University of Minnesota

DOE "Race to Zero" Student Design Competition

University of Minnesota: Team OptiMN

Introduces the "IMPACT Home"

MULTI-DISCIPLINARY TEAM*

Residential Building Science

Collin Coltman Matthew Dries Maria Finsness Tyler Kitzerow Frank Peters Peter Schneider Kristel Spiegelberg Cavan Wagg

Construction Management

Collin Coltman Jose Aaron Cruz-Salinas Kyle Holmes Jackie Larson Peter Schneider

Business & Marketing Education Aaron Hanson

Master of Science Sustainable Design & Masters in Architecture Laurel Johnston

Bioproducts & Biosystems Science, Engineering, & Management Maria Fernanda Laguarda Mallo (PhD candidate)

* All 14 team members successfully completed their building science coursework

Urban Homeworks

Minneapolis, MN Affordable Housing Developer

- Builder of communities
- Rebuilder of neighborhoods
- Providing equitable and dignified housing

Residential Science Resources Eagan, MN Building Science Consultants

- Energy rating services
- Building science consulting
- Energy audits/assessments
- Utility program deployment

MEET YOUR PRESENTERS

Laurel Johnston Design Leader

Master of Science Sustainable Design & Masters in Architecture

I'm inspired by an ancient Native American proverb: "We do not inherit the earth from our ancestors, we borrow it from our children".

Peter Schneider Envelope Leader

Residential Building Science & Technology & Construction Management

I enjoy finding new ways to make homes beautiful and high performing. I believe we can, and should build homes that lasts for generations.

Cavan Wagg Systems Leader

Residential Building Science & Technology

I've enjoyed the experience that the DOE Race to ZERO competition has given me and plan to put that knowledge to work in the field after graduation.

Collin Coltman Team Leader

Residential Building Science and Technology & Construction Management

I dream of building the sustainable, high performance homes of the future, but today.

SOCIAL GOALS | Site in North Minneapolis

- Hit hard by foreclosure crisis
- Struck by tornados in 2011
- Many vacant lots, including site
- Green Homes North: to build 100 energy-efficient homes on empty lots

DESIGN GOALS

Department of Energy's CHALLENGE

is to build a Zero Energy Ready Home

Urban Homeworks' MISSION

is to produce equitable, dignified, communities

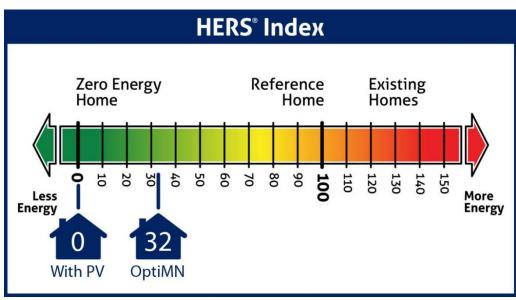
Green Homes North INITIATIVE

is to revitalize North Minneapolis neighborhoods with affordable, sustainable, and quality homes

Team OptiMN's GOAL

is to design a home that makes an **IMPACT** on the community and environment by achieving all of the above

PERFORMANCE GOALS | DOE Climate Zone 6


Durable & Long-Lasting

Fortified Home

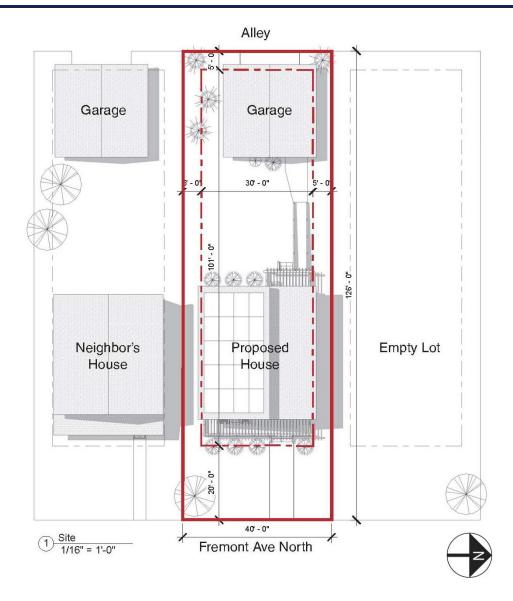
Energy Efficient | Zero Energy Ready

Indoor Air Quality

Water Stewardship

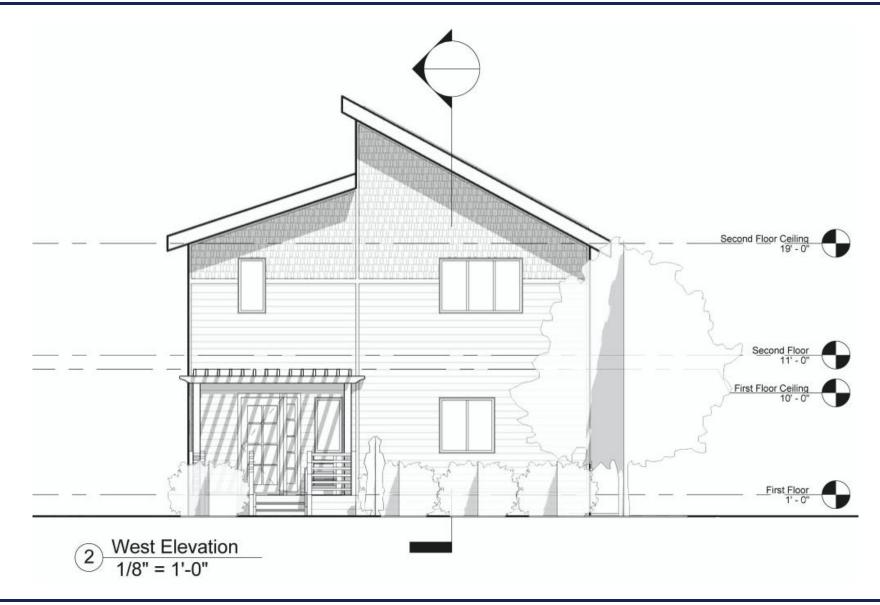
PERFORMANCE GOALS | Key Strategies

- ENERGY STAR appliances, fans, and windows
- WaterSense low-flow plumbing fixtures
- Native vegetation
- Harvesting rainwater with rain barrels
- LED light bulbs
- HardiePlank lap and shingle siding
- Low-VOC paints & finishes
- tenK solar panels
- Programmable thermostat
- Continuous ventilation system
- Engineered heating and cooling systems
- Whole house air exchanger
- Efficient sealed-combustion water heater
- Concrete with fly ash content
- Job site recycling of construction waste

