



Energy Efficiency & Renewable Energy



Adopting LED Technology: What Federal Facility Managers Need to Know

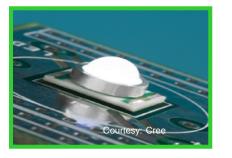
September 11, 2014

**Eric Richman** 

Pacific Northwest National Laboratory



#### What is planned for this webinar -


- The nature of LED technology
  - The clear advantageous
  - The cautions and caveats
- How to choose good products
  - What makes a good product
  - What makes it right for my project
- Where are LEDs a good fit
- What is important in determining project cost-effectiveness with LEDs
  - What's different about LED costing and economics
  - What might be different about my project
- What resources are available to help make good decisions



LED Basics: What makes them go....

You've heard that LEDs function differently than other lighting technology. So what's the difference?

- Incandescent/Halogen --- a glowing wire or filament
- Fluorescent --- an electric arc that excites a gas that causes phosphors to glow
- High-Intensity Discharge (HID metal halide, high pressure sodium) --- an electric arc that vaporizes material that emits light
- LED --- an electronic semiconductor diode (chip) that emits photons (light) when current is applied.



This new technology offers great advantageous....and some cautionary attributes



Energy Efficiency & Renewable Energy





## The good stuff about LEDs

- Small format
  - Provides for more flexibility in luminaire design
  - Great for hidden applications (e.g., showcases, equipment)
- Directional radiate in 180 degrees
  - Can improve application effectiveness
  - Helps put light where its needed
- Robust and sturdy
  - No fragile filament to break
  - No large glass enclosure to break
- Potentially small environmental footprint
  - Relatively small material component
  - Primarily recyclable material (aluminum)





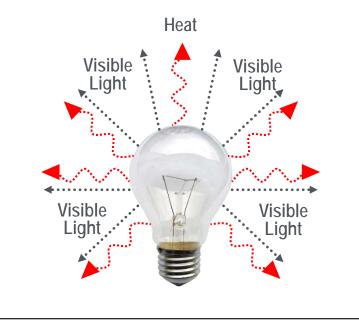
- Do not *radiate* any significant waste heat (UV, IR)
  - Good for fragile artifacts and organics (paintings, food)
    .....but they do produce heat more later
- Potential long life
  - Could reduce replacement and maintenance costs
    ....but this is not simple more later
- Potential high efficacy low energy
  - Promising efficacy that can surpass other technologies
  - Low energy a perfect "green" component

....but efficacy characterization is not simple – more later



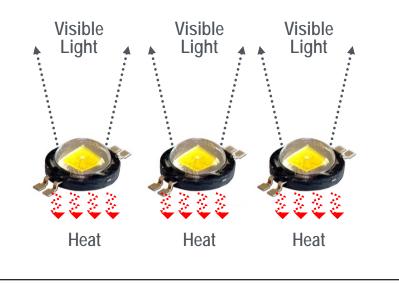
....or at least clarifying the reality

- Three of the biggest miss-statements....
  - "LEDs produce no heat"
  - "LEDs last 100,000 hours to forever!"
  - "LEDs are all extremely efficient"






Energy Efficiency & Renewable Energy ....actually, they DO....but prefer to keep it to themselves


#### **Incandescent Source**

- (also typical for FL, HID)
- Some generated heat is radiated away (IR)



