

ENERGY STAR® Hot Water Systems for High Performance Homes

Welcome to the Webinar! We will start at 11:00 AM Eastern.

There is no call in number.

The audio will be sent through your computer speakers.

All questions will be submitted via typing.

Date: September 30, 2011

Video of presenters

Building Technologies Program

Building America Program: Introduction

Building America Program Founded to:

- Reduce Energy Use
- Promote Building Science/System Engineering Approach
- Ensure Quality, Health and Durability
- Accelerate Adoption of High Performance Technologies

#1: Solutions that can be Implemented on a Production Basis

- Cost Effective, Least Cost, Highest Value Solutions:
 - Low Risk
 - Reliable
 - Durable
 - Clearly Understood Energy Savings and Performance Benefits

#2: Development of Whole Systems Knowledge

- Clearly Understood Cost/Performance Tradeoffs
- Identification and Resolution of Knowledge Gaps
- Clear Definition of Stakeholder Needs:
 - Contractors
 - Utilities
 - Realtors
 - Financial Institutions
 - Homeowners

#3: Continuous Evaluation and Performance Feedback

- Measures Guidelines
- Measures Database
- Accurate Audit and Analysis Tools
- Well Characterized Test House and Pilot Community Performance Data

15 Industry Research Teams

Alliance for Residential Building Innovation (ARBI)

NorthernSTAR Building America Partnership

Habitat Cost Effective Energy Retrofit Program

Building Energy Efficient Homes for America (BeeHa)

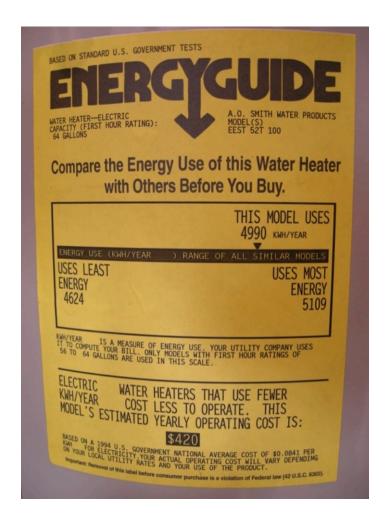
Downloading the PowerPoint File

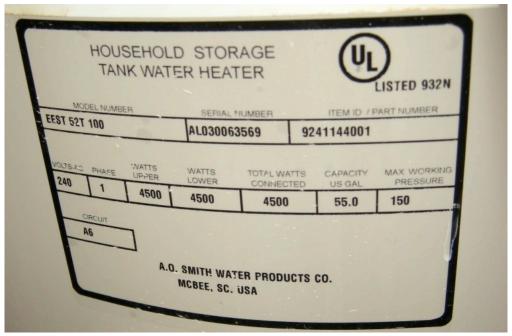
- After the presentation you can download the PowerPoint file at the following location:
 - www.buildingamerica.gov/meetings.html
- This link will be shown again at the end of the presentation

- Throughout this presentation, you can Submit your questions using the Q&A box on the left of your screen
- All questions will be addressed at the end of the webinar

Energy Star Hot Water Systems for High Performance Homes

Objectives


- Overview of Energy Star water heater types
 - Gas
 - Condensing gas
 - Tankless gas
 - Heat pump water heater
 - Solar
- Compare water heater efficiencies
- Design considerations for water heater types
- Optimizing other benefits of water heater types

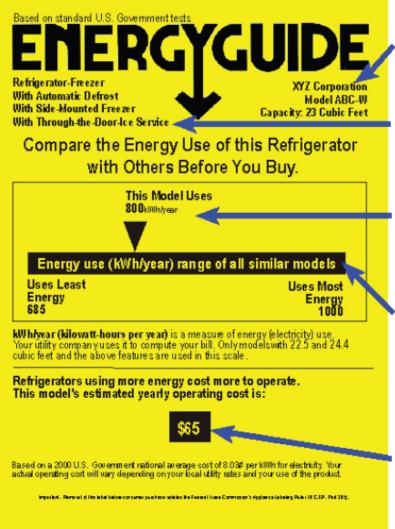


Challenge of Selecting WH

ENERGYGUIDE Label

Water Heater Types:

