2006 DOE Hydrogen Program Dimensionally Stable High Temperature Membranes

Cortney Mittelsteadt Giner Electrochemical Systems 4/19/06

This presentation does not contain any proprietary or confidential information

Project ID # FCP 16

Overview

Timeline

- Begin 4/3/2006
- Review 4/2/2009
- <10% Complete

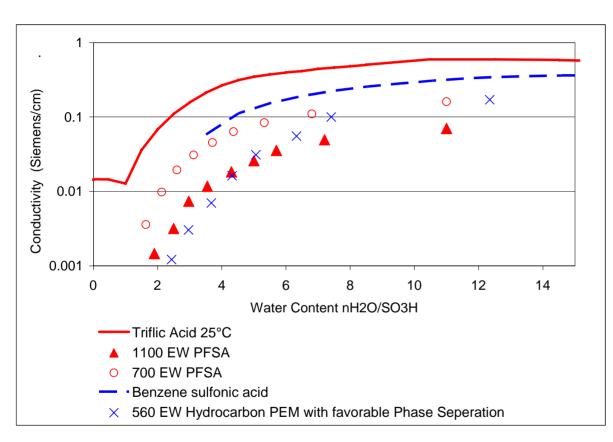
Budget

- Total project funding (to 2009)
 - \$899K DOE Funding
 - \$529K Recipient
 - 37% Cost Share
 - \$150K 2006

Barriers addressed

- A. Durability
- B. Cost

Technical Targets (DOE 2010 Targets)


- 0.10 S/cm at 1.5 kPa H_2O Air inlet - $<$40/m^2$
- > 5000 h lifetime
- Stability in Condensing conditions

Partners

General Motors

Background

In characterizing hundreds of PFSA and hydrocarbon membranes we found:

- 1. all ionomers have the same nH_2O/SO_3H at a given RH (RH<70%).
- 2. PFSA's *always* have a higher conductivity at a given water content for similar EV (EW/density).
- 3. Promoting phase separation in HC membranes improves conductivity.
- 4. Difference in conductivity is almost identical to the difference in conductivity of small model acid compounds.
- Even low EW PFSA's will have to be very thin to meet DOE targets for area resistivity.

Approach: Lower EW of perfluorosulfonic Acid ionomers to increase low RH conductivity and support the ionomer with two and three-dimensional non-ionic materials

- Two Dimensionally Stable Membrane
 - Generate Supports
 - Thickness and Pore Size
 - Incorporate Ionomers
 - 700 to 1100 EW PFSA
 - Characterize
 - Performance
 - Durability
 - Cost

Mag:700 kV:20 plasma clean, bottom surface 10 µm

- Three Dimensionally Stable Membrane
 - Develop Bulk Polymerization Methods
 - Polymerize in Selected Supports
 - Characterize
 - Performance
 - Durability
 - Cost

Technical Accomplishments/

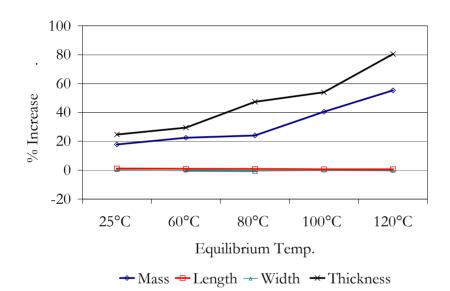
Progress/ResultsTwo Dimensionally StableThree DimensionallyMembranesMembra

- Measured greatly improved mechanical strength
- Demonstrated *no* x-y swelling up to 120°C
- Fabricated 50 cm² MEAs for fuel cells and electrolyzers

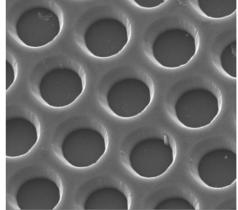
plasma clean, bottom surface

Three Dimensionally Stable Membranes

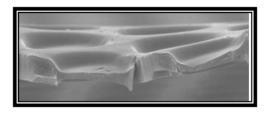
- Purified Ionomer
- Generated oligomers



kV:20


May 2006 DOE Hydrogen Program

10 um

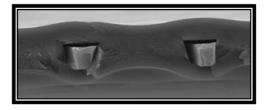

Accomplishments/Progress

Dimensional and mass increase of composite membranes consisting of 1100 EW PFSA incorporated in 8- μ m polyimide support seen in adjacent figure.

Mag:700 kV:20 plasma clean, bottom surface 10 um

•20µ holes Surface Tension leads to uniform

filling of holes


during casting

Porous Support

•polyimide

•50% open

•8µ thick

Addition of more ionomer leads to desired PEM thickness

Future Work

- 2006
 - Highlights will be to fabricate and characterize matrix of 2DSM
 - Pore size
 - EW
 - Thickness
 - Bulk Polymerization for 3DSM
- 2007
 - Demonstrate ability to make performance targets
- 2008
 - Demonstrate ability to make cost and durability targets