#### LED source

 Generated heat does not radiate. It must be removed by conduction or convection



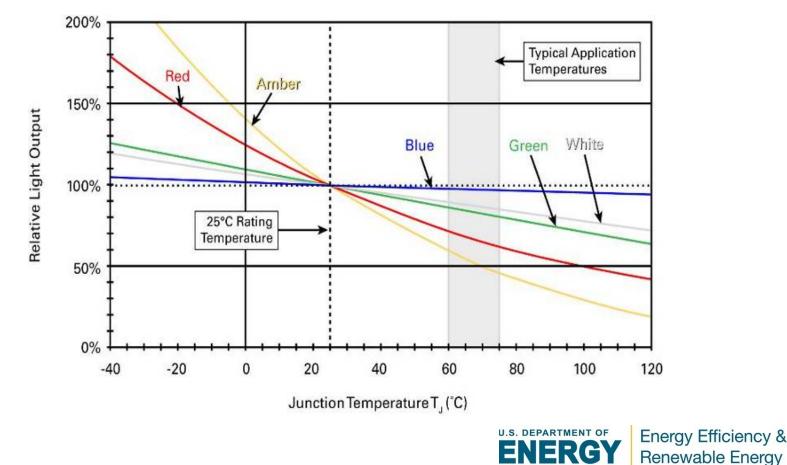


Energy Efficiency & Renewable Energy

#### **Comparison of Light vs. Heat**

#### Power Conversion for "White" Light Sources

|                                               | Incandescent*<br>(60W) | Fluorescent*<br>(common linear<br>lamp) | Metal Halide** | LED***<br>(phosphor<br>converted LED) |
|-----------------------------------------------|------------------------|-----------------------------------------|----------------|---------------------------------------|
| Visible Radiated Light                        | 8%                     | 21%                                     | 27%            | 31%                                   |
| Total energy loss (not<br>converted to light) | 92%                    | 79%                                     | 73%            | 69%                                   |
| radiated heat loss (IR)                       | 73%                    | 37%                                     | 32%            | ~ 0%                                  |
| radiated energy loss (UV)                     | 0%                     | <1%                                     | 3%             | 0%                                    |
| non-radiated heat loss                        | 19%                    | 41%                                     | 38%            | 69%                                   |
| Total Energy                                  | 100%                   | 100%                                    | 100%           | 100%                                  |


\* IES Handbook, 10<sup>th</sup> Edition; \*\* Osram Sylvania; \*\*\* DOE SSL R&D Multiyear Program Plan, 2013

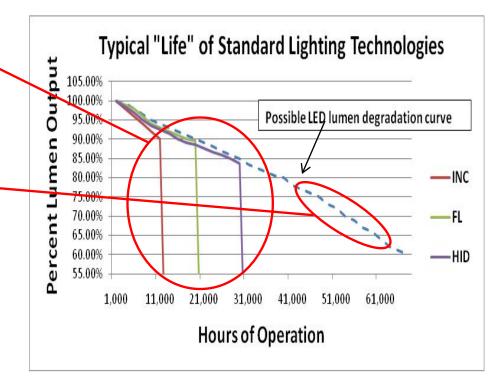


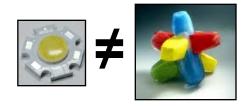
Energy Efficiency & Renewable Energy

#### Heat effects on LED performance

- Higher junction temperature (at the LED diode) degrades light output and life
- Heat can also degrade other components (lens, driver)



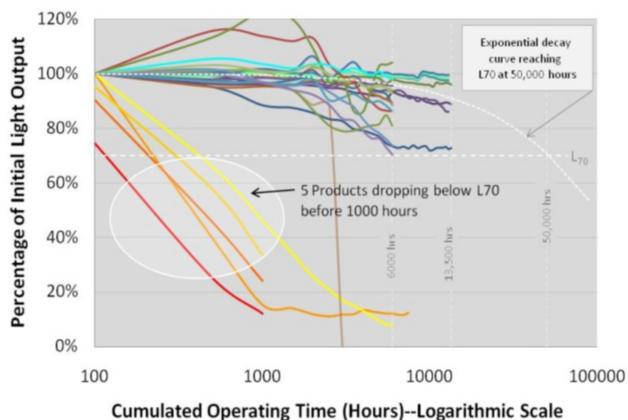

- LEDs are good options where you do not want heat (or UV) radiating on objects (art displays, fragile/melt-able foods, etc.)
- Consider product choices carefully when placing LEDs in confined environments where heat can build up
  - some lamps will be labeled not for insulated or lensed fixtures
- Look for emerging products to be progressively better at withstanding heat




# LEDs last 100,000 hours to forever!

LEDs are not "Everlasting Gobstoppers"

- ALL light sources degrade most fail before critical light output level is reached
- LED diodes can survive but also degrade well beyond useful light level
- Industry considers lumen output as one measure of the useful life of an LED diode. Commonly, 70% of initial output is used.








#### **LED life characteristics**

• The "Useful Life" for an LED **system** has multiple elements: LED diode, encapsulant, array architecture, driver electronics



#### **Relative Depreciation in Light Output**

Early LED product
 test data shows
 success and
 caution...



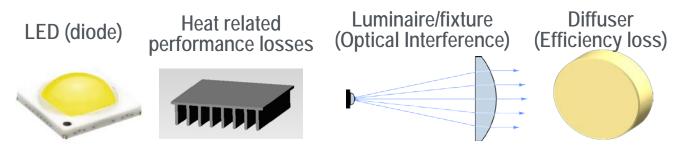
Energy Efficiency & Renewable Energy

### A few words about LED life and testing....

- Actual LED product life is still elusive for manufacturers and users many variables, only one of which is lumen depreciation
- Potentially long life can drastically effect economics and project decisions....more on this later.
- The industry has developed the LM-80 + TM-21 duo of standards to put some sense to the lumen depreciation issue
  - LM-80/TM-21 provide testing and mathematical extrapolation to estimate lumen depreciation over time - but only for LED packages.
  - This LED package estimation has useful but limited application to complete LED fixture products
- The new LM-84 + TM-28 duo provide a similar method that applies directly to complete luminaire products.
  - LM-84 and TM-28 are new so you won't see data for a while