- Electric
- High Performance Gas
- Gas Condensing
- Tankless
- Heat Pump Water Heater (HPWH)
- Solar Water Heating


BA-PIRC

Efficiency: Energy Factor

- EF is a numeric value typically less than 3.0, used to compare performance. Higher numeric values indicate higher efficiency.
- EF is the ratio of useful energy output from a water heater with respect to the energy delivered to the water heater.

No Energy Factor Rating!

Manufacturer, model number and appliance type.

Information about features, capacity and size, so you can compare models.

Estimates of the appliance's annual energy use. The lower the number, the more energy-efficient the appliance, and the less it costs to run.

The range of ratings for similar models, from "uses least energy" to "uses most energy."
This scale shows how a particular model measures up to the competition.

An estimate of the annual cost to run this model.

GAMA Rating

Form RWHR

Request for Approval for

Residential Water Heater Rating

version 3/2003 Gas Appliance Manufacturers Association

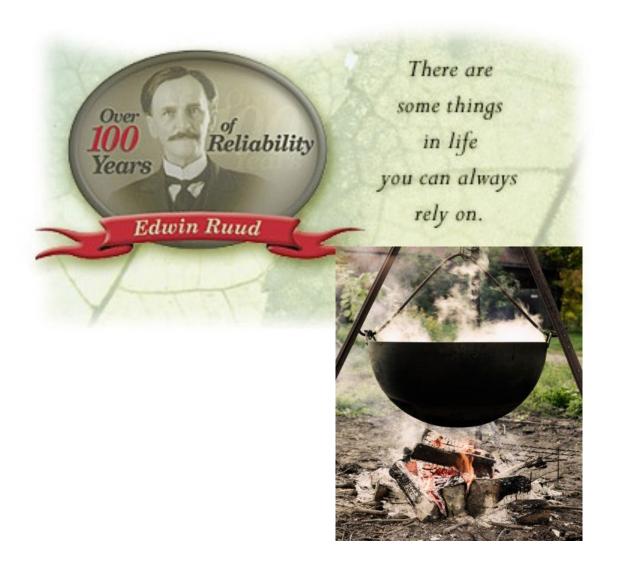
Name and Address of Company to Appear in Directory: Model Series Name: Energy Source: Type of Water Heater Earliest Publish Date: PV FVIR 8/26/05 Gas storage A.O. SMITH WATER PRODUCTS CO. Oil P.O. Box 600 Electric Resistance 25731 US Hwv 1 Heat Pump - with tank McBee , SC 29101-8510 Heat Pump - without tank Trade Names: A.O. Smith 1st HR Supply Energy Storage Volume, Input MBTUH or Type of Recovery Basic Row# Standard Footnotes Custom Footnotes Model # Rating, Gals. Effcy, % Gas Factor Gals. kWh Model 7 **GPVR FVIR Compliant** 83.0 0.67 50 40.0 MBTUH 82 Natural true Power Combustion or Power 50* 100 * additional Letters may be placed here to Vent indicate Trim Packages. Electronic Ignition (No Standing Pilot)

Ratings Directory

Copyright © 2009 Air-Conditioning, Heating, and Refrigeration Institute| Home | Terms and Conditions | License Data | Disclaimer

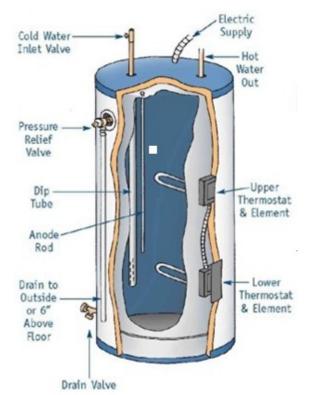
www.ahridirectory.org

EF Example


- EF 1.0 = 100% efficient, no heat losses
- EF Electric typical 0.92
- EF Gas typical 0.65