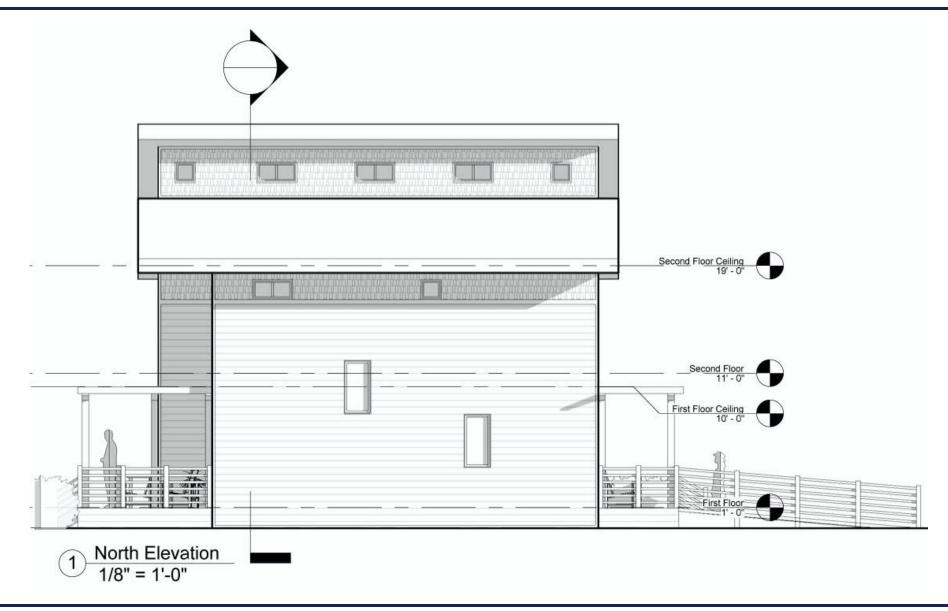

ARCHITECTURAL GOALS | Perspective from Fremont Ave

ARCHITECTURAL GOALS | Site Plan

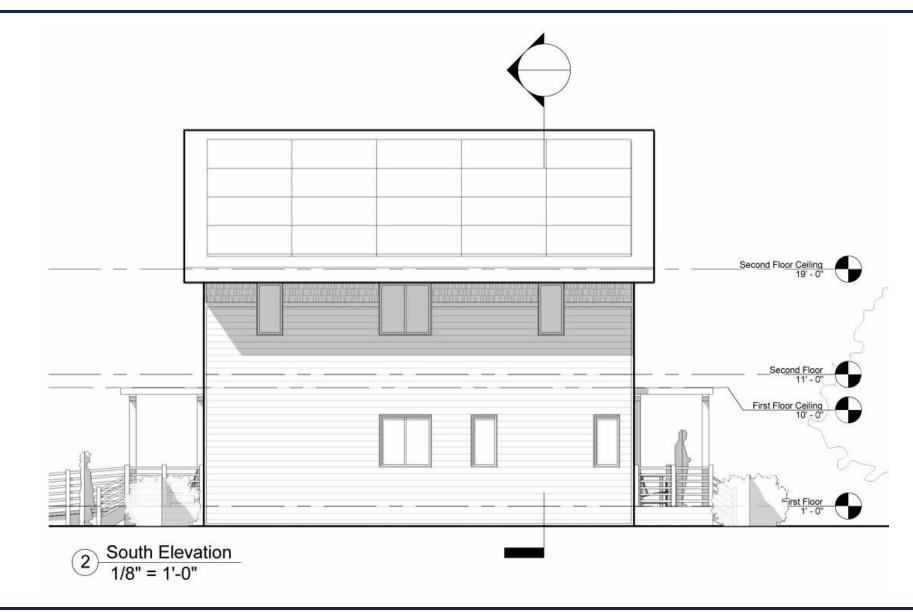
- Front faces East
- Longer side oriented South to take full advantage of the sun
- Most Minneapolis residential sites work perfect with this design because they face East or West
- Two-story design ensures better solar access



ARCHITECTURAL GOALS | East Elevation (front)

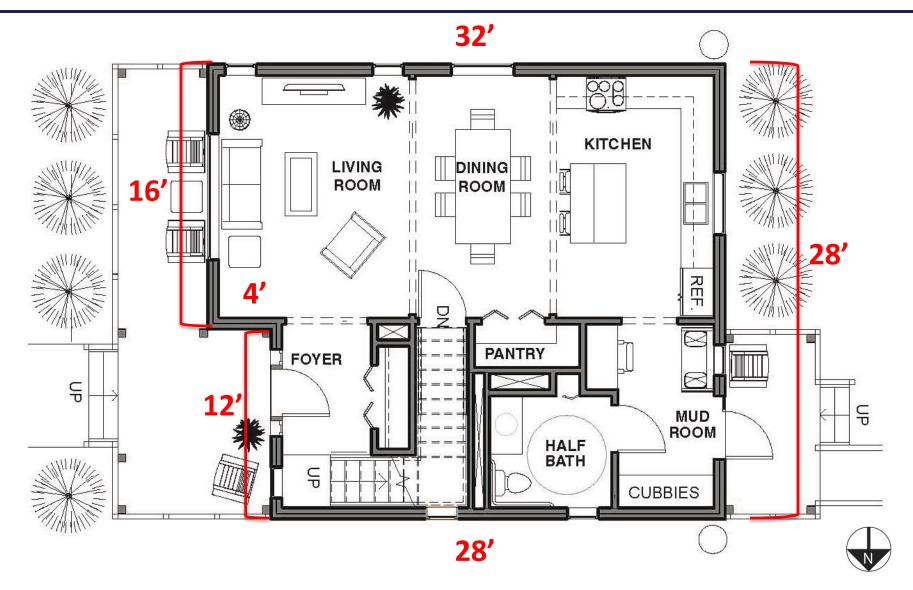


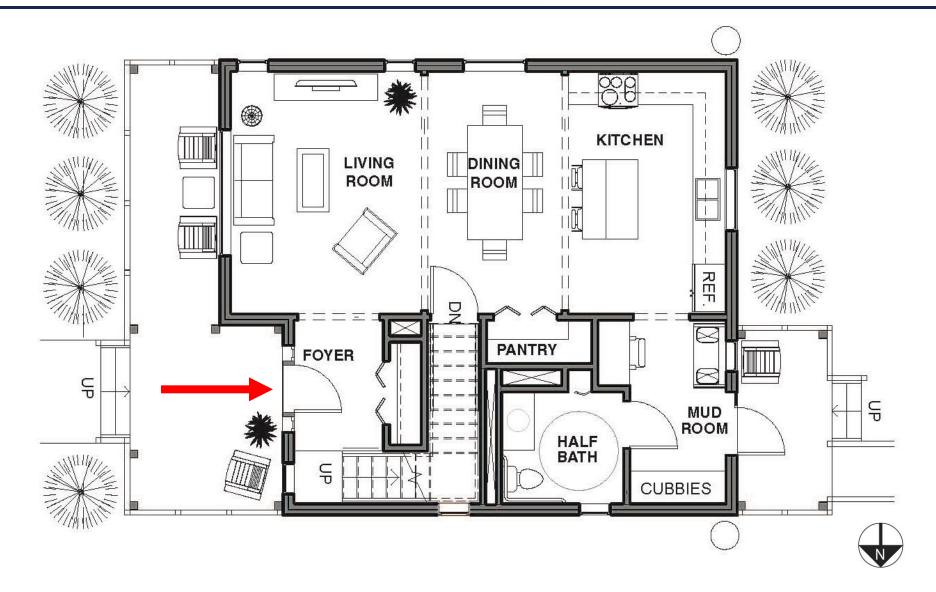
ARCHITECTURAL GOALS | West Elevation (back)