## LED "Life" Reality

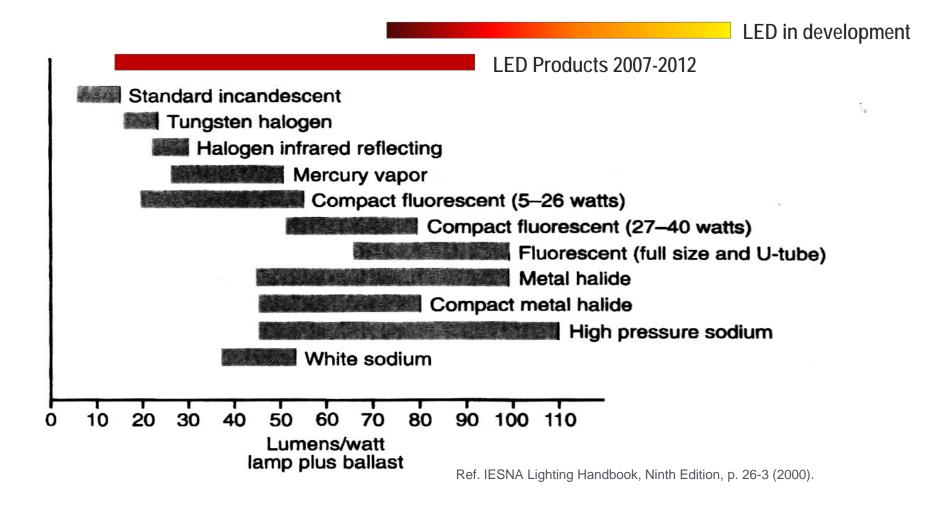

- The end of life of an LED product can involve more than just lumen depreciation. Other potential failure factors include:
  - Driver electronics
  - Material/connection fatigue
  - Lens deterioration
- However, evidence suggests that under normal operating conditions, lumen depreciation will be the primary life determinant
- At some point the light output of a long lasting LED may be too dim for its intended purpose
  - Plan accordingly for maintenance/replacement purposes
  - Consider the economics of a realistic useful life in project planning



#### LEDs are all extremely efficient

Well....some are and some aren't (yet)

- Reported LED diode efficacies (ideal lab conditions) are up to ~250 lumen/Watt – higher than other light sources
- .....However, an LED luminaire (fixture) is a system and all components effect the total product efficacy (lumen/watt)




• Complete LED luminaire efficacies are more modest.

(~10 lm/Watt to ~120 lm/Watt)



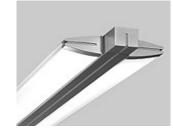
#### LED diode efficacy compared to other systems





## **Comparing Effectiveness of Different Lighting Types**

#### So, how is complete product output and efficacy determined?


#### Incandescent/Fluorescent/HID:



Source (lamp+ballast) efficacy is tested



Fixture (housing) efficiency tested



Test data is combined for complete product output

LED:



Complete product is tested as a whole for output and efficacy



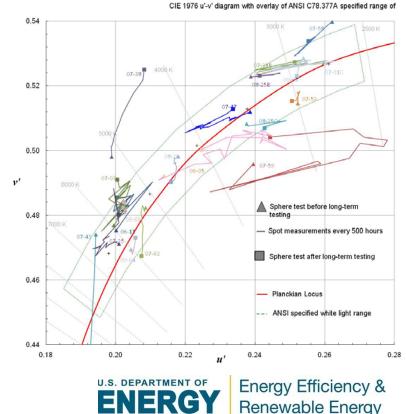
## **LED Efficacy Reality**

- Look for complete LED fixture efficacy and total output based on appropriate testing (i.e. LM-79)
- Competing fluorescent fixture efficacy and output for comparison must be calculated from lamp output and fixture efficiency
- Highest efficacy may not automatically determine the best project choice application needs are important!



- Glare?
- Flicker?
- Color availability/stability?
- Dimming capability?
- Environmental sustainability?
- Health hazards?