Conventional Electric Water Heater

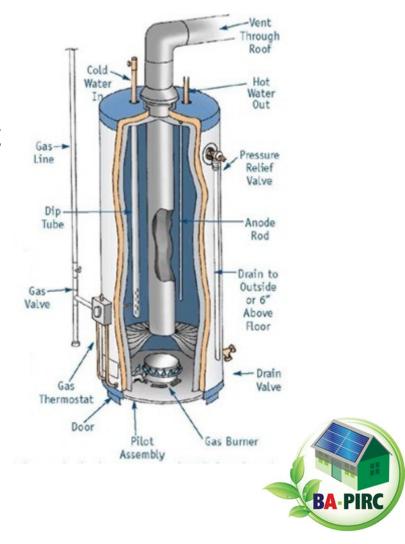
Conventional Electric Water Heater



BA-PIRC

Electric Resistance Water Heaters

 Electric resistance water heaters are not Energy Star rated



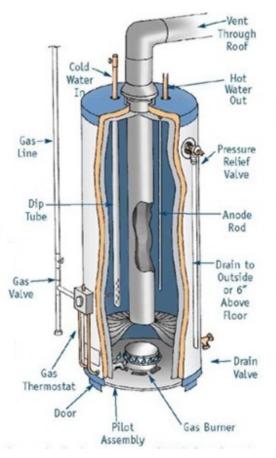
Gas Water Heaters

Key Things to Know

- Energy Star = EF of 0.67
- Initial cost = \$500 to \$800
- Payback for the Energy Star unit
 3 years

Gas Condensing Water Heaters

Condensing Gas Water Heater



BA-PIRC

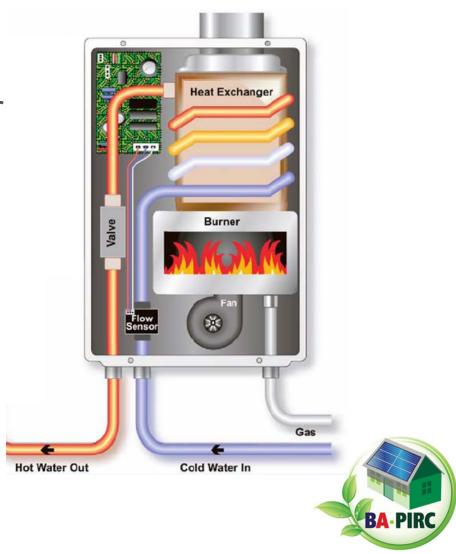
Key Things to Know

- EF values > 0.80
- Annual savings over electric ~= \$110/yr.
- Initial cost = \$700 \$1200.
- Payback in 7 9 years.

BA-PIRC

Tankless Gas Water Heaters

Tankless Water Heater

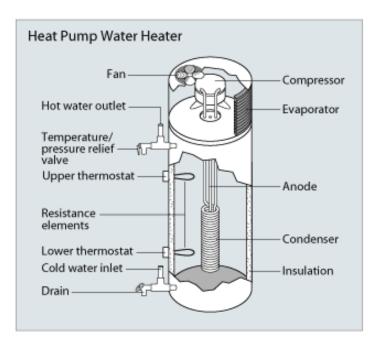


Key Things to Know

- Energy Star = 0.82 or higher
- Initial cost ~= 3 times greater
- Indoor or Outdoor units
- Payback in 6 to 8 years.

Heat Pump Water Heaters

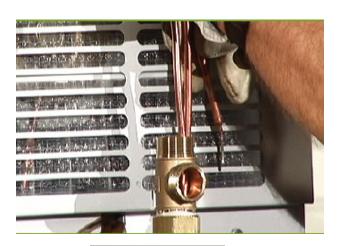
Heat Pump Water Heater



BA-PIRC

How Do They Work?

