US DOE Webinar Series

Fuel Cell Technologies Office

EERE Fuel Cell Technologies Office

14 January 2014

2013 and 2014 Hydrogen Student Design Contests

Webinar Overview

- 1. Introduction
 Greg Kleen, U.S. DOE Fuel Cell Technologies Office
- 2013 Contest Introduction
 Development of Hydrogen Fueling Infrastructure in the Northeastern U.S.
 Emanuel Wagner, Hydrogen Education Foundation
- 3. Honorable Mention Presentation University of Birmingham
- 4. Winning Design Summary (University of Kyushu)
- 2014 Contest Industry View Jacob Krogsgaard, H2 Logic
- 6. 2014 Contest Theme, Rules & Guidelines Introduction Design a Drop-in H2 Fueling Station
 Emanuel Wagner, Hydrogen Education Foundation
- 7. Q&A

2013 Contest Overview

Emanuel Wagner, Hydrogen Education Foundation

HEF Contest Manager

Hydrogen Education Foundation

- O Promotes clean hydrogen energy technologies through educational programs to encourage environmental stewardship, improve energy security, and create green jobs. More info: www.hydrogeneducationfoundation.org
- O Programs include:
 - H-Prize
 - H₂andYou
 - Hydrogen Student Design Contest
 - Washington Fuel Cell Summit
- O For timely updates:
 - Like us at: www.facebook.com/Hydrogen.Education.Foundation
 - Follow us at: @h2andyou

What is the Contest?

- O The annual Hydrogen Student Design Contest challenges university students to design hydrogen energy applications for realworld use.
- Supported by the U.S. Department of Energy
- Technical, multidisciplinary competition
 - Engineering
 - Architecture/planning
 - Industrial design
 - Economics
 - Business/marketing
 - Environmental science
 - Political science
 - Chemistry

History of Contest

- Began in 2004
- Past themes:
 - Residential Fueling
 - Designing a Hydrogen Community
 - Green Buildings with Hydrogen
 - Hydrogen Applications for Airports
 - Hydrogen Power Park
 - Hydrogen Fueling Station
- Several winning designs were built, e.g. the 2005 winning design is now an active hydrogen fueling station at Humboldt State University

2012-2013 Contest Sponsors and Supporters

2012-2013 Theme:

Development of Hydrogen Fueling Infrastructure in the Northeastern U.S.

Theme Details

- Create a feasible plan for the implementation of a hydrogen infrastructure
- Use only commercially available technology
- Design to facilitate fuel cell vehicle travel within and between major urban areas in the Northeast and Mid-Atlantic

Why Infrastructure Development?

- Several major car manufacturers announced plans to commercially introduce fuel cell vehicles by 2015
- O Challenge of infrastructure development remains a critical unresolved issue to advancing hydrogen as a fuel
- In the Northeast, home to over 50 million people, only half a dozen fueling stations currently exist, and few are publically accessible
- → Hydrogen sourcing and fueling infrastructures must be planned and developed across the United States

2012-2013 Contest Sections

- 1. Identifying the Hydrogen Production and Fueling Station Locales
- 2. Rollout Scheme
- 3. Cost and Economic Analysis
- 4. Hydrogen Storage and Fueling Station Regulations
- 5. Marketing and Public Education

Who Participated?

- 15 teams from 6 countries submitted Abstracts for the 2012-2013 Contest
- O Top Teams:

University	Award	Score
Kyushu University	Grand Prize	85%
University of Birmingham	Honorable Mention	85%
Mingdao University	Top Five Finisher	73%
Missouri University of Science and Technology	Top Five Finisher	72%
UCT Bulgaria	Top Five Finisher	71%

Honorable Mention Design

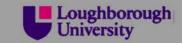
University of Birmingham

O Presenters:

- James Courtney
- Daniel Symes
- James Watton
- Amrit Singh Chandan
- Tony Meadowcroft

Report is available at:

http://www.hydrogencontest.org/pdf/2013/7%20University%20of%20Birming ham%20-%20Final%20Report.pdf