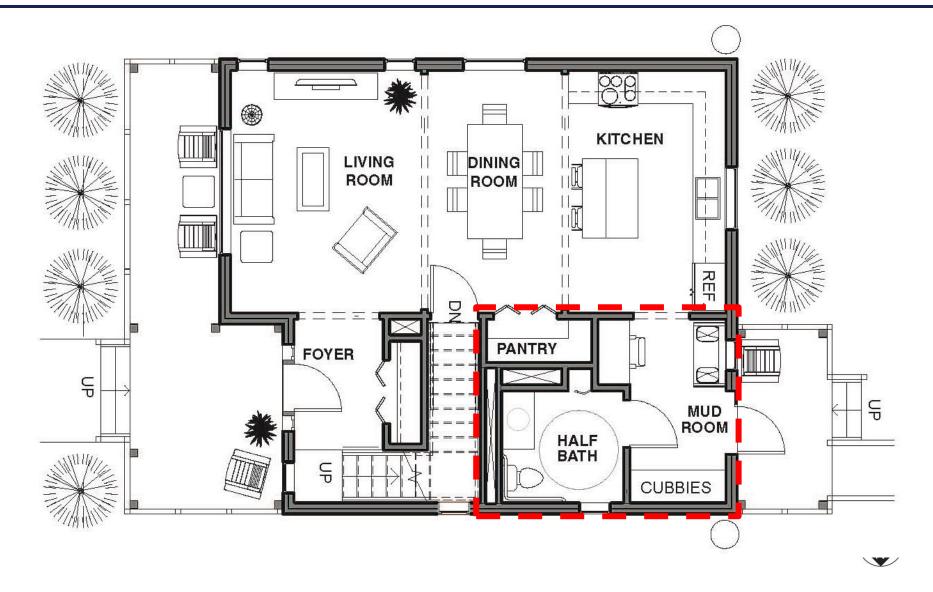
ARCHITECTURAL GOALS | North Elevation

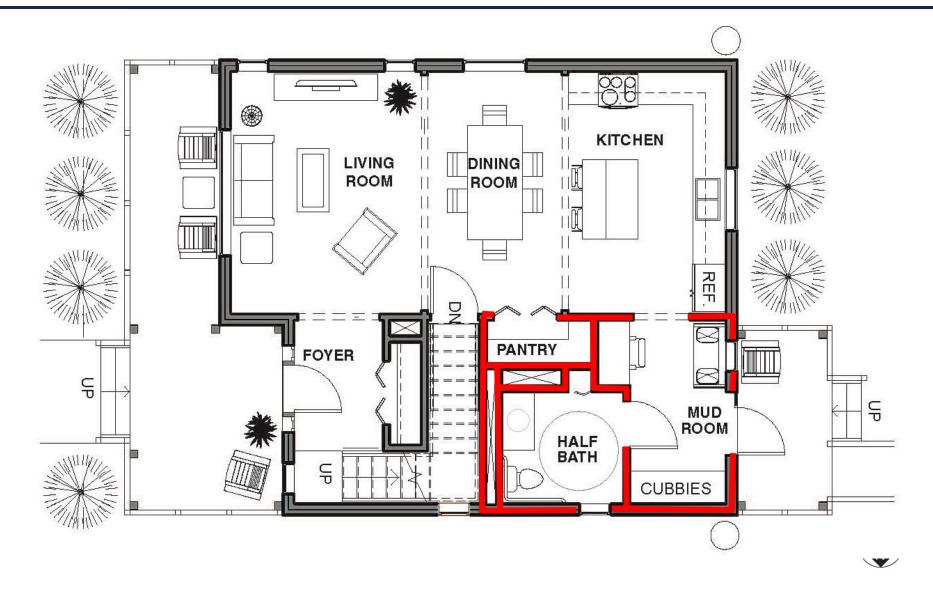

ARCHITECTURAL GOALS | South Elevation

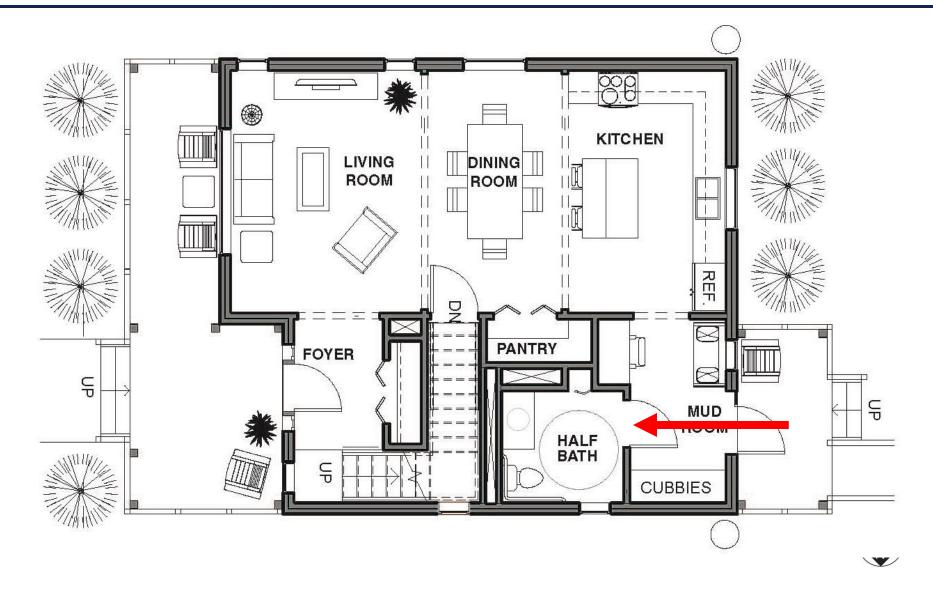

ARCHITECTURAL GOALS | Efficient & Flexible Space Planning

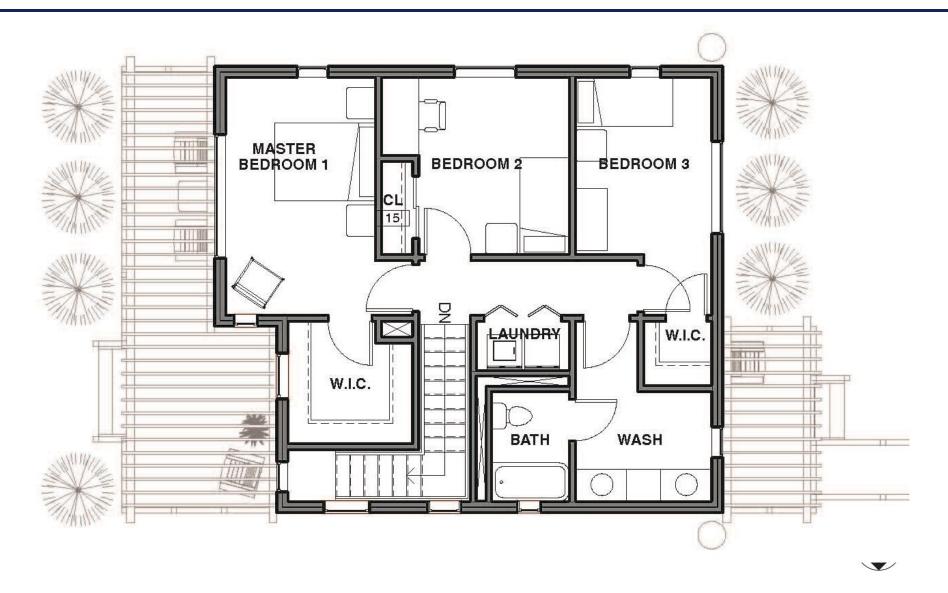

- Overall footprint simple & compact
- Finished floor area = 1,696 sf
 - Plus 848 sf if lower level is finished
- 3 Bedrooms (+2 in lower level)
- **1.5 Bathrooms** (+1 in lower level)
- Two Zones
 - Living Spaces
 - Living room, dining room, kitchen, & bedrooms
 - Take advantage of southern exposure & light from clerestory windows on second floor
 - Support Spaces
 - Foyer, stairs, mudroom, pantry, closets, laundry & bathrooms
 - Act as a buffer to the North