#### **Glare and Flicker**

- Glare
  - The small bright nature of individual LEDs creates the potential for glare when products are viewed directly
  - Most products cover or hide direct view of individual LEDs
  - Glare is relatively subjective to each individual
  - Try one, do a test mockup and compare before deciding
- Flicker
  - Can effect a percentage of the population at different levels
  - Flicker also occurs with discharge products (CFL. FL)
  - Most significant perceivable flicker occurs during dimming operations
  - Metrics to rate product flicker are available but with limited use and ultimately subjective for each user



## **Color – Availability and Stability**

- LEDs can offer the same color options as Fluorescent
  - Rated in Kelvin (typically 2700k warm to 5000k cool)
  - 3500k is considered appropriate for common spaces
  - LEDs can offer the same color rendering capability as other lighting technologies
- LEDs can experience color shift over time
  - Other technologies also shift
  - Color shift perception can be very subjective
  - Shift can vary with product a quality issue
  - Consider how important this is to the project



- LED technology (the diode itself) is inherently dimmable
- HOWEVER, the success of the dimming depends on the driver and dimmer control compatibility
- Manufacturer's are starting to label products with dimming capability
- Some guidance is available from manufacturers and DOE on identifying successful LED dimming systems



#### **Reported Potential Health Hazards**

- Optical safety (blue light) has been raised as a concern for LED products
  - The primary issue is evidence that high blue or violet light exposure can damage the retina
  - General white-light LED products do make use of Blue LED sources but only to drive mixed color phosphors
  - LED white-light products have no more blue light component than other sources at the same Color temperature
  - LED white-light products are not considered a optical safety risk per current international standards



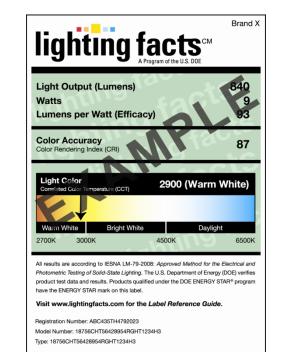
First, look for appropriate product information

- Manufacturer/distributor product performance information should be based on appropriate test data. (LM-79 for LED lamps and luminaires)
- Understand the source of any "lifetime" claims. Look for LM-80/TM-21 or LM-84/TM-28 data when available.
- Consider the information provided by available third party listings and rating programs:
  - Lighting Facts
  - ENERGY STAR
  - Design Lights Consortium (DLC)
  - Lighting Design Lab and similar utility lists



# **Energy Star Qualified Product List**

- Federal program operated by the EPA
- Covers many consumer products aimed primarily at the residential market
- Includes CFL and LED luminaires and lamps
- Sets a MINIMUM performance bar for efficacy, color, and rated life




- VOLUNTARY.....but often believed to be mandatory
- Required by some programs and federal agencies and widely recognized as a metric for quality



# **Lighting Facts Advocates Label**

- A DOE program to promote accurate performance reporting for LEDs
- Manufacturers join and pledge to support quality objectives and use the Lighting Facts label on products
- Key product performance reported includes lumen output, watts, efficacy, color accuracy (CRI), light color (CCT)



- VOLUNTARY label.....but often believed to be mandatory
- Useful tool for comparison of **similar** products



# **DesignLights Consortium List**

- A project of the Northeast Energy Efficiency Partnerships (NEEP) regional group but **nationally available**
- Maintains listings of LED products meeting minimum performance and quality metrics in 30 specific categories
- Generally covers mostly commercial products not covered by Energy Star
- VOLUNTARY listing.....but often used and referenced
- Required by some programs and federal agencies and widely recognized as a metric for quality





# **Lighting Design Lab and Similar Product Lists**

- Lighting Design Lab a program that promotes education for lighting energy conservation
  - Supported by regional (northwest) utilities and efficiency programs
  - Maintains LED Qualified Products List
  - Major lamp and luminaire categories of products meeting minimum performance and quality metrics
  - VOLUNTARY listing.....but often referenced AND publically available



- Similar utility and utility group lists exist
  - Generally only available to the specific utility or a utility group
  - Used for utility rebate programs to incentivizing efficient technology



Energy Efficiency & Renewable Energy With data in hand.....Does the product have the capability to provide what is needed **for the application**?

- Light delivery
  - match existing conditions or
  - meet industry recommendations to support actual needs

Retrofits are prime opportunities to put light delivery at correct levels

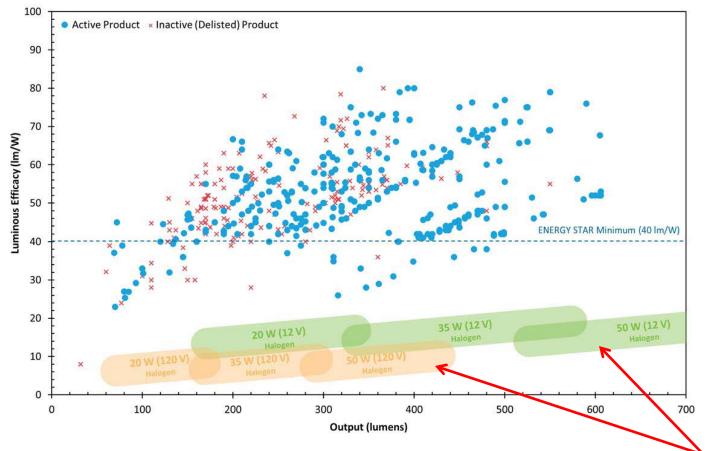
- Light distribution special needs such as spotlighting?....or just general distribution
- Useful life how long is long enough?
- Color match existing? or upgrade to better/different
- Economics...more on this later