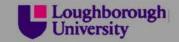

Development of a Hydrogen Fuelling Infrastructure in the Northeast United States

A transitioned development plan from the Centre for Hydrogen and Fuel Cell Research

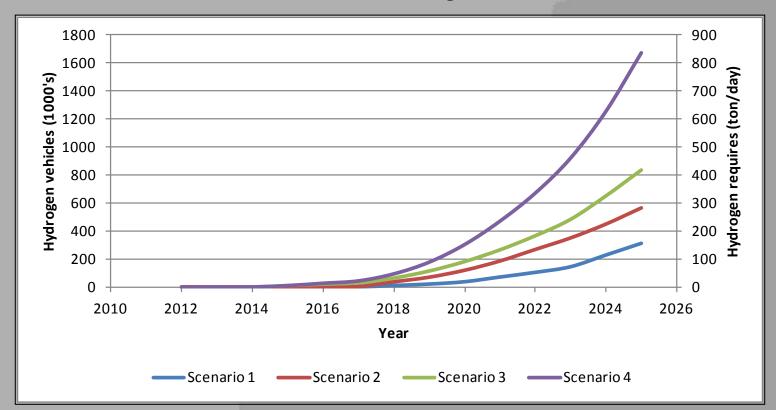
The Centre for Hydrogen and Fuel Cell Research – Fundamentals to Infrastructure

Today's Presentation team,

James Courtney
Daniel Symes
James Watton
Amrit Singh Chandan
Tony Meadowcroft

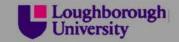


Content


- Overall aims and Objectives
- Split Development Periods
- Phase I
- Phase II
- Phase III
- Special Regulatory Notes
- Economic Considerations
- Marketing and Outreach

Aims and Objectives

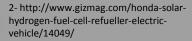
• To create a planned transitioned development strategy to implement a hydrogen refuelling network in the north east coast of the United States between 2013-2025 facilitating and engaging demand for hydrogen products.



Split Development Periods

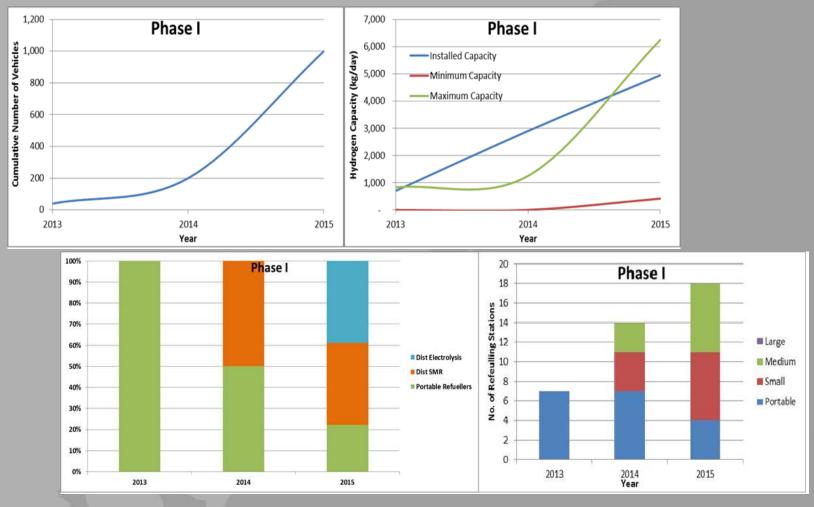
- Phase I
 - 2013-2015
 - Minimum Requirement for a functional Corridor
- Phase II
 - 2015-2020
 - Targeted Deployment for Early Markets
- Phase II
 - 2020-2025
 - Transition to Consumer Convenience
- Phase IV
 - 2025 +
 - Legacy to facilitate free market Economics

