US DOE Webinar Series Fuel Cell Technologies Office

Energy Efficiency & Renewable Energy

EERE Fuel Cell Technologies Office

6 November 2014

2014 and 2015 Hydrogen Student Design Contests **1. Introduction** Erika Sutherland, U.S. DOE Fuel Cell Technologies Office

2. HEF and 2014 Contest Introduction Development of a Drop-in Hydrogen Fueling Station Emanuel Wagner, Hydrogen Education Foundation

- **3. Winning Design Presentation** Washington State University
- 4. Honorable Mention Presentation Humboldt State University
- 5. 2015 Contest
 - a. Industry View Connor Dolan – Fuel Cell Hydrogen Energy Association/H2USA
 - b. 2015 Contest Theme and Timeline Emanuel Wagner, Hydrogen Education Foundation
- 6. Q&A

Hydrogen Education Foundation

- Promotes clean hydrogen energy technologies through educational programs to encourage environmental stewardship, improve energy security, and create green jobs. More info: <u>www.hydrogeneducationfoundation.org</u>
- O Programs include:
 - Hydrogen Student Design Contest (<u>www.hydrogencontest.org</u>)
 - H-Prize (<u>www.hydrogenprize.org</u>)
 - H₂andYou (<u>www.h2andyou.org</u>)
 - Washington Fuel Cell Summit (<u>http://www.washingtonfuelcellsummit.com/</u>)

O For timely updates:

Like us at: <u>www.facebook.com/Hydrogen.Education.Foundation</u>

Follow us at: @h2andyou

What is the Contest?

- The annual Hydrogen Student Design Contest challenges university students to design hydrogen energy applications for real-world use
- Supported by the U.S. Department of Energy's Fuel Cell Technologies Office and National Renewable Energy Laboratory
- O Technical, multidisciplinary competition
 - Engineering
 - Architecture/planning
 - Industrial design
 - Economics
 - Business/marketing
 - Environmental science
 - Political science
 - Chemistry

Energy Efficiency & Renewable Energy

History of Contest

- O Started in 2004
- O Past themes:
 - Hydrogen Fueling Infrastructure Planning
 - Residential Fueling
 - Designing a Hydrogen Community
 - Green Buildings with Hydrogen
 - Hydrogen Applications for Airports
 - Hydrogen Power Park
 - Hydrogen Fueling Station
- Several winning designs were built, e.g. the 2008 winning design is now an active hydrogen fueling station at Humboldt State University

2014 Contest Sponsors and Supporters

Energy Efficiency & Renewable Energy

2014 Contest Theme: Development of a Drop-in Hydrogen Fueling Station

- Hydrogen infrastructure development is one of the most important challenges for the rapid commercialization of zero-emission fuel cell electric vehicles (FCEVs)
- O Drivers of FCEVs need to know that they can rely on available fueling stations
- Hydrogen fuel suppliers need to be able to react to increasing fueling demand
- Low-cost drop-in fueling stations that require minimal set-up, operation and expense could meet the initial demand for fueling in areas that do not have a well-developed hydrogen fueling infrastructure

 A fueling station module that provides a positive fueling experience while being able to be mass produced could potentially have a game-changing effect on traditional hydrogen fueling station development plans

Theme Details

- O Design a hydrogen fueling module that fulfills the requirements of
 - low-cost,
 - easy permitting,
 - Iow-maintenance,
 - mass-production, and
 - transportability

in order to create a model for a reliable, convenient and reasonably priced refueling experience for all hydrogen fuel cell vehicle customers.

O Use only commercially available technology

2014 Contest Sections

- O Design Data and Equipment Drawings
- O Cost and Economics
- O Safety Analysis
- O Regulations, Codes and Standards
- O Siting, Operation and Maintenance
- O Environmental Analysis
- O Interface Design / Customer Education

Who Participated?