#### It depends on the application (you knew I was going to say that)

- Product performance is always key followed closely be functional needs
- In general, the attributes of LED technology make the following typically good applications:
  - Directional applications where the source efficacy and optical efficiency benefits are useful (e.g., downlights, troffers, streetlights)
  - Applications where the costs for energy and maintenance are high.
  - Applications that benefit from "white light" and improved uniformity (e.g., street and area lights).
  - Applications with environmental constraints (e.g., mercury restrictions, green building requirements).




## What are product offerings currently like?

- Products and performance vary greatly due to the variety of manufacturers and relative newness of the technology
- The following charts\* show current snapshots of the efficacy and output of products that
  - Have a Lighting Facts label or
  - Are on the DLC Qualified Products List
- These provide a relative idea of where products may be able to support the application
- But remember, good application also involves other criteria

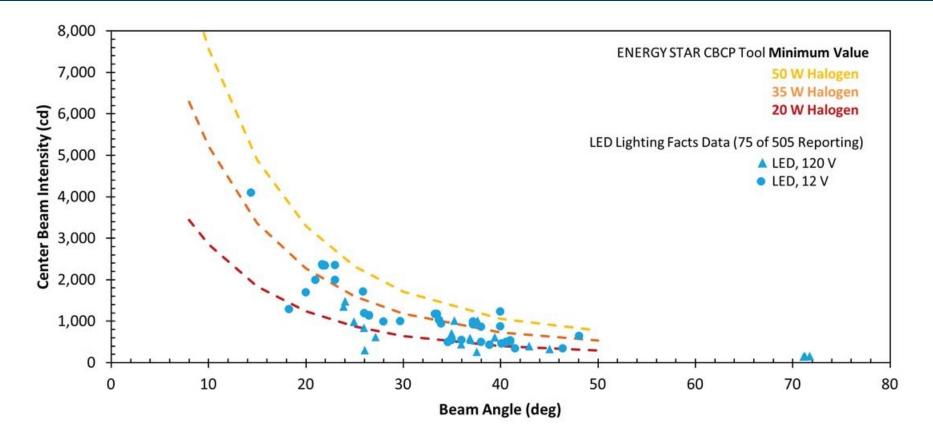
\* charts from DOE CALiPER studies



#### LED MR-16 Lamps



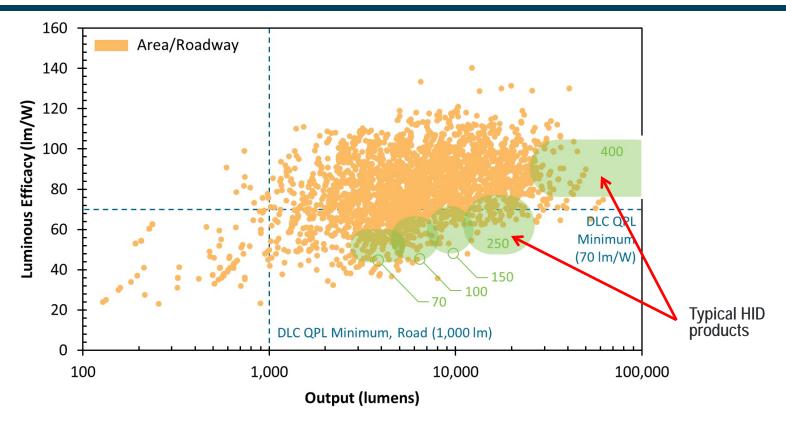
- Commonly used for retail product and display highlighting.
- Very high efficacy (compared to halogen counterparts)
- Output capability not quite matching the 50w 12v product category




Energy Efficiency & Renewable Energy

Typical Halogen

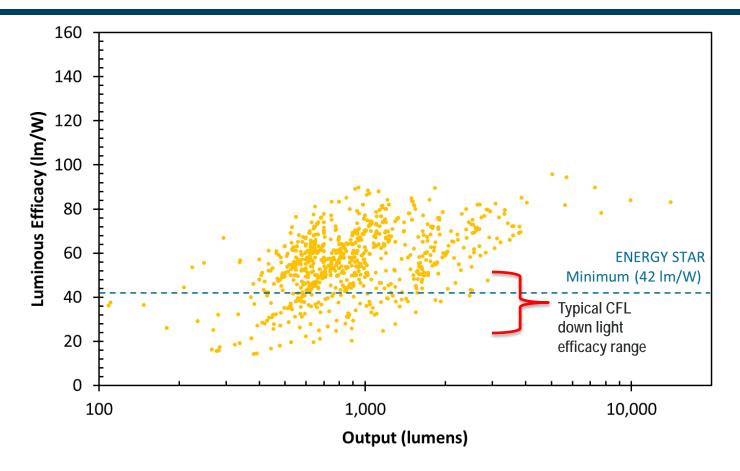
products


#### LED MR-16 Lamps – beam intensity



- Good options for replacing 20w and 35w halogens but weak at tighter beam angles
- More limited options for replacing 50w halogens