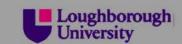
Phase I – Station Locations


Locations Chosen on physical range of FCEV and

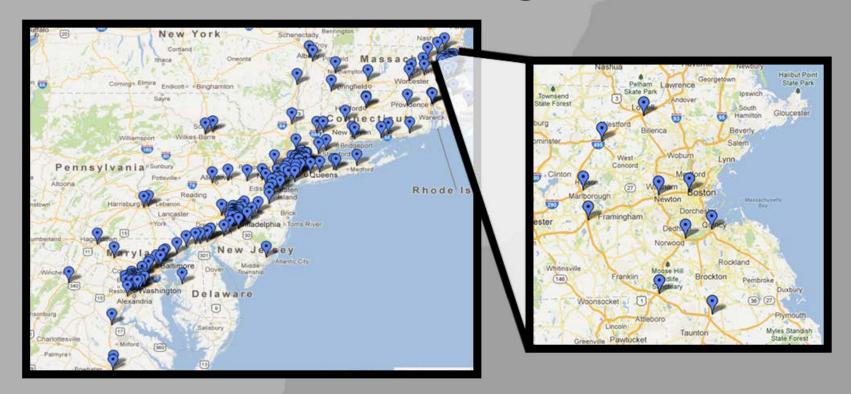
Geographical considerations alone

Utilisation of Portable (1) to Stationary Refuelling (2) implementation to create instant impact

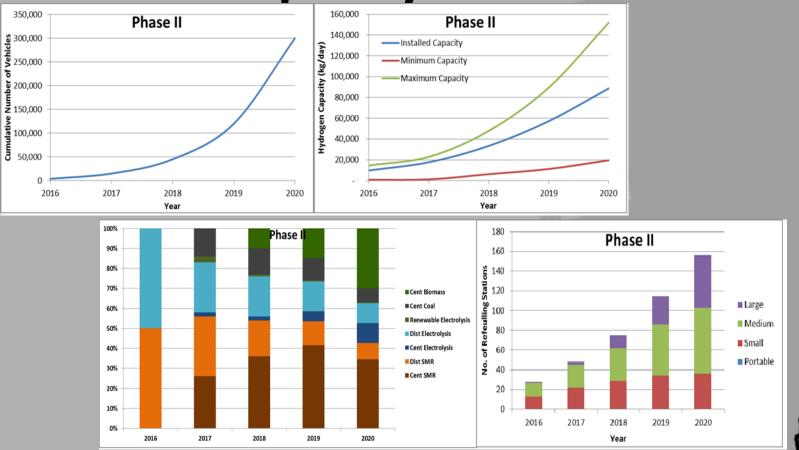


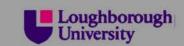


Phase I – Capacity and Production

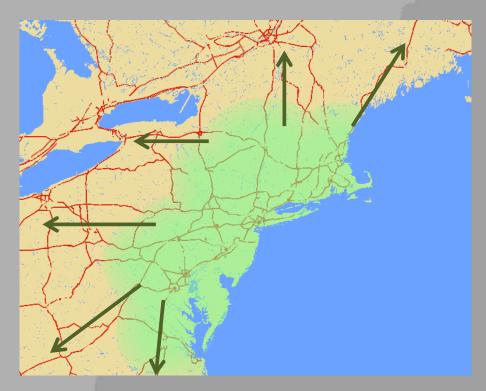

• Simplicity key – portable stations to stationary methodology and on-site hydrogen production

Phase II – refuelling locations


- Skeleton network transitioning to early adopter market.
- Three tiers of priority targeting specific market formation

