

ENERGY

<u>DOE Building Technologies Office:</u> Advanced HVAC&R Research Effort

IMECE Workshop on Technical Focus and Structure

Room 339B, Hilton of the Americas, ASME IMECE 2015

9:00 am to noon

DISPUTES & INVESTIGATIONS • ECONOMICS • FINANCIAL ADVISORY • MANAGEMENT CONSULTING

Welcome » Introductions and Logistics

Navigant,

on behalf of the **United States Department of Energy**, welcomes you to this workshop on an

Advanced HVAC&R Research Effort

Introductions and Logistics

- Timing
- Restrooms

Group Discussion

- Individual Insights
- Shared perspectives

Table of Contents

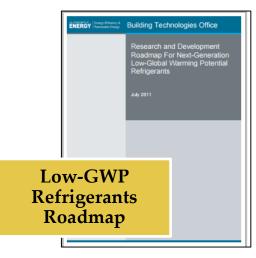
60 Technical Focus

15 Break

60 Structure

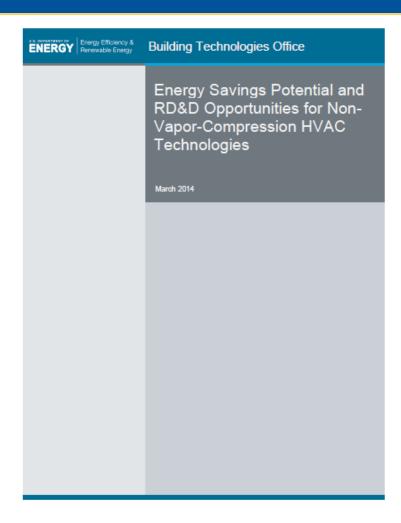
15 Review and Final Q&A

Vision » Introduction


DOE BTO has supported the next generation of HVAC&R systems through numerous R&D initiatives.

Residential Cold-Climate Heat Pump

Supercharger for Heat Pumps in Cold Climates


Vision » New FOA awards

- » Low-GWP HVAC with ultra-small centrifugal compressor Mechanical Solutions, Inc. (MSI) (New Jersey) and Lennox Industries, Inc. (Lennox) (Texas). http://energy.gov/eere/buildings/downloads/low-global-warming-potential-hvac-system-ultra-small-centrifugal
- » **High efficiency centrifugal compressor** United Technologies Research Center (UTRC) (Connecticut) http://energy.gov/eere/buildings/downloads/high-efficiency-low-global-warming-potential-gwp-compressor
- » Advanced membrane HVAC Dais Analytic (Florida) http://energy.gov/eere/buildings/downloads/membrane-based-air-conditioning
- » Thermoelastic cooling system (TEC) Maryland Energy and Sensor Technologies, LLC (MEST) (Maryland) http://energy.gov/eere/buildings/downloads/compact-thermoelastic-cooling-system
- » **Novel magnetocaloric A/C** Oak Ridge National Laboratory (Tennessee). Vaccumschmelze GmbH & Co. KG., (Germany) is a key partner. http://energy.gov/eere/buildings/downloads/novel-solid-state-magnetocaloric-air-conditioner
- » Electrocaloric heat pump United Technologies Research Center (UTRC) (Connecticut) http://energy.gov/eere/buildings/downloads/high-efficiency-solid-state-heat-pump-module
- » Electrochemical compression (ECC) A/C Xergy, Inc. (Delaware) http://energy.gov/eere/buildings/downloads/low-cost-electrochemical-compressor-utilizing-green-refrigerants-hvac

Vision » Non-Vapor Compression Technology Report

This Building Technologies Office report:

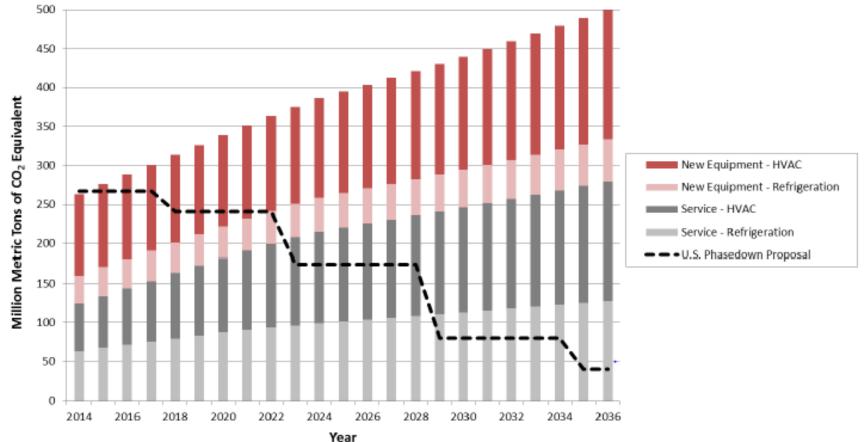
- Identifies alternatives to vaporcompression technology in residential and commercial HVAC applications
- Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems

http://energy.gov/eere/buildings/downloads/non-vapor-compression-hvac-technologies-report

Vision » A Major Research Effort

Today, DOE BTO is exploring the launch of a major new research effort dedicated to advanced HVAC&R.