Provides conditioned air as a byproduct of operation


BA-PIRC

AirTap HPWH Installation

AirTap Coil Installation

Video from airtap

Key Things to Know

- Energy Star = EF 2.0 and higher
- Two different types integrated and retrofit.
- Provides conditioned air
- Initial cost about 2 times greater
- Payback in as little as 2 years.

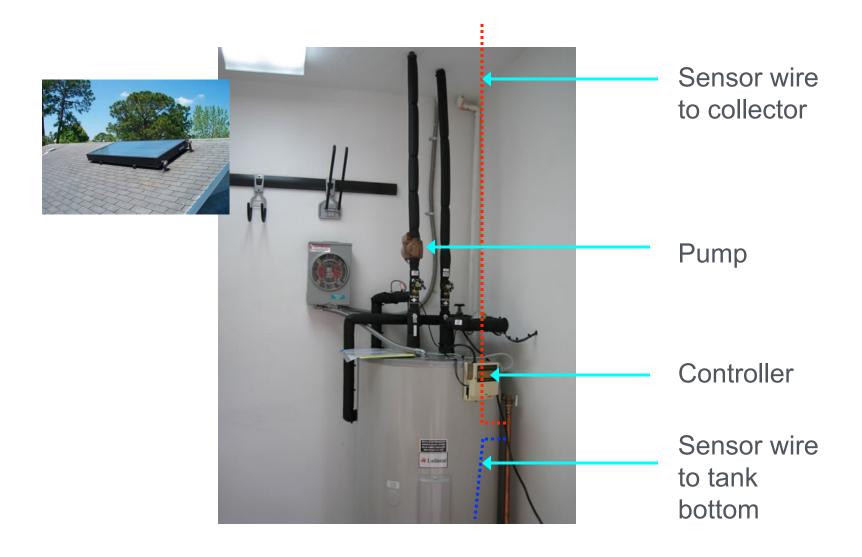
Solar Water Heaters

Solar Water Heaters

- Standard systems provided by manufacturers
- Various designs for
 - Climates
 - Freeze
 - Load sizes
- 80, 120 gallon systems
 - Single tank
 - Double tank
- Common components
- System certification

Passive Solar Water Heating Systems

No pump or controller


Thermosiphon

Integral Collector Storage (ICS)

BA-PIRC

Differential Controller System

Photovoltaic Powered Pump Systems

BA-PIRC

What you should know

- Solar systems should be certified
 - Certified systems go through tests to ascertain durability and performance
- You can compare collectors based on their projected energy output in Btus per day – the higher the better
- You can also use Energy Factors for systems

Home > Testing & Certification > Solar Thermal Collectors > Glazed Ratings > Z

Collector Certification (T-Z)

Co	Collector		Glazing		Abso	Gross Area	Thermal Performance Intermediate Temperatu Rating			
Manufacturer	Model	FSEC #	No.	Туре	Material	Coating	Sq. Ft	Btu/Day	Btu/ft²	
Techno-Solis	TS-32	00454N	1	Glass	Copper tubes and fins	Selective	31.91	27500	862	
Techno-Solis	TS-40	00455N	1	Glass	Copper tubes and fins	Selective	39.79	34400	866	
Technosun Puerto Rico	50GSSHP	00053	1	Evacuated glass tube	Copper tubes and aluminum retainers	Selective	17.66	Net Energ 9,900 Btu	Coefficient:	

Solar Certification Resources

FSEC Web Site

http://www.fsec.ucf.edu

SRCC Certification

http://www.solar-rating.org

FLORIDA SOLAR ENERGY CENTER

Home > Industry > Testing & Certification > Solar Thermal Systems > Ratings > Hot Water Systems - A - G