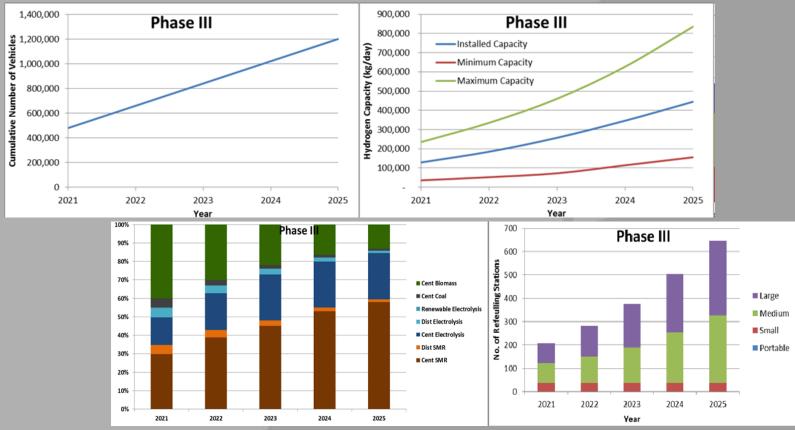


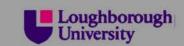
Phase II - Capacity and Production


- Dramatic increase in supply capacity to functionalise a true market
- Nature of hydrogen supply transitions to use multiple supply methods to facilitate growth and strengthen supply market

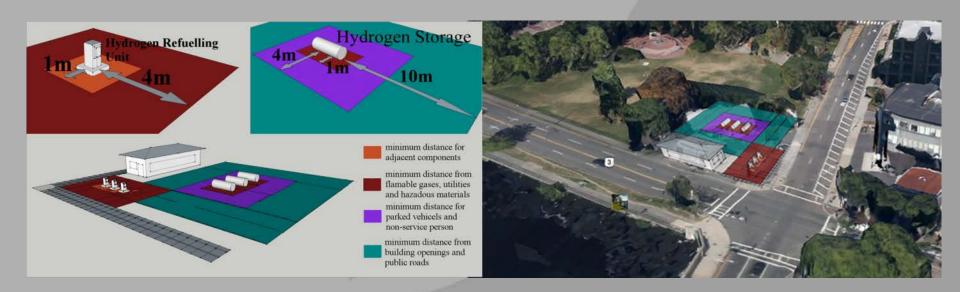
Phase III

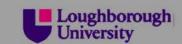
- Transition from directed markets to consumer market with a view to consumer convenience
- Integration into full market
- Penetration away from initial 'protected' market




BIRMINGHAM

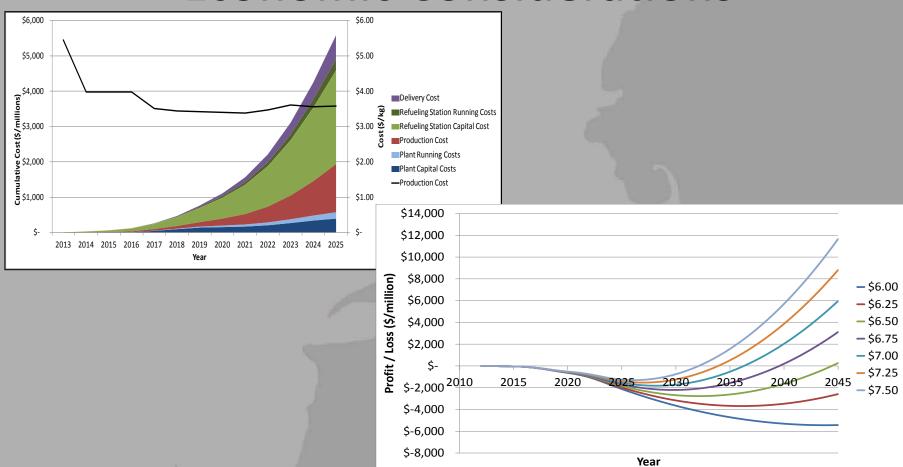
Phase III

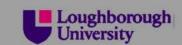

- Transition to full market able to compete naturally with competitive industries
- Hydrogen supply market stable and fully functional, production technology dominated by macro not local economics.



