3,700 - $4,100
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Electric Infrastructure
• No major problems are likely to be encountered for 

several decades in supplying the power to charge 
PHEVs, as long as most vehicles are charged at night. 

• May need smart meters with TOU billing and other 
incentives to charge off-peak.

• Charging time could be 12 hours for PHEV-40s at 110-V 
and 2-3 hours at 220-V. Thus home upgrade might be 
needed.

• If charged during hours when power demand is high, 
potential for significant issues with electric supply in 
some regions.



Potential Transition Costs for 
HFCV and PHEVs
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PHEV-10 PHEV-40 PHEV-40 
Sensitivity Cases

High Oil     DOE Goal

HFCV
Success  Partial

Success
Breakeven 
Year

2024 2040 2025 2024 2023 2033

Cum. Cash 
flow to 
breakeven 
($billion)

24 408 41 24 22 46

Cum. Vehicle 
Retail Price 
Diff to 
breakeven      
($ billion)

82 1639 174 82 40 82

# Vehicles at 
breakeven 
(million)

10 132 13 10 5.6 10

Infrastructure 
Cost at 
breakeven     
($ Billion)

10
(in-home 
charger 
@$1000)

132
(in-home 
charger 
@$1000)

13
(in-home 
charger 
@$1000)

10
(in-home 
charger 
@$1000)

8         
(H2 stations 
for  first     5.6 
million FCVs)

19       
(H2 stations 
for  first     10 
million FCVs)

26

TRANSITION COSTS: PHEVs and H2 FCVS

1-3 decade transition time; Transition cost $10s-100s Billions;
Results very sensitive to oil price and vehicle (battery& fcell) costs
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Major  Findings
• Significant  fuel and CO2 reductions can be achieved  over  

next 20 years with efficient  ICE/HEV  technologies and 
biofuels.

• PHEVs and HFCVs have greater long-term  potential for fuel 
savings. HFCVs can greatly reduce CO2 emissions, but 
savings from PHEVs dependent on grid fuel source. 

• A portfolio of  technologies has  potential to eliminate oil and 
greatly reduce CO2 from US light duty transportation by 2050

• The U.S. could have tens of millions of H2 FCVs and PHEVs on 
the road in several decades, but that would require tens or 
hundreds of billions in subsidies

• Technology breakthroughs are essential for both fuel cells and 
batteries; cost reductions from manufacturing economies of 
scale will be much greater for fuel cells than batteries
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