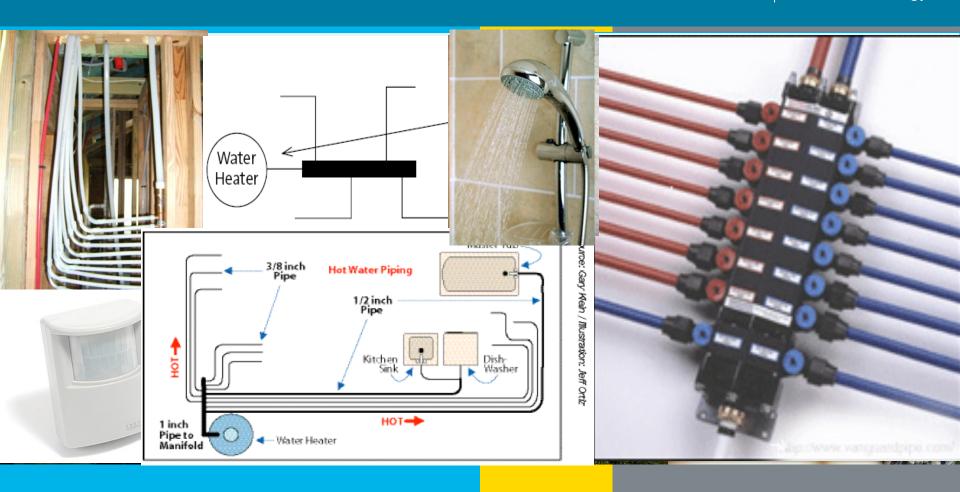
Approved Systems (A-G)

FSEC#	Company	Model	Collector	Gross Area (SqFt)	Tank Volume (Gal)	FEF North	FEF Central	FEF South
S8010	Abundant Energy,Inc.	Now 80P	SD7CRW4x8	31	80	3.3	3.5	3.5
S8011	Abundant Energy,Inc.	Now 120P	SD6A4×10	41	120	4.9	5.4	5.4
S9082	Advanced Energy Construction, Inc.	AEC SWAP One	EP-32	33	52	2.1	2.2	2.2
S9127	ACR Solar International Corp.	200131C50	Skyline 20-01	20	50	1.5	1.5	1.5

Comparing Energy Star Systems

What Makes a Water Heater Energy Star? **ENERGY**

Energy Efficiency & Renewable Energy


Energy Star Criteria - see E	nergyStar.gov					
ENERGY STAR Criteria Energy Factor		First-Hour Rating	Warranty	Safety		
Gas Storage (Beginning 9/1/2010)	EF >= 0.67	FHR >= 67 gallons per hour	Warranty >= 6 years on sealed system	ANSI Z21.10.1/CSA 4.1		
ENERGY STAR Criteria	Energy Factor	First-Hour Rating	Warranty	Safety		
Gas Condensing	EF >= 0.8	FHR >= 67 gallons per hour	Warranty >= 8 years on sealed system	ANSI Z21.10.1/CSA 4.1		
ENERGY STAR Criteria	Energy Factor	First-Hour Rating	Warranty	Safety		
Heat Pump Water Heaters	EF >= 2.0	FHR >= 50 gallons per hour	Warranty >= 6 years on sealed system	UL 174 & UL 1995		
ENERGY STAR Criteria	Energy Factor	Gallons-Per-Minute	Warranty	Safety		
Whole-Home Gas Tankless	EF >= 0.82	GPM >= 2.5 over a 77°F rise	Warranty >= 10 years on heat exchanger and 5 years on parts	ANSI Z21.10.3/CSA 4.3		
ENERGY STAR Criteria	Solar Fraction	Warranty		Safety		
Solar Water Heaters	SF >= 0.5	Warranty >= 10 years on solar collector, 6 years on storage tank, 2 years on controls and 1 year for piping and parts OG-300 Certification the SRC				

Hot Water Systems Laboratory

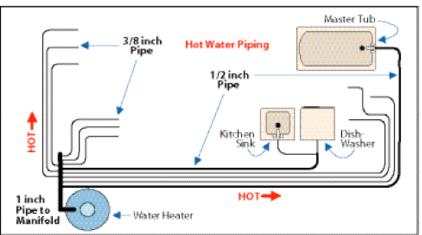
Video of Hot Water Systems Laboratory

Design and Distribution

Design Considerations

- Combustible vs. Non-Combustible
- Location within the home
- Number of occupants and needs
- Cost