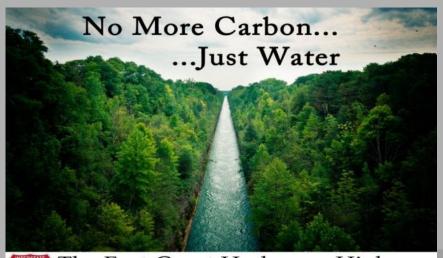
Special Regulatory Notes

- Hydrogen has been a commercial product for over a century
- Still complicated barriers to entry caused by regulation
- Regulations Navigable but need simplifying

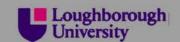



BIRMINGHAM

Economic Considerations


- True economic analysis difficult, 'futurology' in a highly changeable market place
- However, Economically Viable!

Marketing and Outreach



- Strong education program
- High level direction needed to implement public engagement effectively
- Individual marketing strategy is the role of individual companies
- Education drive is most essential aspect



Conclusions

- The North East Coast of the United States is suitable geographically and economically to implement a hydrogen refuelling infrastructure
- Strong Leadership needed by federal and local Governance
 - to direct refuelling locations
 - to stabilise hydrogen supply market
 - to decrease regulatory complexity
 - · and to lead education
- A viable Hydrogen Refuelling market and supply infrastructure is possible...

...Action needed now!

Winning Design: Kyushu University

Kazuto Tsuda
Naoya Kobayashi
Kosuke Shinto
Yohei Nagamatsu
Liana Christiani
Shingo Baba

Yasuhiro Toyofuku Takahiro Takaki Keisuke Adaniya Masaru Takada Kota Miyoshi Kyohei Hirata

*Department of Hydrogen Energy System, Faculty of Engineering

<Faculty Advisors> Prof. Megumi Takata

*Department of Business and Technology Management, Faculty of Economics

Prof. Yusuke Shiratori

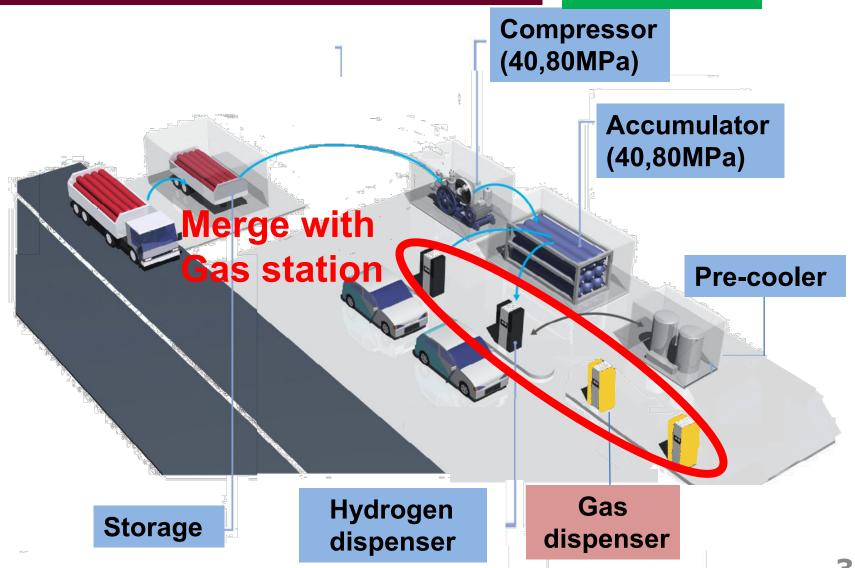
*Department of Mechanical Engineering, Faculty of Engineering

<Special Thanks to> Seiichiro Kimura

*International Institute for Carbon-Neutral Energy Research (I²CNER) *Next-to-last Team Leader

Soichiro Murakami

*Mitsubishi Corporation


*Last Team Leader

Merged with existing gas station

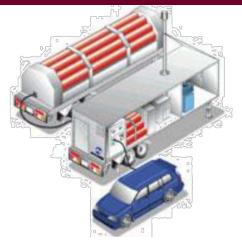
Off-site station(400kgH₂/day)