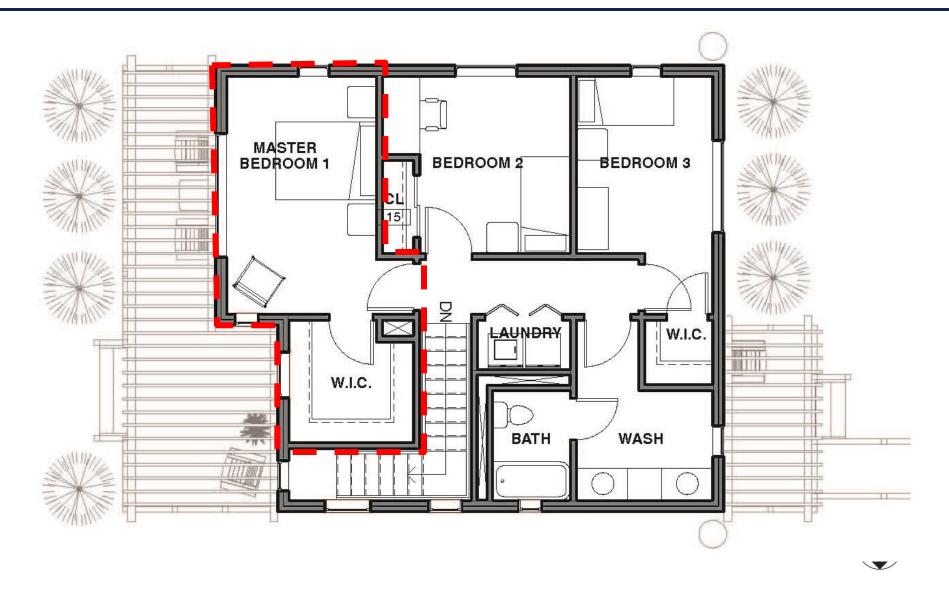
Space Use Diagram

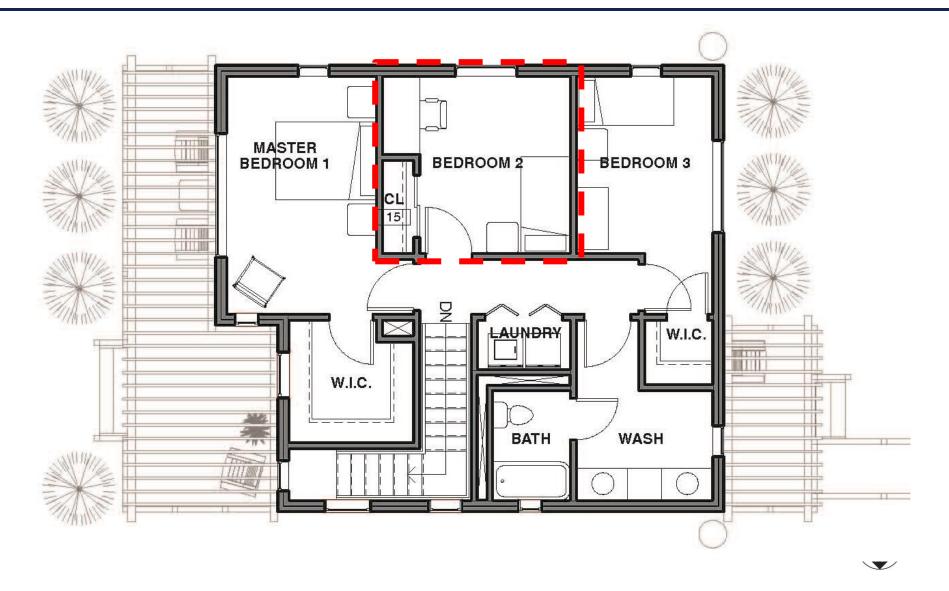


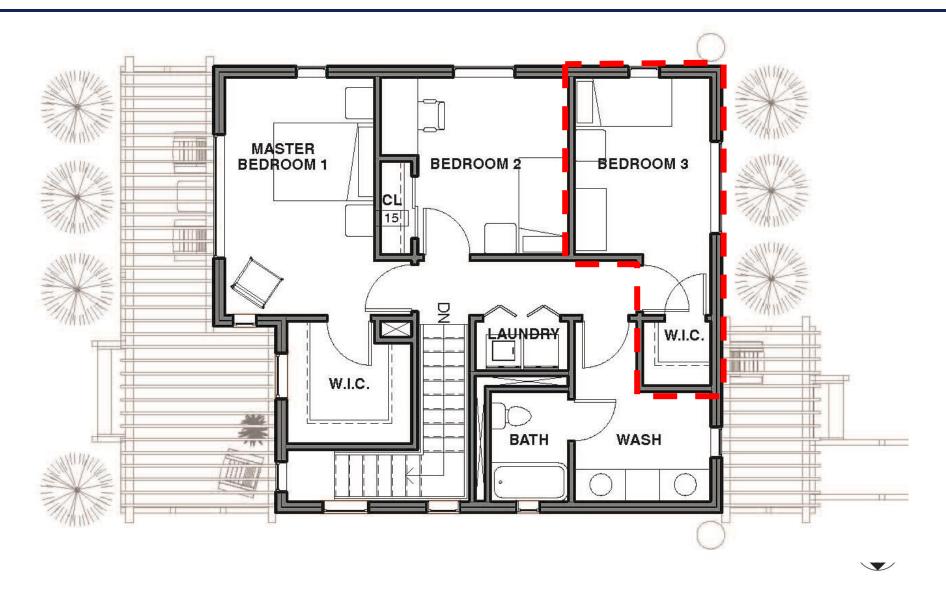


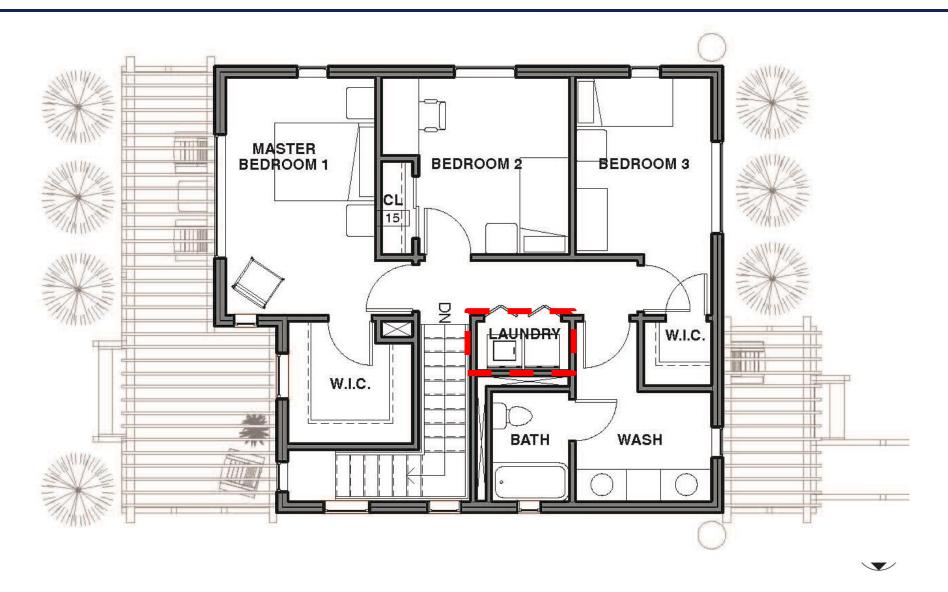

ARCHITECTURAL GOALS | Perspective from Kitchen

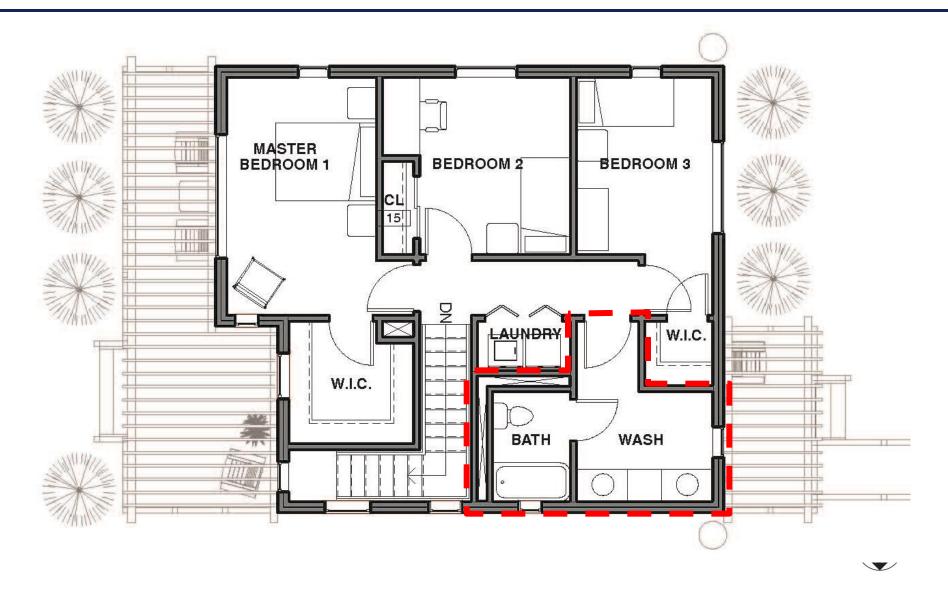




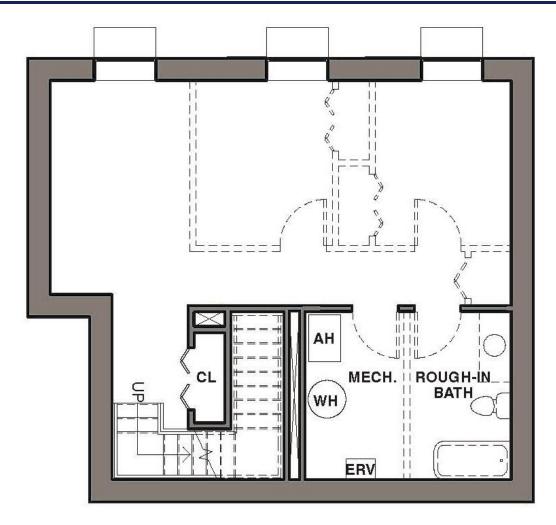



OptiMN


Opti**MN**

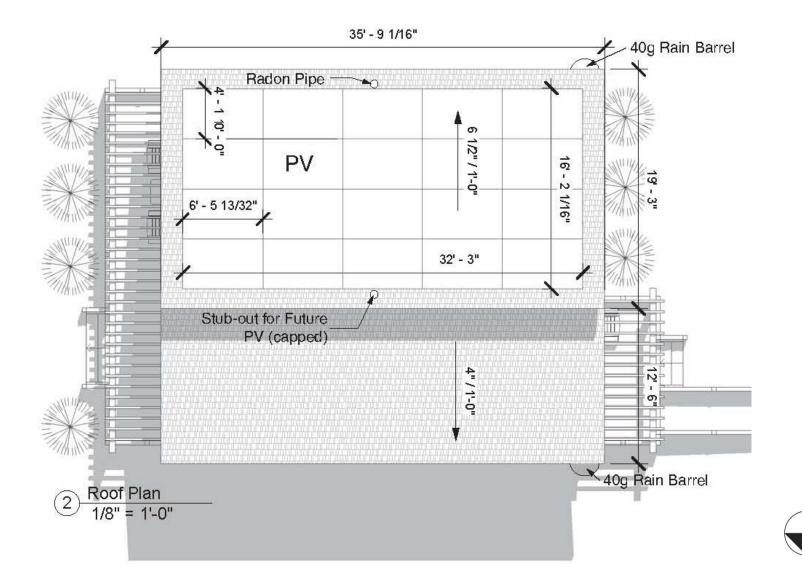

OptiMN

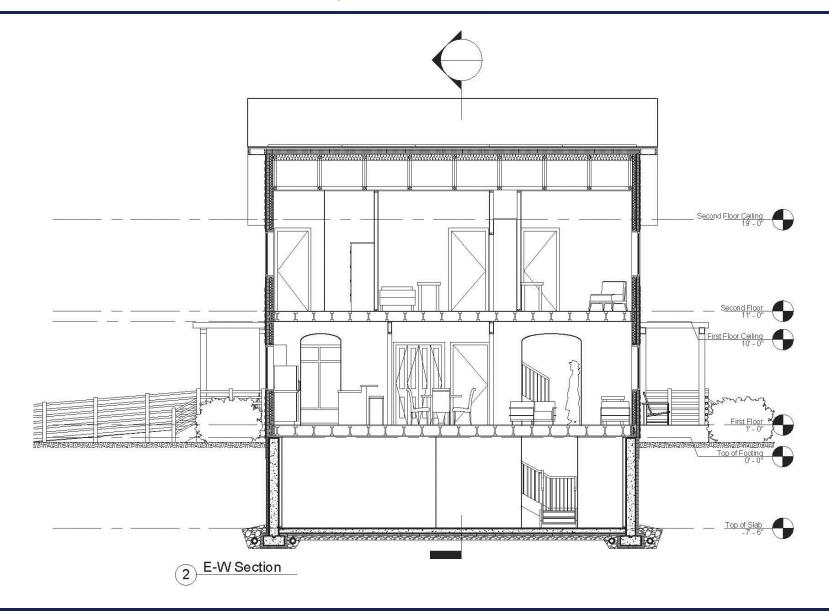
OptiMN



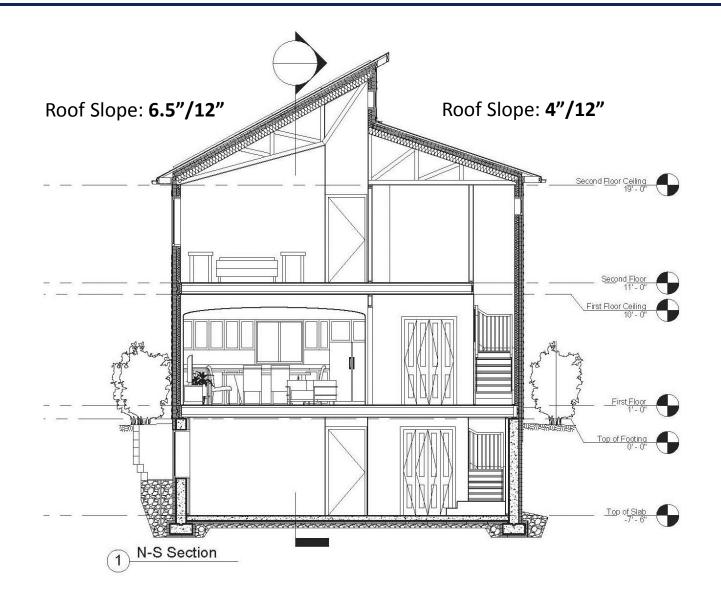
OptiMN

OptiMN

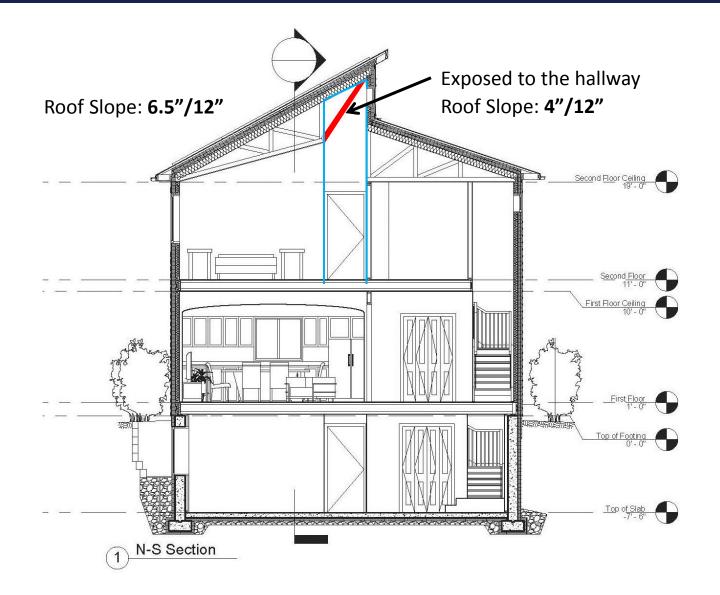

ARCHITECTURAL GOALS | Lower Level Plan



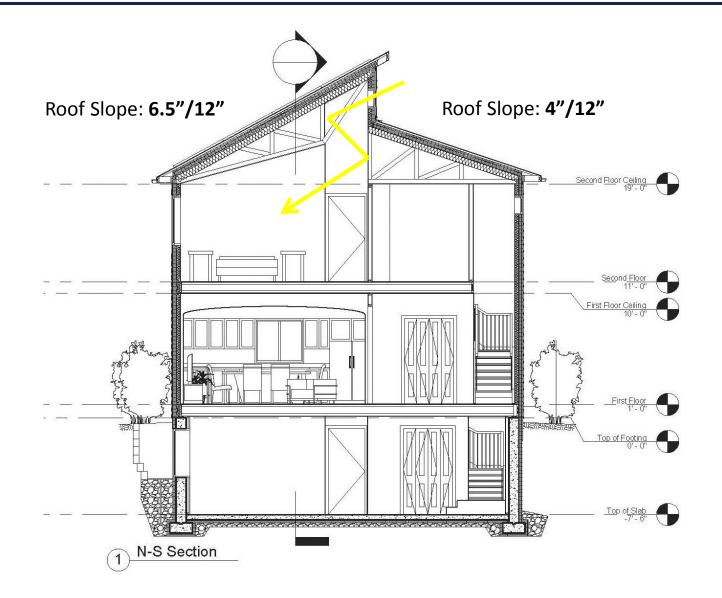
ARCHITECTURAL GOALS | Roof Plan


Opti**MN**

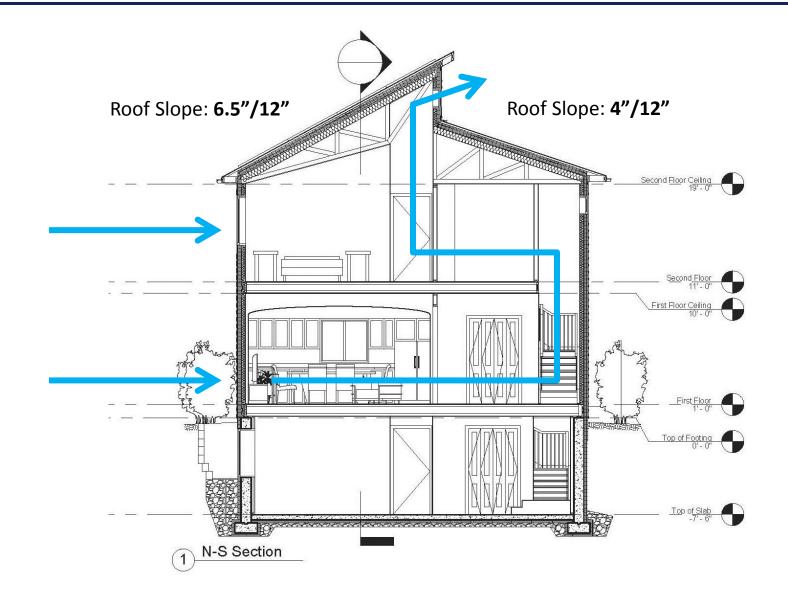
ARCHITECTURAL GOALS | East – West Section



ARCHITECTURAL GOALS | North – South Section