12 teams from 7 countries submitted abstracts for the 2013-2014 Contest, involving 77 students in total
 Top Teams:

University	Award	Score
Washington State University Grand Prize		85%
Humboldt University	Honorable Mention	82%
Zhejiang University	Top Five Finisher	72%
Ming Dao University	Top Five Finisher	70%
Kyushu University	Top Five Finisher	68%

Grand Prize Winner

Washington State University

O Presenters:

- Ian Richardson
- Jake Fisher

Report is available at:

http://www.hydrogencontest.org/pdf/2014/WSU_2014_HEF_CONTEST.pdf

Designing a Drop-in Hydrogen Fueling Station U.S. Department of Energy Webinar

November 6, 2014

In this presentation...

- 1. Customer Considerations
- 2. Liquid H₂ Delivery
- 3. Station Design
- 4. User Interface
- 5. Safety Features
- 6. Site Logistics
- 7. Economic Analysis

Washington State University

Ian Richardson

ian.richardson@email.wsu.edu

Jake Fisher

jake.fisher@email.wsu.edu

2 2013-2014: Designing a Drop-in Hydrogen Fueling Station www.HydrogenContest.org

ydrogen Education Foundation's

Hvdrogen Student

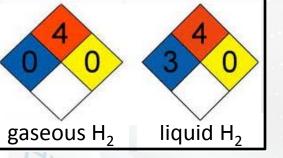
Full report available at: http://hydrogencontest.org/2014.asp

Design with the Customer in Mind

Low Capital	No	Low Operating
Cost	Maintenance	Cost
Minimal	Public	Public
Footprint	Safety	Appeal

Why Liquid Hydrogen Delivery?

- Lowest cost
- Low energy demand
- Minimizes equipment


Image from www.worldindustrialreporter.com

- 4 times the density of delivered gas
- Existing infrastructure
 - Bottom line: 80-90% of all non-pipeline H₂ delivered by cryogenic liquid tankers.¹

¹ Technology Transition Corporation (TTC), Hydrogen and Fuel Cells: The U.S. Market Report, (22 March 2010) 14