Reduce need for hot water



Water Distribution

BA-PIRC

Source: Gary Mein / Mustration: Jeff Ontiz

Key Things to Know

A properly designed distribution system can:

- Reduce wasted water
- Provide individual hot water runs at each point of use.
- Reduce dishwasher power consumption
- Save you time and money

Saving Water and Time

 A twenty five foot run of ½" CPVC holds approximately 1qt. of water (31.2 fl/oz)

		Feet per Cup							
	Type of Pipe	3/8"	1/2"	3/4"	1"				
	"K" Copper	9.48	5.52	2.76	1.55				
	"L" Copper	7.92	5.16	2.49	1.46				
	"M" Copper	7.57	4.73	2.33	1.38				
	CPVC	N/A	6.41	3.00	1.81				
	PEX (12.09	6.62	3.34	2.02				

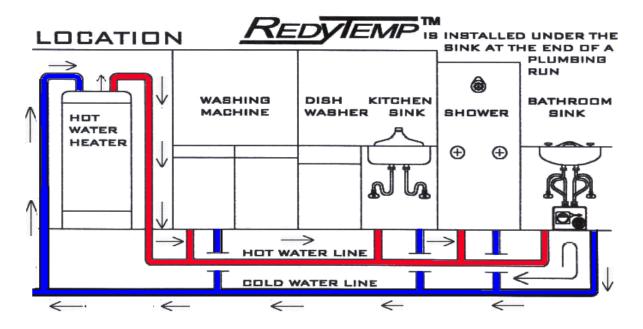
Source: Gary Klein

The same length of 3/8" PEX holds only about ½ quart. (17.2 fl/oz)

Saving Water and Time

 It takes approximately 32 seconds for a 2.5GPM shower head to make a twenty five foot run.

				D	elivery Time	e i	n Second	ls			
Fixture Flow Rate		0.5	GPM	1.5 (GPM		2.5 (GPM	ackslash	4.0 (GPM
Piping Length	Pipe Size	10 Feet	25 Feet	10 Feet	25 Feet	1	Feet	25 Feet	1) Feet	25 Feet
Copper	1/2"	25	63	8	21		5	13		3	8
Copper	3/4"	48	119	16	40		10	24		6	15
Steel Pipe Schd 40	1/2"	63	157	21	52		13	31		8	20
Steel Pipe Schd 40	3/4"	91	228	30	76		18	46		11	28
CPVC Schd 40	1/2"	64	159	21	53		13	32		8	20
CPVC Schd 40	3/4"	95	238	32	79		19	48	/	12	30
								_			
		Acceptable Performance			1 - 10	seconds					
		Marginal Performance			11 - 30	seconds					
		Unaccepta	ble Perforn	nance	31+	S	econds				


How Much Water Is Saved?

- ½" is today's standard but 3/8" is more efficient
- 25' of ½" CPVC = 3.9 cups/water
- 25' of 3/8" PEX = 2.1 cups/water
- Savings = approximately 1300 gal/yr.

Recirculation Systems

System Selection

- Recirculation control types:
 - Continuous
 - Timer or Thermostatic

Activation Systems

- Recirculation activation types:
 - Manual
 - Automatically Sensed

Some Final Things to Consider.....

- Short runs and smaller diameter piping or pex lines
- Water conservation achieved through independent hot and cold water valves
- Pipe insulation
- Demand controlled hot water recirculation system

Water Heater Technology	Average Annual Savings*
High-Efficiency Gas Storage	\$30
Gas Condensing	\$110
Whole-Home Gas Tankless	\$115
Solar	\$220
Heat Pump	\$290
* Savings for average household of 2	6 people

Five types of water heaters can now earn

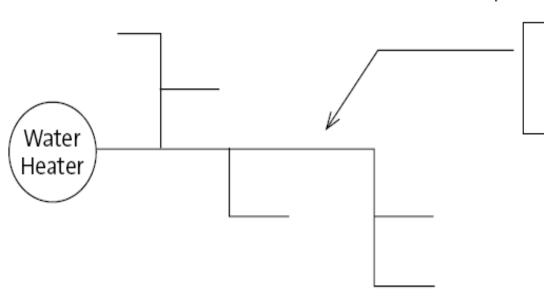
the ENERGY STAR.