\$2.7M/site

Combination of off-site & on-site station

On-site station(1000kgH₂/day) **\$5.0M/site** Hydrogen Compressor production by (40,80MPa)steam reforming **Accumulator** (40,80MPa)**Pre-cooler** > Reduce land cost Much fueling demand > Convenient for drivers Hydrogen Gas **Storage**

dispenser


dispenser

Station design

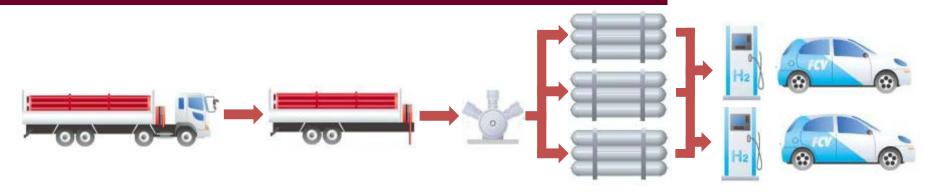
Portable station(40kgH₂/day)

\$ 0.7M/site

Compact size
Low cost
Movability

Fit with early phase

Gas station


Portable station (40kgH₂/day)

Station design

Modular design (off-site station)

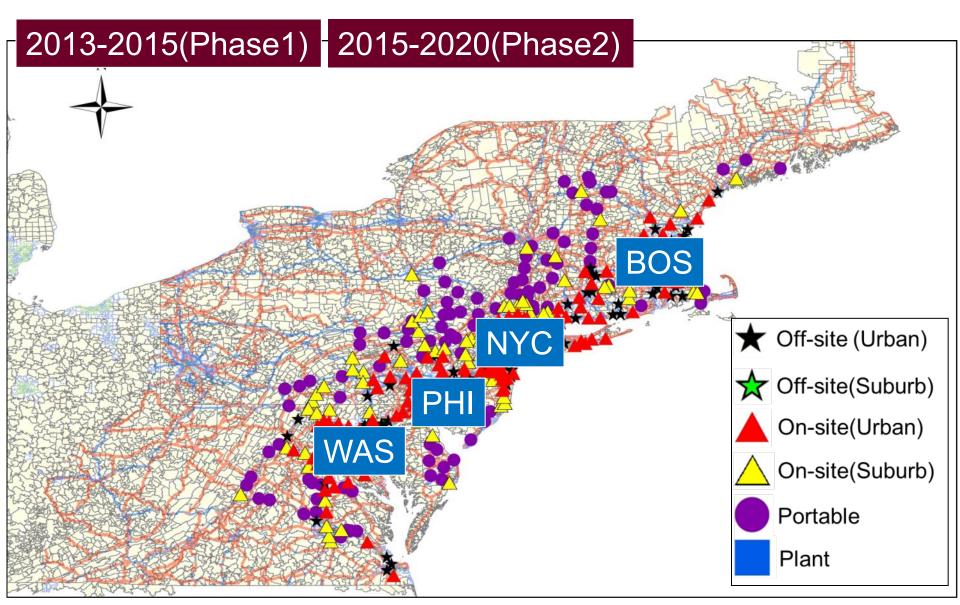
\$2.7M + \$0.67M + \$0.28M /site

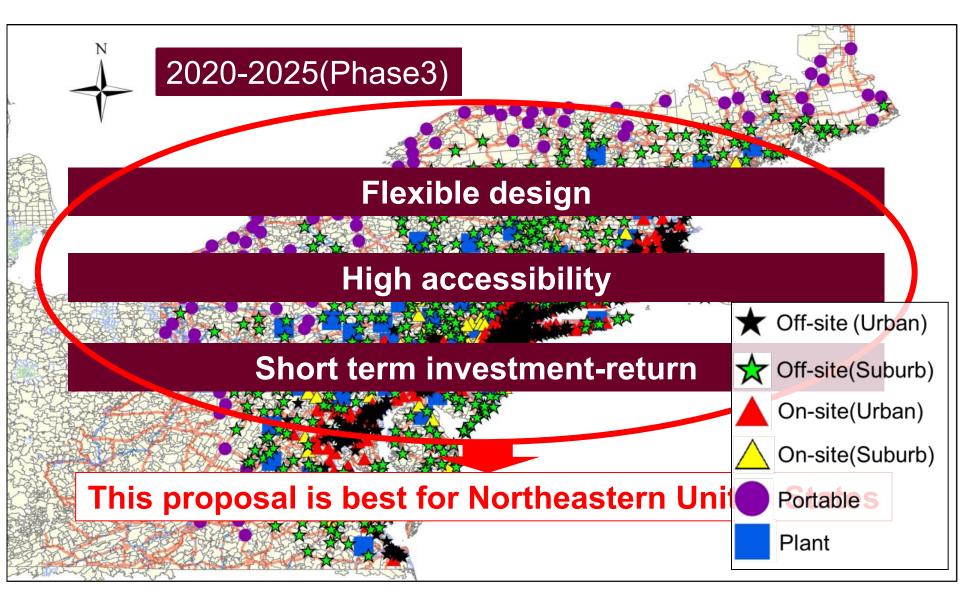
New place

Portable station (40kgH₂/day)

Gas station

Off-site station (1200 kg H₂/day)




Summary

Summary

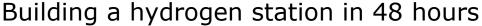
Award Ceremony at ACT Expo 2013 in Washington D.C.

2013-2014 Contest

The theme of the 2013-2014 Hydrogen Student Design Contest is "Development of a Drop-in Hydrogen Fueling Station".

Student teams are challenged to design a hydrogen fueling module that fulfills the requirements of

- low-cost
- easy permitting
- low-maintenance
- mass-production
- and transportability


in order to create a model for a reliable, convenient and reasonably priced refueling experience for all hydrogen fuel cell vehicle customers.

System Overview

Jacob KrogsgaardManaging DirectorH2 Logic

http://www.youtube.com/watch?v=kjGaNGhz1pE

2013 - 2014 Contest

Design Data And Equipment Drawings

- All components of the system need to be described in detail, including their interconnection supported by detailed high-resolution schematics