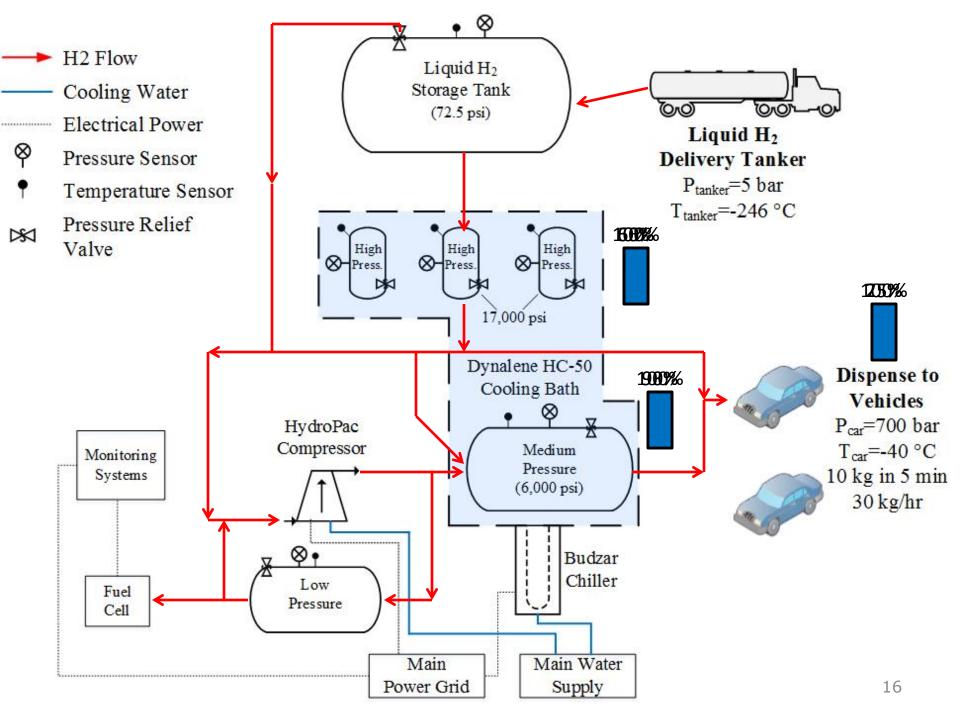
Liquid H₂ Changes the Design Paradigm

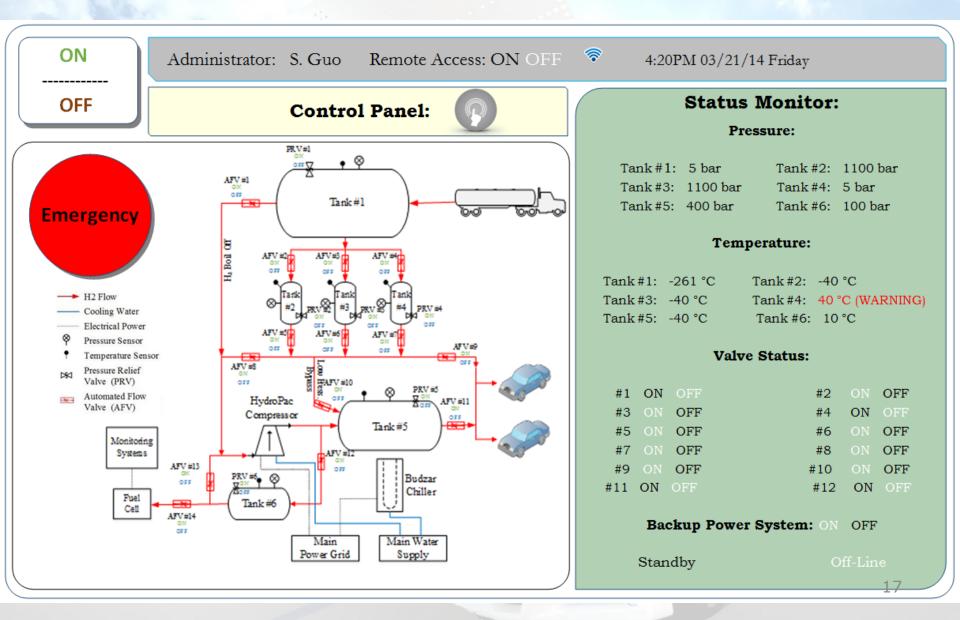
• <u>Safety!</u>

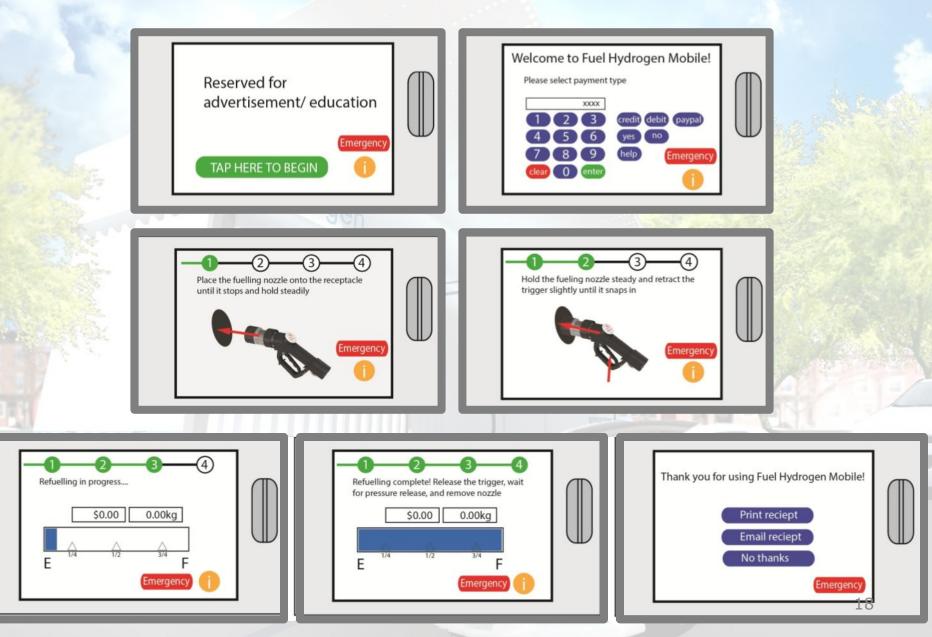
Liquid H₂ Storage

Image from www.chartindustries.com

Hydrogen Boil-off


Image from www.horizonfuelcell.com Transportability


Thermal Compression


Image from www.hypercompeng.com

Remote Operator Interface

Customer Interface

Intrinsically Safe Design

Relief

Image from www.swagelok.com

Ventilation

Image from www.industrialfansdirect.com

Continuous Monitoring

Image from www.xicomputer.com

Image from www.horizonfuelcell.com