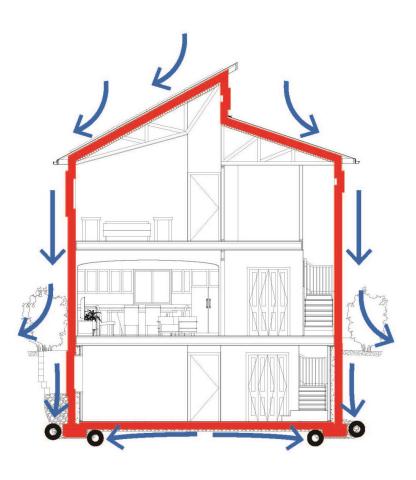


ARCHITECTURAL GOALS | Exposed Beam in Hallway



ARCHITECTURAL GOALS | Clerestory Natural Daylight

ARCHITECTURAL GOALS | Clerestory Natural Ventilation

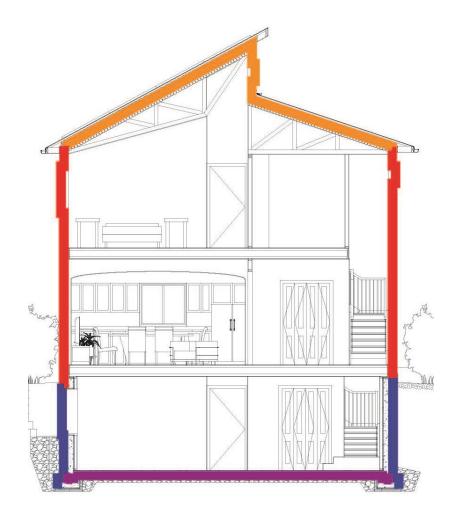


ENVELOPE | Heat, Air, & Moisture Management

Heat Management

Air Management

Moisture Management

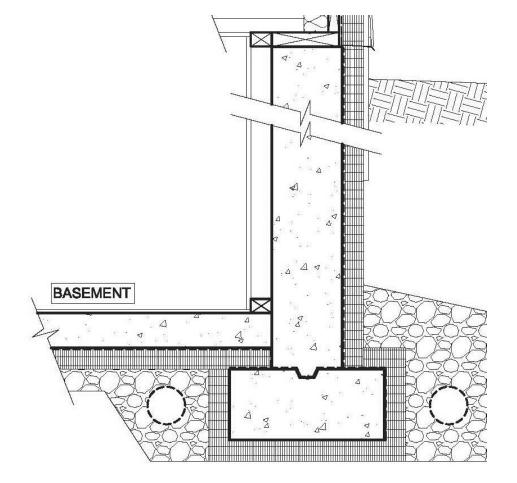


ENVELOPE | Control Layers

Detailed attention to maintain critical **control layers** for all enclosure components

- Continuous air and water management system
 - **Orange**: W.R. Grace Perm-a-Barrier
 - **Red**: Huber ZIP sheathing system
 - Blue: Foundation waterproofing
 - Purple: Cross-laminated polyethylene membrane
- Optimal thermal insulation with minimal thermal bridging
- Deliberate vapor control strategy to limit wetting and enhance drying