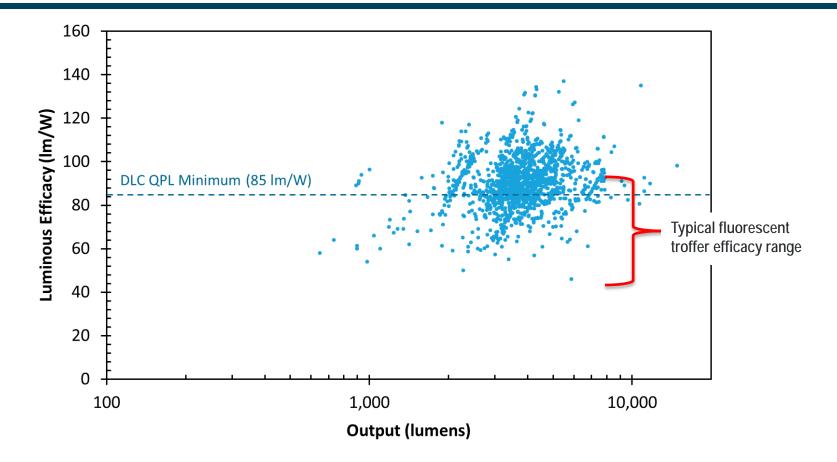



## LED Outdoor/Parking/Area/Roadway



- Many options with better efficacy and comparable output to most parking or area lighting (<400w)
- Still struggling to meet output of larger (>400w) applications
- Note many products with efficacies below current technologies

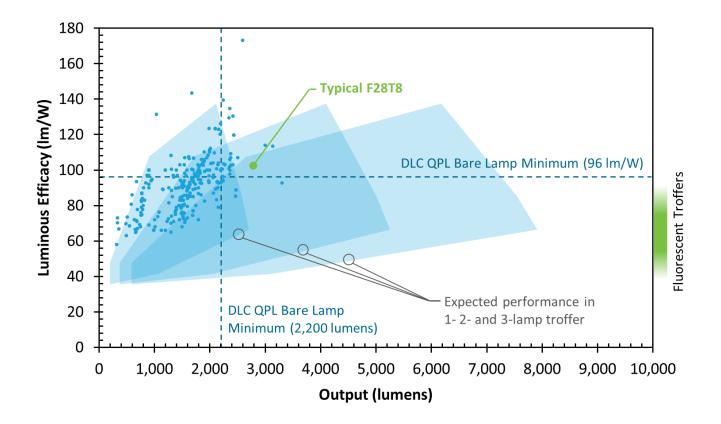



#### **LED Down lights**



- Many efficient options in the 400 to 2000 lumen range which covers most applications
- Note that some LED products have efficacies below typical CFL!



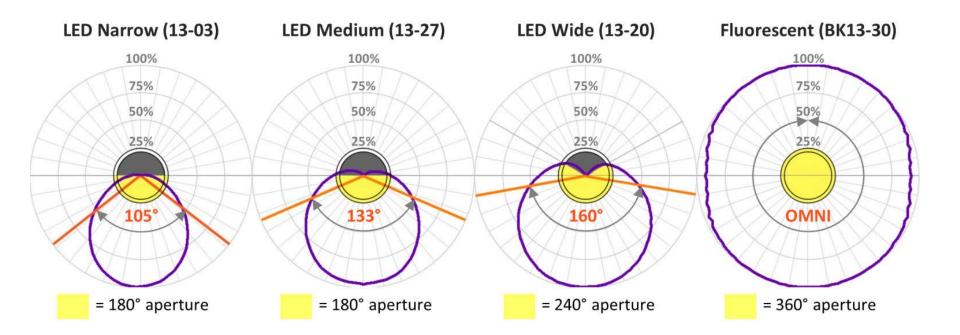

#### **LED Troffers**



• Many products in the 2000 to 5000 lumen range similar to common 2lamp and some 3-lamp fluorescent fixtures



### **LED Linear replacement tubes**

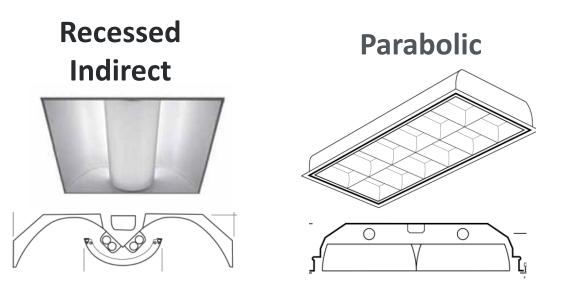



- Many products with efficacy at and far above fluorescent troffer levels.
- Common 4' Product output in the 1000 to 2400 lumen range generally below a typical fluorescent but can meet most application needs



## **LED replacement tube varieties**

- LED replacement tubes come in a variety of distributions
- Directionality is efficacious but can effect performance in fixtures designed for omnidirectional fluorescent tubes.