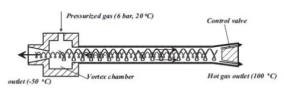
- » Dedicated focus area(s)
- » Centralized oversight
- » Committed partners across industry, academia, research organizations
- » Concentrated funding instead of independently funded projects
- » Long-term mission oriented
- » Open to new and innovative ideas and approaches


Key Driver: DOE's goal to develop next-generation technologies that 'leapfrog' existing technologies and result in <u>dramatically improved</u> <u>efficiency</u> with <u>near-zero GWP cooling fluids.</u>

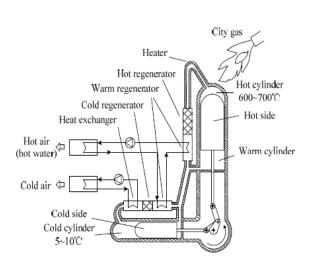
Why this major research effort? Achieving DOE's goal will require a large, coordinated, and interdisciplinary approach in order to make transformative progress.

This effort supports the U.S. HFC phasedown proposal, which targets an 85% reduction by 2035.

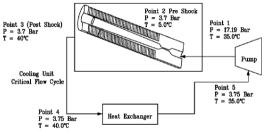
Projected GWP-Weighted HFC Consumption

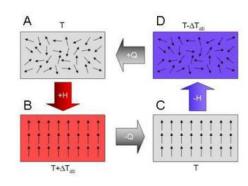


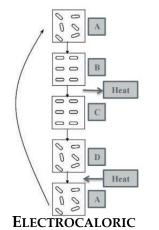
Note: Baseline = 2014-16 average consumption

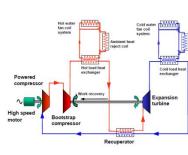


Vision » A Major Research Effort


DOE envisions a future where low-GWP HVAC solutions are the new norm and non-vapor compression will be prevalent in several end uses


VORTEX TUBE CHILLER


VUILLEUMIER HEAT PUMP


CRITICAL FLOW
REFRIGERANT CYCLE

MAGNETOCALORIC COOLING

THERMOELECTRIC

BRAYTON HEAT PUMP

Illustrative Examples

Vision » Transformational Opportunity

This effort will build on existing work on near term improvements and strive for transformational advances.

Next Generation High **Next Generation** ➤ Potential to "leapfrog" existing technologies e.g., Non-Vapor Compression Entirely new approaches Primary Energy Efficiency Near-Term Near-Term e.g., Vapor Compression Improve efficiency of Legend current technologies **Current Status** May include cost reduction **DOE** Objective Low activities High Low Cost Source: Refined from BTO Presentation: energy.gov/sites/prod/files/2014/05/f15/HVAC Overview Bouza 042314 and 042414.pdf

ENERGY

©2015 Navigant Consulting, Inc. Confidential and proprietary. Do not distribute or copy.

Research goals will include successful demonstration of both vapor compression and non-vapor-compression technologies.

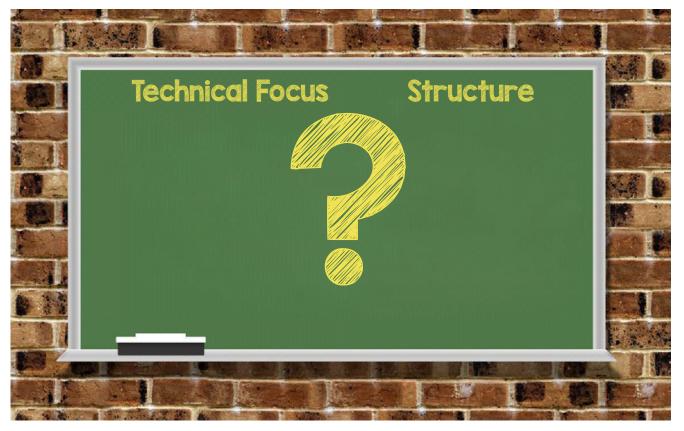
Preliminary/conceptual goals

Near Term Demonstrate emerging technology prototypes with significantly lower lifecycle GWP and energy consumption with same high-volume cost

Demonstrate full-scale non-vapor compression systems with higher efficiencies than today's vapor compression systems

Long Term Demonstrate full-scale non-vapor compression prototypes that reduce energy with high-volume cost similar to today's state-of-the-art.