Integrity of Control Layers

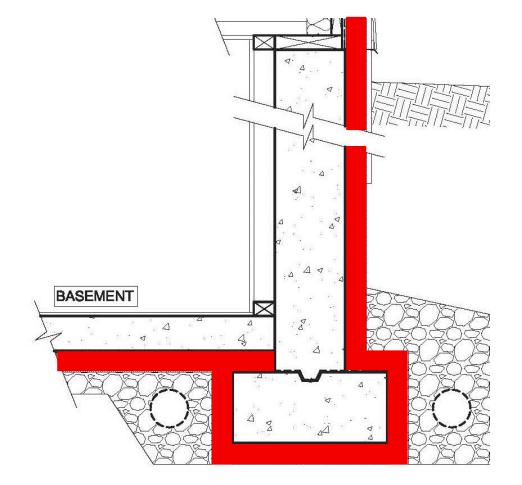

ENVELOPE | Foundation

Thermal Control

- Slab Insulation
 - R-10
- Footing Insulation
 - R-10
- Foundation Wall Insulation
 - R-15

Moisture Control

- Capillary breaks
- Waterproof membrane
- Gravel bed and drain pipe
- Sealed sump basket

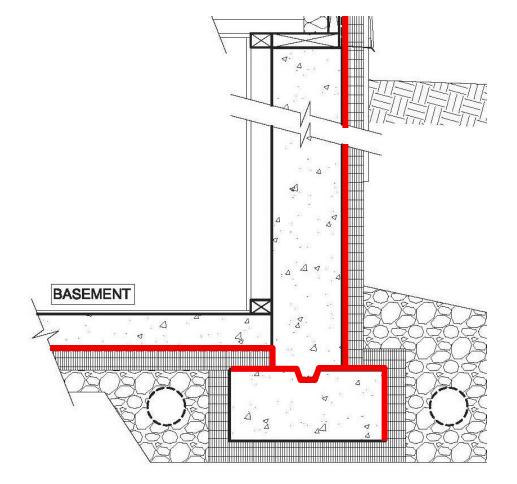

ENVELOPE | Foundation Thermal Control

Thermal Control

- Slab Insulation
 - R-10
- Footing Insulation
 - R-10
- Foundation Wall Insulation
 - R-15

Moisture Control

- Capillary breaks
- Waterproof membrane
- Gravel bed and drain pipe
- Sealed sump basket

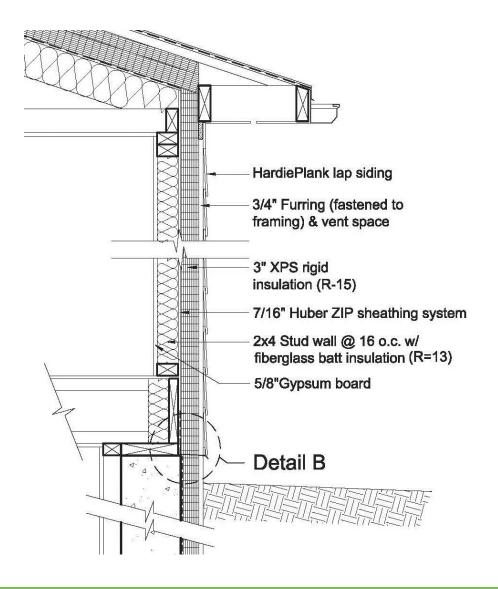

ENVELOPE | Foundation Moisture Control

Thermal Control

- Slab Insulation
 - R-10
- Footing Insulation
 - R-10
- Foundation Wall Insulation
 - R-15