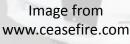
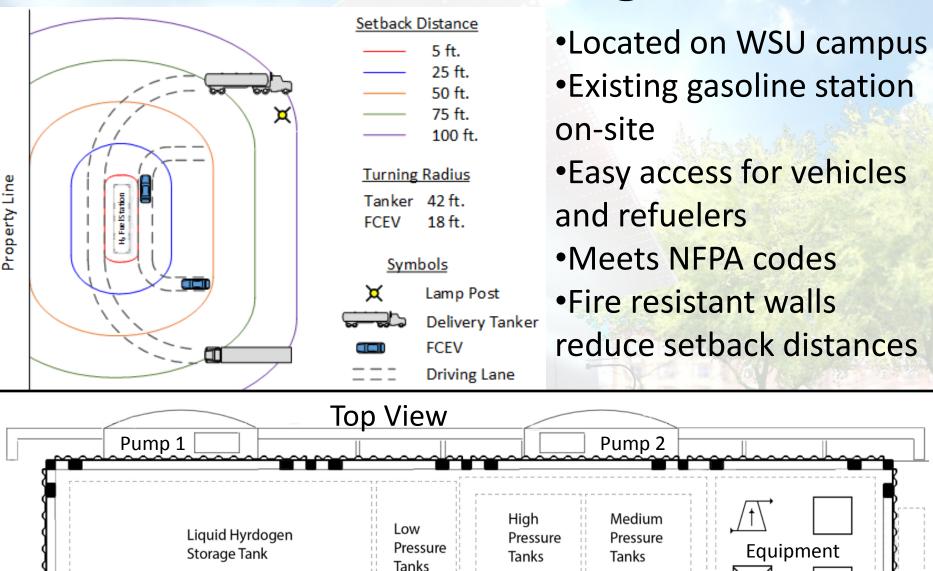
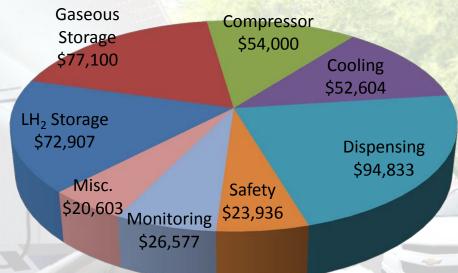

19

Image from www.hazsafe.com

Fire/Emergency Systems

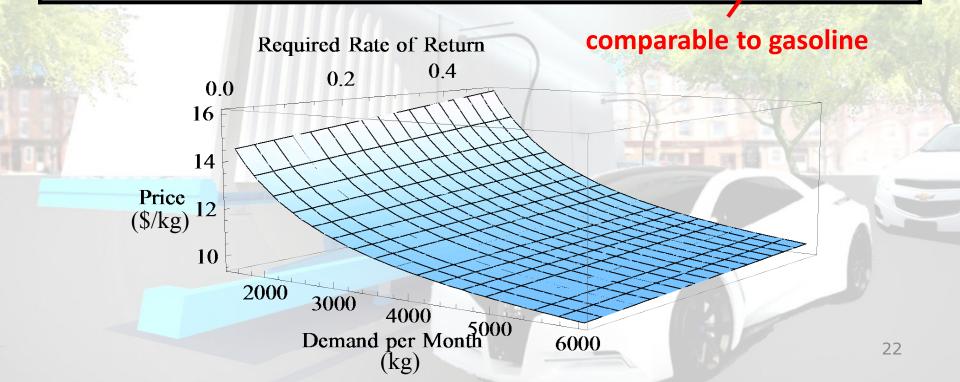


Images from www.firelite.com


Station Meets Site Regulations

Cooling bath

Economic Analysis


- Explicit and implicit costs considered:
 - Fixed cost = \$423,000 (all equipment)
 - Monthly costs = \$735 (power, water, maintenance demand dependent)
 - Discount rate of 6.25%
 - \$7/kg delivery cost
 - 10 year life span
- Price (P) model [\$/kg]
 - Monthly Demand (D)
 - Rate of Return (R_R)