- A blueprint and schematics of the entire systems with specs on key data, including footprint, weight, and interconnection requirements needs to be included

Cost And Economic Analysis

- O Determine the costs of their proposed hydrogen fueling system
- Include all fixed costs associated with the team's station design
- O Estimate the operating costs of the station as well as estimate costs for replacements of parts

Safety Analysis

- Describe how safety concerns and applicable codes and standards have been addressed for their fueling system
- Safety equipment and operational safety, as well as public perception of safety, are included
 Siting
- O Identify one specific site in the United States to site their fueling station

Operation and Maintenance

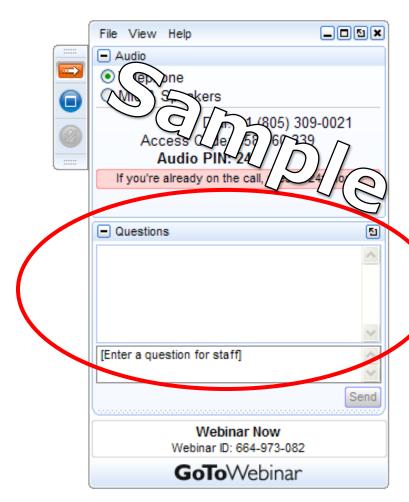
O Identify one specific site in the United States to site the fueling station

Environmental Analysis

Provide a narrative of the environmental impacts of the design

Interface Design / Customer Education

- Develop an interface for the customer
- Develop a one-page high-resolution advertisement


How to Register/Submit an Abstract

- Details on the Contest and team registration at <u>www.hydrogencontest.org</u>
- Abstract due
 - Early Deadline January 15, 2014
 - Late Deadline January 31, 2014

Question and Answer

Please type your question into the question box

Thank you!

- O Early Deadline to submit an abstract for the 2014 Contest is January 15, 2014
- O Late Abstract Deadline is January 31, 2014

US DOE Webinar Series

Fuel Cell Technologies Office

EERE Fuel Cell Technologies Office

14 January 2014

Thank You for Your Participation