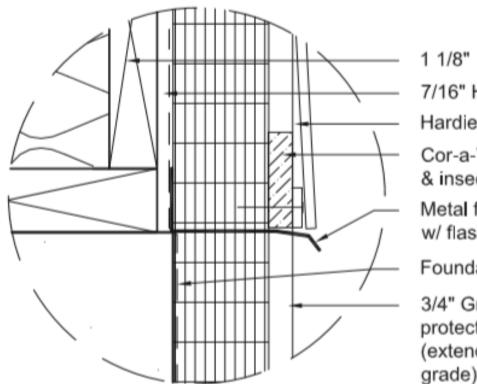
Moisture Control

- Capillary breaks
- Waterproof membrane
- Gravel bed and drain pipe
- Sealed sump basket



OptiMN

ENVELOPE | Above Grade Walls


OptiMN Wall

- Hybrid Wall Insulation
 - R-32
 - 50/50 ratio
- Rim Joist
 - R-32
- Zip Panel & Tape
 - Moisture control
 - Air barrier

ENVELOPE | Detail B Flashing

1 1/8" TJ composite rim board

7/16" Huber ZIP sheathing system

HardiePlank lap siding

Cor-a-Vent siding vent & insect screen

Metal flashing to ZIP w/ flashing tape

Foundation water proofing

3/4" Groundbreaker protection board (extends 12" below grade)

DETAIL B: Flashing Detail | Scale 3" = 1'-0"

ENVELOPE | Winter Hygrothermal Performance

Modified Glaser Method for January: Confirms Limited Condensation Potential

	January V	Vall								
Layer		R Value	M(Perm)	R _{v,i}	T (°F)	P _{sat} (psi)	P _w (PSI)	RH%	Delta T	Delta P Drop
	Indoor				68.0	0.33927	0.10178	30.00		
Interior Air Film		0.68	160	0.0063					1.09925	0.00028
					66.9	0.32777	0.10150	30.97		
Gypsum		0.45	35.2	0.0284					0.72744	0.00127
					66.2	0.31662	0.10024	31.66		
R-13 Fiberglass		13	33.71	0.0297					21.01504	0.00132
					45.2	0.14755	0.09891	67.04		
Zip Panel		0.62	18.67	0.0536					1.00226	0.00239
					44.2	0.14205	0.09652	67.95		
3" XPS		15	0.8	1.2500					24.24812	0.05574
					19.9	0.05049	0.04078	80.79		
Air Space		1	240	0.0042					1.61654	0.00019
					18.3	0.04584	0.04060	88.57		
Hardie Board		1	4.27	0.2342					1.61654	0.01044
					16.7	0.04213	0.03016	71.57		
Exterior Air Film		0.17	1000	0.0010					0.27481	0.00004
	Exterior				16.4	0.04241	0.03011	71.00		

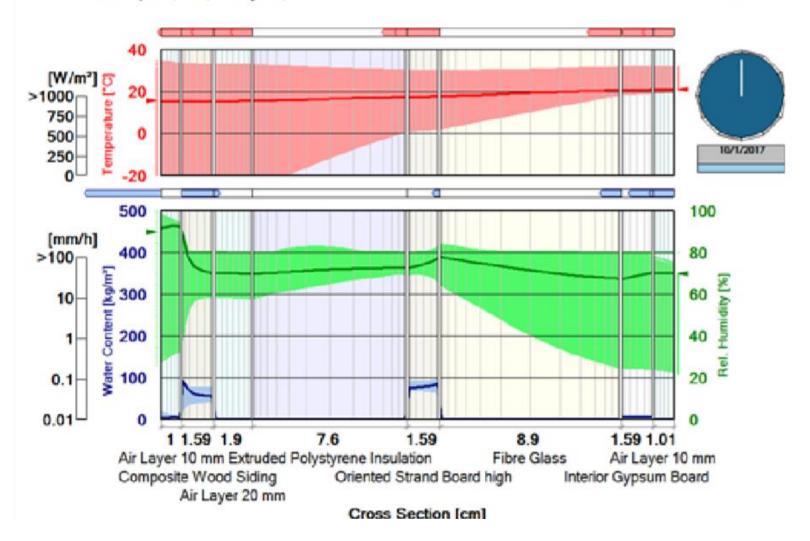
INTRO | GOALS | ENVELOPE | SYSTEMS | IAQ | ENERGY | CONSTRUCTABILITY | FINANCIAL | CONCLUSION

DOE Race to ZERO Student Design Competition | University of Minnesota 🌉

ENVELOPE | Summer Hygrothermal Performance

Modified Glaser Method for July: Confirms Limited Condensation Potential

	July Wall									
Layer		R Value	M(Perm)	R _{v,i}	T (°F)	P _{sat} (psi)	P _w (PSI)	RH%	Delta T	Delta P Drop
	Indoor				75.0	0.43015	0.21508	50.00		
Interior Air Film		0.68	160	0.0063					0.03409	-0.00021
					75.0	0.43015	0.21528	50.05		
Gypsum		0.45	35.2	0.0284					0.02256	-0.00095
					74.9	0.42873	0.21623	50.44		
R-13 Fiberglass		13	33.71	0.0297					0.65163	-0.00099
					74.3	0.42024	0.21723	51.69		
Zip Panel		0.62	18.67	0.0536					0.03108	-0.00179
					74.3	0.42024	0.21902	52.12		
3" XPS		15	0.8	1.2500					0.75188	-0.04181
					73.5	0.40895	0.26083	63.78		
Air Space		1	240	0.0042					0.05013	-0.00014
					73.5	0.40895	0.26096	63.81		
Hardie Board		1	4.27	0.2342		_			0.05013	-0.00783
					73.4	0.40734	0.26880	65.99		
Exterior Air Film		0.17	1000	0.0010					0.00852	-0.00003
	Exterior				73.4	0.40732	0.26883	66.00		

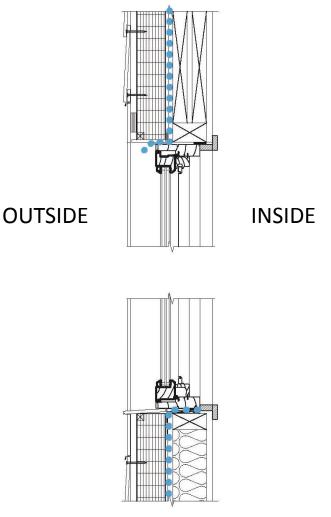

INTRO | GOALS | ENVELOPE | SYSTEMS | IAQ | ENERGY | CONSTRUCTABILITY | FINANCIAL | CONCLUSION

DOE Race to ZERO Student Design Competition | University of Minnesota 🌋

ENVELOPE | WUFI Analysis

Location: Minneapolis, MN; cold year;