$10125.9 + 7.77778D + 4695.23R_R$

Hydrogen can be Affordable

Required Return	Monthly Demand (kg)	Price (\$/kg)	Price per 5 kg or 300 miles (\$)
10%	3000	11.31	56.55
30%	3000	11.62	58.10
10%	6000	9.62	48.10
30%	6000	9.78	48.90

Development Efforts

- Partnership with GP Strategies on a DOE proposal for Cryogenic Thermal Compressor (CTC) (in review)
 - Provisional patent on CTC
- Designing single dispenser prototype station
 - Could refuel shuttle bus on WSU campus
- In negotiations with other companies to develop prototype station

Conclusion

- Total equipment cost = \$423,000
- Utilizes established liquid hydrogen infrastructure
- Utilizes thermal compression
- System designed to be inherently safe
- This design could be built today!

Clean.Safe.Renewable.Efficient

H2mobile transportable hydrogen fueling platforms

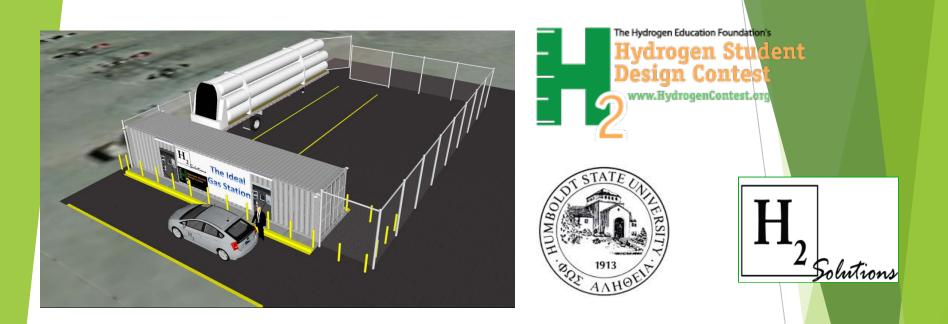
ZERO EMISSIONS AHEAD

Thank You

H2 Mobile Platforms are designed with safety in mind by utilizing liquid H2 storage that has decades of proven safety and reliability by NASA's Space Shuttle program. The fuel provided by these stations is generated locally and powers cars that produce no emissions leading the way to a sustainable future. Dual stage compression makes H2 Mobile Platforms the most efficient hydrogen stations on the market reducing fuel cost. Lower cost, no emissions; savings we can all appreciate!

Honorable Mention Design

Humboldt State University


O Presenters:

- Solomon Clark
- Anthony Eggink
- Mathew Nyberg
- Julian Quick

Report is available at:

http://www.hydrogencontest.org/pdf/2014/Humboldt-HEF%20Contest%20Entry.pdf

Modular Hydrogen Fueling Station Design U.S. DOE Webinar • November 6, 2014

Presented By: Solomon Clark

Anthony Eggink

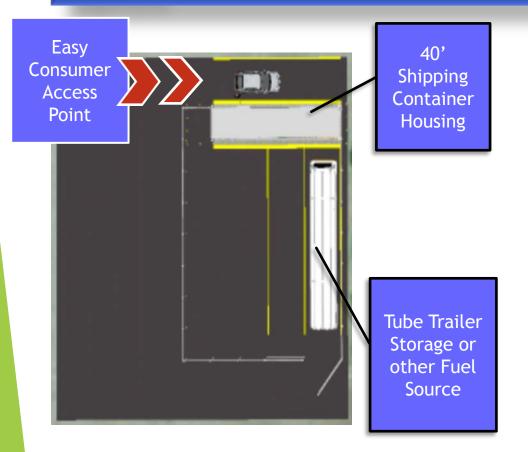
Mathew Nyberg Julian Quick Humboldt Hydrogen Solutions hydrofueldesignteam@humboldt.edu