Find the one that's right for you

Bottom Line!

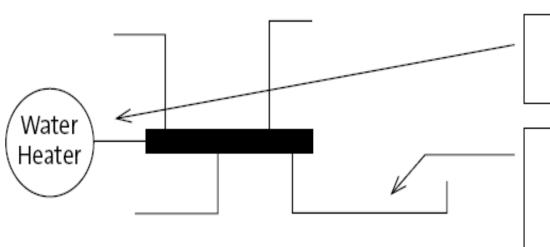
Water Heater type	Efficiency (EF)	Installed Cost ¹	Yearly Energy Cost ²	Life (Years)	Total Cost (Over 13 Years) ³
Conventional gas storage	0.60	\$850	\$350	13	\$5,394
High-efficiency gas storage	0.65	\$1,025	\$323	13	\$5,220
Condensing gas storage	0.86	\$2,000	\$244	13	\$5,170
Conventional oil-fired storage	0.55	\$1,400	\$654	8	\$11,299
Minimum Efficiency electric storage	0.90	\$750	\$463	13	\$6,769
High-eff. electric storage	0.95	\$820	\$439	13	\$6,528
Demand gas (no pilot) ⁴	0.80	\$1,600	\$262	20	\$5,008
Electric heat pump water heater	2.20	\$1,660	\$190	13	\$4,125
Solar with electric back-up	1.8	\$4,800	\$175	20	\$7,072

Green Home Program Overview


LEED for Homes Credit EA7.1

- Efficient Hot Water Distribution (2 points)
 - Design and install an energy-efficient hot water distribution system
 - Select one of the following designs

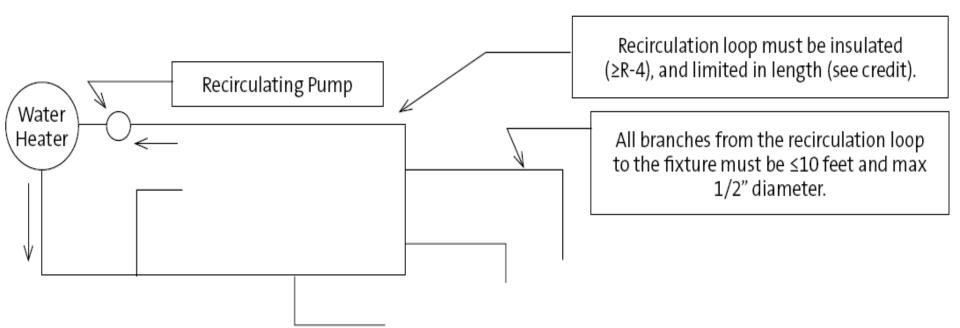
Sample Schematic of a Compact Design



Home must have a tight plumbing core, with branches that are limited in length (see credit) and max 1/2" diameter

Central Manifold Distribution System

Sample Schematic of a Central Manifold Distribution System


Trunk must be ≤6 feet from water heater and insulated to ≥R4

Home must have a tight plumbing core, with branches that are limited in length (see credit) and max 1/2" diameter

Structured Plumbing System

Sample Schematic of a Structured Plumbing System

Summary

- Five types of Energy Star certified Water Heaters
 - High Efficiency Gas
 - Gas Instantaneous (Tankless)
 - Gas Condensing
 - Heat Pump
 - Solar
- When looking at EF, compare apples to apples.
- Proper water line design and distribution can decrease both power and water use.

- Questions can be typed on the left of your screen
- To download a copy of this presentation, visit: www.buildingamerica.gov/meetings.html