# **Fluorescent fixture type representations**

What happens when typical LED replacement tubes are retrofitted in various fluorescent fixture types?



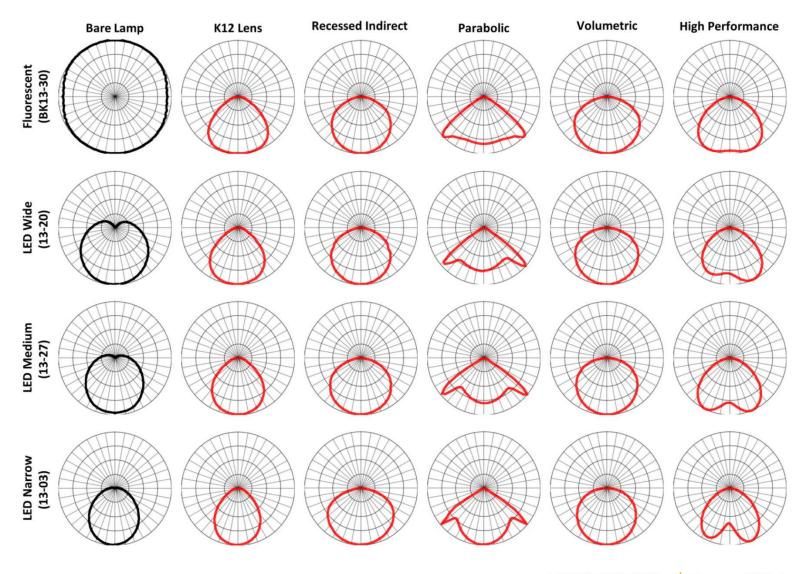
Volumetric







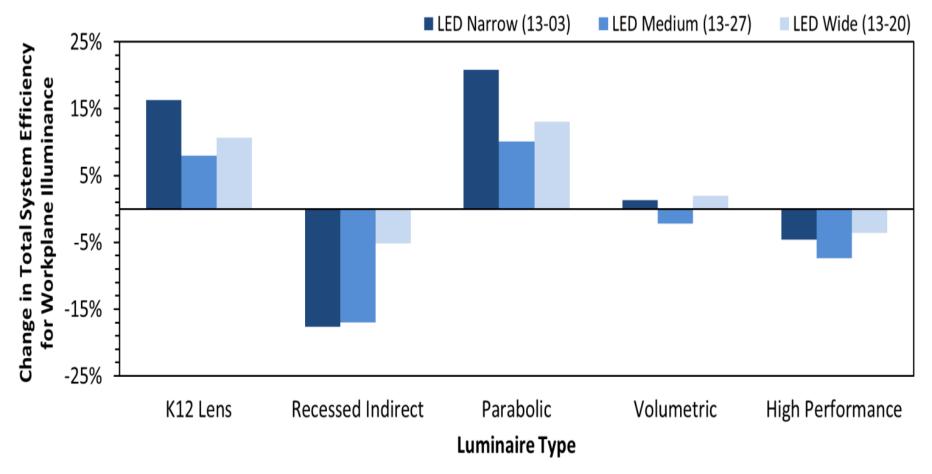



K12 Lens








### **Fluorescent tube vs. LED tube – distribution patterns**





Energy Efficiency & Renewable Energy

# Fluorescent tube vs. LED tube – workplane efficiency



 Recessed indirect fixtures present potential issues with LED replacement tubes – 15% loss in delivery efficiency