DESIGN GOALS

Objective - Design A Modular Drop-in Fueling Station For Immediate Deployment

- Modular & Easily Transportable
- Fast Fill SAE TIR J2601
 Compliant
- Minimal Site Preparation
- Comprehensive Safety Features
- Off-the-shelf Components
- Industry & Consumer Cost
- California Hydrogen Highway
 Connection

www.powertechlabs.com

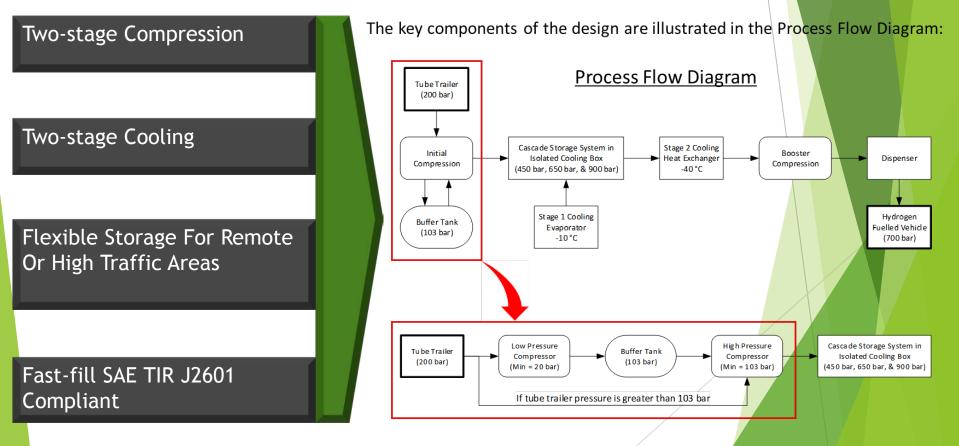


http://www.fastcoexist.com

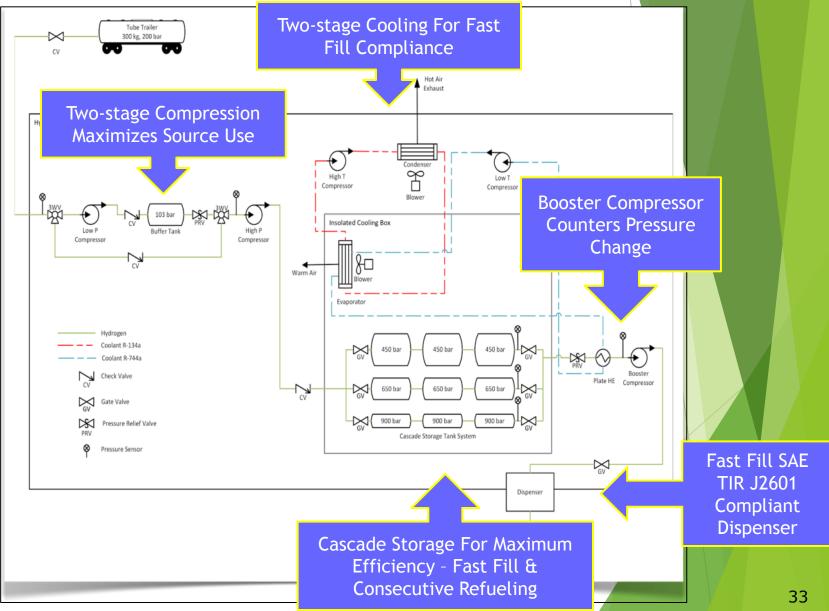
www.autoevolution.com

STATION LAYOUT

40' Container Housing -Trailer Storage - Easy Access - Fuel Source Options



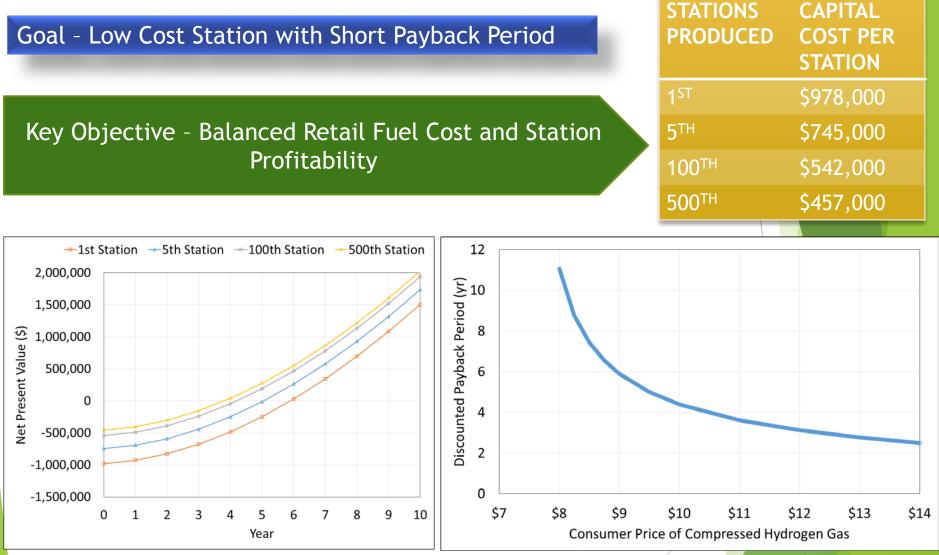
Http://Www.Ahasvc.Org/Page123.Html


Optional Fuel Source - Hydrogen Generation Could be Housed in 40' Shipping Container

SYSTEM OVERVIEW

Pathway For Hydrogen Fuel From Source To Consumer

SYSTEM SCHEMATIC



STATION COST

Goal - Low Cost Station Using Off-the-Shelf Components

Key Objective - Station	
Cost Below \$1m	
COMPONENT	COST
Cascade Storage System	\$130,000
High Pressure Compressor	\$100,000
Booster Compressor	\$82,700
Low Pressure Compressor	\$100,000
Dispenser	\$300,000
Safety Compliance	\$11,196
Other/Installation	\$256,104
Total	\$980,000

STATION ECONOMICS

SAFETY COMPLIANCE

Goal - Safe Fueling Interface for Consumers

Key Objective - Meet or Exceed Safety Compliance Directives

Controls Station Operation and Safety - Contacts Support Technician Fuel Delivery

Waterless Fire Suppression Independent of Power Supply

http://www.etapii.com/ceasefire.html

http://www.conrad.com

Hydrogen "Sniffer" Enacts Station Shutdown

Pressure Sensor For Leak Detection and Cascade Storage Operation

DESIGN SOLUTIONS