Vision » Research Effort Timeline


- » BTO plans to have additional workshops, including at ASHRAE on December 8th
- » Request for Information (RFI) spring of 2016
- Will potentially lead to a Funding Opportunity Announcement (FOA), pending availability of funds

Vision » Objective

The objective of this workshop is to gather ideas on technical focus areas and best practices in structuring the research effort.

Vision » Objective of this Workshop

Today's discussion will focus solely on HVAC&R R&D.

While no less important, our discussion excludes:

- » Policy issues
- » Regulatory actions, such as efficiency standards
- » Market transformation activities

Table of Contents

Vision

Technical Focus

15 Break

Structure

Review and Final Q&A

Technical Focus » Past Research Opportunities

DOE has identified broad research opportunities in advanced HVAC&R through past workshops.

Technical Focus » HVAC Roadmap » Direct Impact Initiatives

Activity/Initiative	Topic	Activity/Initiative	Topic
Direct-current (DC) HVAC to utilize solar PV w/o inverter losses and to facilitate microgrid integration	Renewables & Storage	Material advances to reduce the cost of small absorption systems	AC/HP
Separate sensible and latent control and quantify the energy savings	AC/HP	Hybrid ventilation systems to combine mechanical & natural ventilation techniques (aka mixed-mode conditioning)	Ventilation & Humidity
Raise HP performance (all fuels) at low-ambient temperature	AC/HP	Ground-source heat pump (GHP) ground-loop cost and performance	AC/HP
Develop electrochemical compression systems	AC/HP	Alternative non-solid-state, non- thermally activated HPs with suitable efficiency, cost, and performance	AC/HP
Seasonal energy storage for residential and commercial	Renewables & Storage	Solid-state cooling systems	AC/HP

Technical Focus » HVAC Roadmap » Enabling Initiatives

Activity/Initiative	Topic	Activity/Initiative	Topic
Analysis on energy impacts of incorrect commissioning, installation, operations, and maintenance	Installation O&M	Open-source building automation system	Tools & Software
Open-source, open-architecture platform that enables smart grid connectivity for DR transactional communications	FDD Controls	Standardized building metric to incorporate energy, health, etc.	Analysis, Education, Demonstration
Low-cost sensor networks and control schemes	FDD Controls	New solutions for simultaneous heating and cooling in buildings	Zoning Distribution
Standardized methods of data acquisition and data storage for equipment sizing at end of life	Tools & Software	Energy analysis tools for homeowners to aid in purchasing new equipment	Tools & Software
Renewable-integrated district heating, cooling, and power systems	District Systems	Compile lessons learned from NREL's high performance buildings database	Tools & Software

Technical Focus » Refrigerants Roadmap

Tier 1 Initiative/Activity	Category
Expand NIST modeling research to identify and explore theoretical properties of new low-GWP blends, particularly azeotropes.	Modeling and Evaluation Tools
Characterize the heat transfer and thermodynamic properties and efficiency performance of new refrigerants and blends.	New Refrigerant Development
Techniques for detecting and reducing refrigerant leakage in currently installed systems.	Equipment Development
System-level evaluations of newly identified fluids for specific applications.	Modeling and Evaluation Tools
Techniques for improving temperature control and operational efficiency of secondary loops in installed supermarket refrigeration systems.	Equipment Development
Improve LCCP models by conducting studies on average annual versus peak season performance in large systems.	Modeling and Evaluation Tools

Technical Focus » Refrigerants Roadmap (cont.)