# More on LED linear replacement tubes

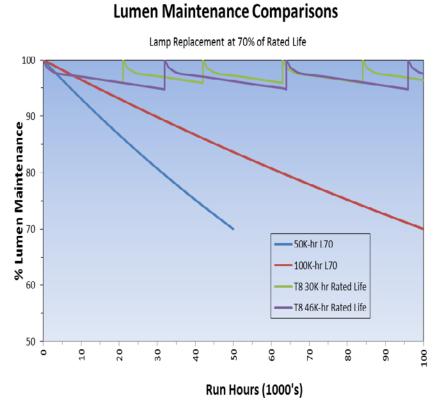
- Can be found as lamps and kits each with considerations:
  - Lamp w/integral driver requires one of several re-wiring configurations. These should come as a kit with UL classification
  - Lamp w/separate driver— also requires re-wiring and should be procured as a UL classified kit
  - Lamp that runs off (many/most) existing fluorescent ballasts
    - Can be easiest and least cost option
    - Currently no UL issues
    - Potential compatibility and performance issues try before you buy!
  - LED strips or panels w/separate driver also requires re-wiring and should be procured as a UL classified kit
- Some kits may not fit in all fixture types
- Most options require fixture labeling of new wiring configuration which may restrict future replacement options



# How Do I Correctly Consider the Economics for LEDs?

- First Don't assume LED is always the best option! Consider the economics of other technologies where applicable
- Economic analysis for LED lighting is no different than other technologies with perhaps one exception – lifetime
  - LED life is an estimate with a lot of potential variability
  - Your project may not be making use of the entire expected LED life
- Two commonly seen and used economic analysis:
  - Payback for a single proposed retrofit often seen as part of product literature and from distributors
  - Comparison of multiple options allows for more realistic decisions
- Multiple analysis tool options
  - Simple payback via basic spreadsheet (this is not rocket science)
  - Life-cycle cost tools BLCC and others




# **Calculating Initial Costs and Energy Savings**

- Initial costs
  - LED product costs can be a moving target but are acquired the same as other options
  - Since LED is new technology, contracts for labor may be variable work with provider to familiarize them with similarities to standard work
- Energy savings
  - Are you counting reduced energy associated with reduced light levels?
  - not fair! unless also applied to other possible options
  - Are any controls or changes in operation (reduced hours) involved?
  - also not fair unless applied to other options.
  - Are rebates or subsidies a one time deal?
  - Make sure you will be keeping them until they pay back



# **Calculating Practical Maintenance Savings**

- Primary issue is potential long life of LEDs – savings can be substantial and drive the economics
- Consider practical life for the project
  - Driver and other component life
  - Fixture aesthetics over time other replacement reasons
  - Acceptable light level over time
- How is maintenance costed and/or budgeted? - will you get real credit for reduced maintenance needs?





Energy Efficiency & Renewable Energy

Once you have the numbers and it LOOKS OK on paper...

- See it yourself, more than one sample
- Check color rendering on your own skin, familiar fabrics
- Check dimming capability if being applied
- Check on the life of the product:
  - What is the basis for the life rating?
  - What is the life of the power supply and driver?
  - Does the luminaire stay clean over life of LED?
- Put tough performance metrics in your specification to ensure the right product and performance levels
  - Some specifications exist for parking areas and structures, and 2x2 indoor lighting



### **Resources and References**

#### Listing and Rating Programs:

• DesignLights Consortium

https://www.designlights.org/

- SSL Quality Advocates Lighting Facts <u>www.lightfacts.com</u>
- ENERGY STAR®

http://www1.eere.energy.gov/buildings/ssl/energy\_star.html

Lighting Design Lab – LED list

https://www.lightingdesignlab.com/

#### LED characteristics and issues resources:

Color characteristics

http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/led-color-characteristics-factsheet.pdf

- Color stability
  - <u>http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/color-shift\_fact-sheet.pdf</u>
- Dimming

http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/2013 gateway dimming.pdf

• Optical safety - hazards

http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/opticalsafety\_fact-sheet.pdf

 DOE Solid-State Lighting Home Page http://www1.eere.energy.gov/buildings/ssl/



Energy Efficiency & Renewable Energy

### **More Resources and References**

#### Lighting product specifications

- DOE Commercial Building Energy Alliances Lighting Specifications
  - <u>http://www1.eere.energy.gov/buildings/alliances/technologies.html</u>

#### Lighting project economics analysis tools:

- Lighting Project Evaluator
  - <u>https://www.lightingsolutions.energy.gov/comlighting/login.htm;jsessionid=C685A8E07AD0068D6D</u>
    <u>9BFA04B2D3315B.jvm3</u>
- Better Bricks LCC Analysis calculator
  - <u>http://www.betterbricks.com/graphics/assets/documents/LCCASpreadsheet(1).xls</u>
- DOE Street Lighting Retrofit Analysis tool
  - <u>http://www1.eere.energy.gov/buildings/ssl/financial-tool.html</u>
- Building Life-Cycle Cost (BLCC)
  - <u>https://www.wbdg.org/tools/blcc.php</u>

#### **Cost-effectiveness calculation example:**

 Cost-Effectiveness of Linear LED lamps <u>http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/caliper\_21-3\_t8.pdf</u>



Energy Efficiency & Renewable Energy

# Questions?



Energy Efficiency & Renewable Energy