Goal - Modular Hydrogen Fueling Station for Immediate Deployment

Market Solutions

Specialization and Expansion of Existing Hydrogen Industry

Gaseous Delivery Allows for Low Cost to Industry

Existing Infrastructure is Utilized

Technical Solutions

Robust Modular Design Allows for Customization, Expansion

"Off-the-shelf" Components Allow the Station to be Built Today

SAE TIRJ2601 Fast Fill Compliant

THANK YOU

Hydrogen Education Foundation

U.S. Department of Energy

California Hydrogen Business Council

Technology Transition Corporation

Schatz Energy Research Laboratory

Douglas Saucedo, Advisor

Renewable Energy Student Union, HSU

Emanuel Wagner, Program Manager, TTC

Award Ceremony at ACT Expo 2014 in Long Beach, CA

2015 Contest Introduction

The theme of the 2015 Hydrogen Student Design Contest is **"Development Of Innovative Hydrogen Fueling Station Business And Financing Models".**

Student teams are challenged to conceive business and financing models for hydrogen fueling stations and pitch them to investors.

Energy Efficiency & Renewable Energy

ogen Student Contest

Theme Overview & Motivation

O Connor Dolan, External Affairs Manager, Fuel Cell & Hydrogen Energy Association/H2USA

Fuel Cell & Hydrogen Energy Association

Signatories on the Letter of Understanding

U.S. Department of Energy

ARC: Hydrogen

Fuel Cell & Hydrogen Energy Association

Fuel Cell & Hydrogen **Energy Association**

ITM Power

National Renewable **Energy Laboratory**

Volkswagen Group of America

State of California

Argonne National Laboratory

General Motors Holding LLC

Kobelco Compressors America, Inc.