Tier 2 Initiative/Activity		Category	
Public repository for risk assessments, performance data, material compatibility data, and fire incidents for alternative refrigerants	<u>පි</u> ුුරු පු	Industry Collaboration	
Prototype systems that demonstrate leak detection with high-reliability, inexpensive sensors		Equipment Development	
Materials compatibility and stability of new refrigerants and blends		New Refrigerant Development	
Additional A1 refrigerants or blends as drop-in options for servicing existing equipment		New Refrigerant Development	

Tier 3 Initiative/Activity		Category	
Improve flammability test methods and prediction tools for blended compounds		Safety Risks	
Flammability risk assessments on additional A2L, A3, and B2L fluids for a wider range of applications		Safety Risks	
Investigate alternative system architectures that would inherently mitigate flammability risks with A2L and A3 fluids		Safety Risks	

Technical Focus » Current Research Opportunities

Guidance:

- » Think beyond your daily focus
- » Think about big picture

- » Build on others' ideas
- » Every idea has equal worth

Table of Contents

Vision

Technical Focus

15 Break

Structure

Review and Final Q&A

Table of Contents

Vision

Technical Focus

15 Break

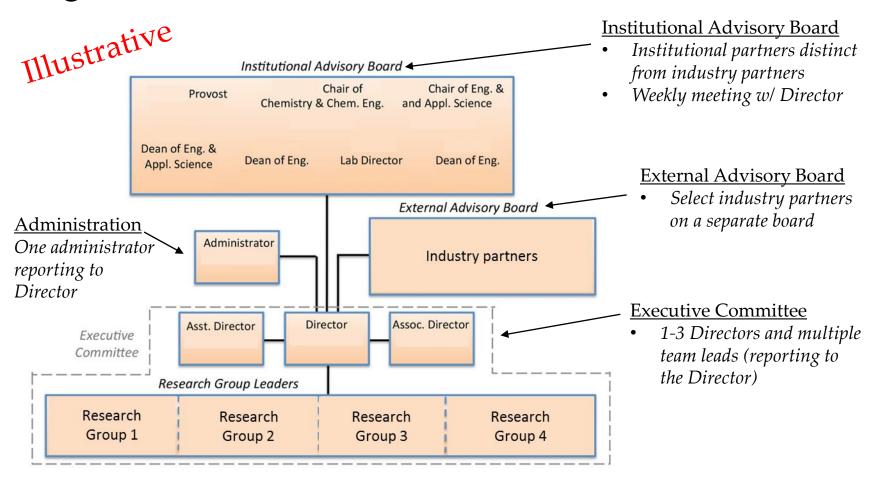
Structure

Review and Final Q&A

Structure » Management Needs

There is no single performer that can bring together all the necessary broad expertise and perspectives to succeed.

BTO anticipates that this effort will include:


- » Active BTO project management
- » Detailed annual **reporting** on progress, successes, challenges
- » <u>Tangible</u> outcomes, i.e., actual hardware
- » Strong **cooperation** from a broad array of contributors
- » Comprehensive **evaluation** of effectiveness in reaching goals
- » Publicized outcomes and lessons learned

BTO needs an interdisciplinary team, including resources in chemistry, materials science, electronics, and mechanics.

Structure » Management Research

To meet their goals, BTO wants to understand the organizational structure that delivers the needed resources.

What are the best (or worst?) practices in research management?

Guidance:

- Consider all of past experiences and those of others
- » Build on others' insights
- Every insight has equal worth

What works best to:

- Manage and allocate resources?
- Select new research projects?
- Monitor & evaluate outcomes?
- > Peer review?
- Publicize outcomes?
- Promote strong engagement from national labs, academia, and industry?

ENERGY

What makes a successful research partnership?

Guidance:

- » Consider all of past experiences and those of others
- » Build on others' insights
- Every insight has equal worth

- ➤ What partners provide the best value for you? And for what roles?
- ➤ What is valuable about your research partnerships?
- ➤ What types of partners should DOE consider having involved?

ENERGY

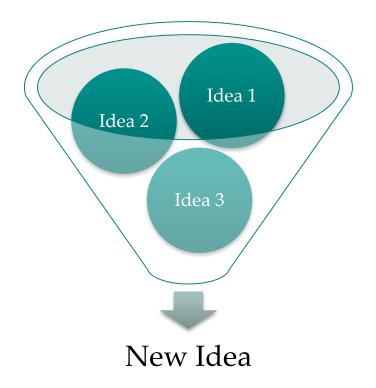
Table of Contents

Vision

Technical Focus

15 Coffee Break

Structure



Review and Final Q&A

Additional Questions

Have the discussions today sparked any additional thoughts or ideas that we have not yet discussed?

- Combinations of existing ideas?
- New ideas?
- New twists?
- Important but missing details?
- New perspectives?

Key CONTACTS

Thank you for your inputs

William Goetzler

Managing Director Burlington, MA 781.270.8351 wgoetzler@navigant.com

Matt Guernsey

Associate Director Burlington, MA 781.270.8358 matt.guernsey@navigant.com

Please make sure that your name, email, and organization are on the sign-in sheet!