Nissan North America R&D

Proton Onsite

Northeast States for Coordinated Air Use Management

Global Automakers

Association of **Global Automakers**

Hawaii Natural **Energy Institute**

Linde North America

NUVFRA Waking hydrogen make sense

Nuvera

Sandia National Laboratories

Air Liquide

California Fuel Cell Partnership

ROG Advanced Hydrogen Solutions

Hydrogenics

Massachusetts Hydrogen Coalition

PDC Machines

Savannah River National Laboratory

American Gas Association

American Honda Motor

Company

Electric Drive Transportation Association

Intelligent Energy Ltd.

Hyundai Motor America

Mercedes-Benz

Mercedes-Benz USA, LLC

olug power

Plug Power Inc.

SCRA

Toyota Motor North America

Chrysler Group LLC

HYUNDAI

National Association of **Convenience Stores**

Pacific Northwest National Laboratory

2015 Contest

- **Contest Sections**
 - **Technical Station Design**
 - **SWOT** Analysis
 - **Economic Analysis**
 - Develop Innovative Revenue Models
 - Manage uncertainty and risk
 - Define other applications for hydrogen
 - Marketing Plan

Venture Forum

Ο

- Representatives of the top teams will be invited to participate in a venture forum to pitch their idea to a group of investors. In that pitch, the teams need to:
 - Describe market size for product
 - O Articulate clear pitch to investors
 - Describe the innovative idea based on reliable numbers, "why should this work vs. what's done now"
 - Outline their product development effort Ο

Materials to be provided

- The HEF will provide specific information that enables a comparison of different revenue models by providing identical base assumptions. The information will include:
 - Numbers on vehicles: Showcase scenarios including a potential variance
 - Station Cost: Construction, O&M, Site Work Fuel cost: Credible price for delivered hydrogen Ο

oaen Student

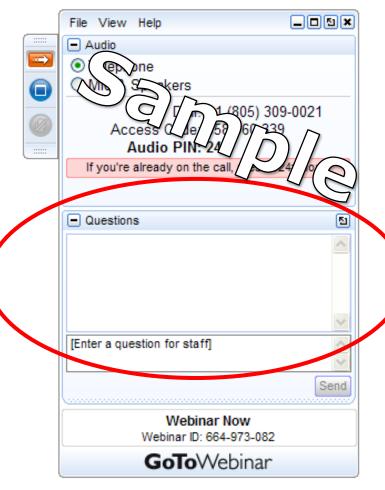
More Info & Timeline

O Stay tuned for details on the Contest - available at: www.hydrogencontest.org

Proposed Timeline (dates are subject to change)

- December 8, 2014
- January 16, 2015
- March 2, 2015
- March 16, 2015
- May 4, 2015
- May 18, 2015
- June 1, 2015
- June/July

- Early Registration & Abstract Deadline
- Final Abstract Deadline
- Phase 1 submission
- Phase 1 feedback
 - Phase 2 (Final Entry) submission
- Select finalists
- Presentations to judges/investors
- Award ceremony/Announcement of Winner



ogen Student

Question and Answer

- Please type your question into the question box!
- O Check out the Contest website for FAQs, Rules& Guidelines, Past Entries: www.hydrogencontest.org
- Check out the H2 Refuel H-Prize \bigcirc competition: www.hydrogenprize.org
- Stay up to date on industry news and competition info with the Hydrogen Education Foundation's Facebook page
- Please take the survey upon Ο conclusion of this webinar!

US DOE Webinar Series Fuel Cell Technologies Office

Energy Efficiency & Renewable Energy

EERE Fuel Cell Technologies Office

6 November 2014

Thank You for Your Participation

$$C' = C^0 \left(\frac{Q'}{Q^0}\right)^{\alpha} \left(\frac{V'}{V^0}\right)^{\beta}$$

Where:

- C' = station capital cost (\$/station)
- C^0 = base station capital cost (\$/station); assumed \$2.80M
- Q' = station capacity (kg/day)
- Q^0 = base station capacity (kg/day); assumed 450 kg/day
- V' =cumulative capacity (kg/day)
- V^0 = cumulative capacity at cost status of base station (kg/day); assumed 20,000 kg/day
- α = scaling factor; assumed 0.707
- β = learning factor; assumed -0.106

Melaina, M.W. and Penev, M. (2013). "Hydrogen Station Cost Estimates". National Renewable Energy Laboratory. (Sep. 2013).