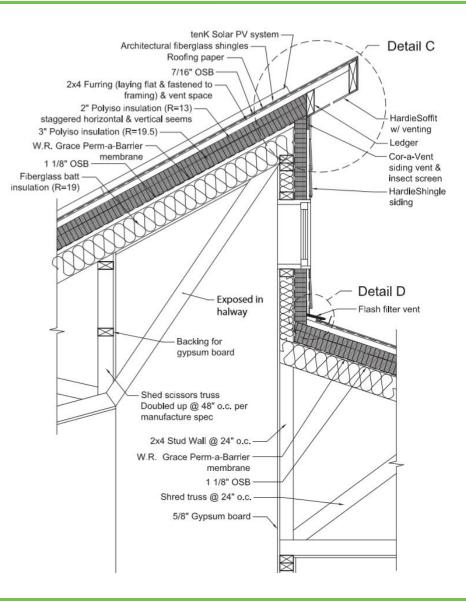
WUFI



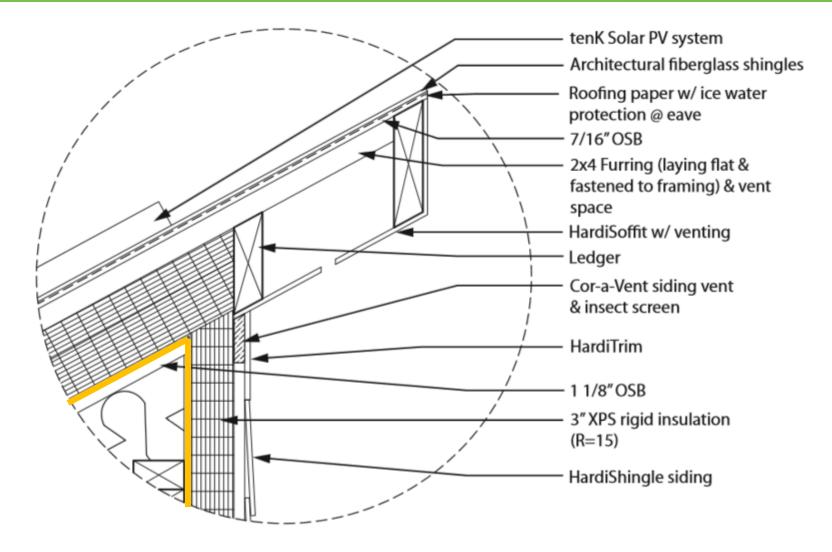
ENVELOPE | Windows

Window Details Matter

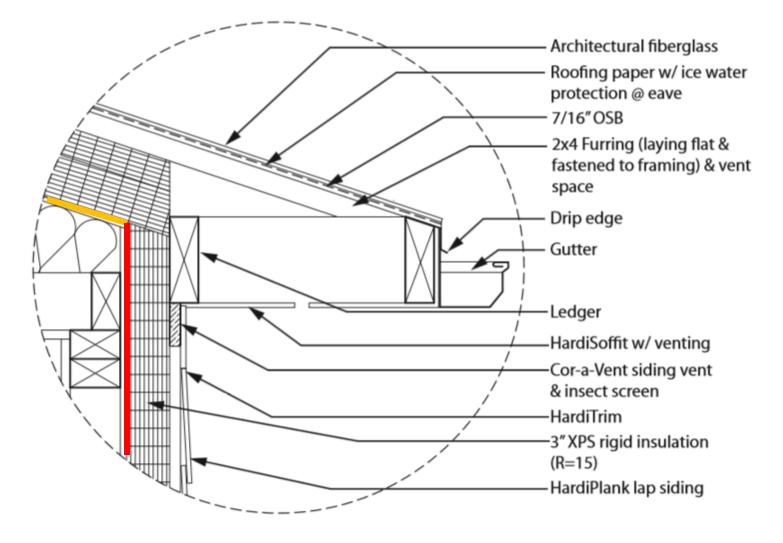
- Selected an affordable, highperformance, double-pane, low-e window (SilverLine)
 - U = 0.27
 - SHGC = 0.20
- Installation details are critical
 - Pan flashing before installation
 - Integration to ZIP sheathing air and water control system


Drainage Plain

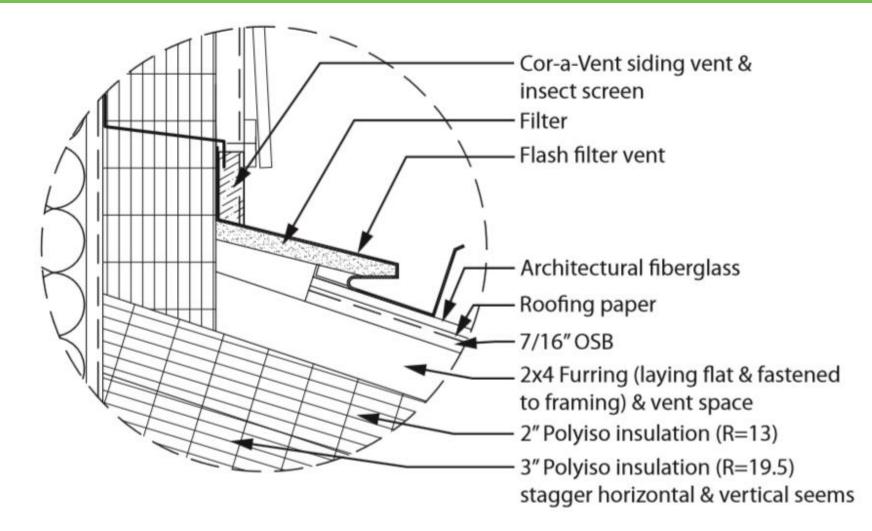
ENVELOPE | Roof


OptiMN Roof

- Truss Roof System
 - South = shed scissor truss
 - North = shed (or half) truss
- Hybrid Insulation
 - R-53
 - 60/40 ratio
- Material Selection
 - Integrity of water and air management system


ENVELOPE | Detail C

DETAIL C: Overhang Over Clerestory | Scale 1 1/2" = 1'-0"


ENVELOPE | Detail A

DETAIL A: North Overhang | Scale 1 1/2" = 1'-0"

ENVELOPE | Detail D

DETAIL D: Clerestory Roof Connection | Scale 3" = 1'-0"

SYSTEMS | Goals

- Comprehensive and integrated approach for indoor air management
- Space conditioning (heating, cooling, dehumidification, filtration, fresh air distribution) system that can provide:
 - high efficiency
 - Iow cost
 - exceptional comfort
 - healthy air
 - simple operation & maintenance
- Developed with Building America research and resources as a guide

	REMRate	Manual J
Heating Load [Kbtu/hr]	20.2	22.8
Cooling Load [KBtu/hr]	10.3	14.5

Exceptional Annual Energy Cost (before PV)

- Heating = \$282
- Cooling = \$38
- Water Heating = \$97

SYSTEMS | Manual J Summary Report

	MANUAL J8 _{AE} • SUMMARY REPORT							
						-		
Project			Mfg. Equipme	nt Sensible Heat Ratio	0.75	ACCA		
··· , ···			Manual Overide	Entry for Design CFM	500	Manual D		
	Room Name	HEAT LOSS	HTG CFM	HEAT GAIN	CLG CFM	CFM		
	ML Mud room	1250	31	802	37	37		
	ML Bathroom	431	11	155	7	11		
	ML Kitchen	1218	30	768	35	35		
	ML Dining	946	23	371	17	23		
N	IL Family Room	2067	51	1525	70	70		
MLE	Intrance & Stairwell	2339	58	1470	68	68		
	UL Bathroom	996	25	516	24	25		
UL M	Bedroom & Hallway	3095	77	2255	104	104		
	UL Bed #2	845	21	648	30	30		
	UL Bed #3	1619	40	1367	63	63		
	LL Bath	808	20	60	3	20		
	LL Mechanical	367	9	151	7	9		
LL	. Lounge & Stairs	2283	56	259	12	56		
LL	Fut. Bedroom #4	829	21	259	12	21		
LL	. Fut. Bedroom #5	1122	28	259	12	28		
Roo	m Envelope Totals	20214	500	10864	500			

INTRO | GOALS | ENVELOPE | SYSTEMS | IAQ | ENERGY | CONSTRUCTABILITY | FINANCIAL | CONCLUSION

DOE Race to ZERO Student Design Competition | University of Minnesota

SYSTEMS | Manual J Summary Report

Total Area	Construction Components	HEAT LO	OSS	HEAT G	AIN
309	Windows & Glass Doors	6749	29.62%	6963	53.29%
	Skylights				
40	Wood & Metal Doors	556	2.44%	179	1.37%
2169	Above Grade Walls	5402	23.71%	700	5.36%
	Partition Walls				
918	Below Grade Walls	3382	14.84%		
721	Ceilings	1046	4.59%	775	5.93%
	Partition Ceilings				
	Passive Floors				
	Exposed Floors				
	Slab Floors				
850	Basement Floors	1033	4.53%		
	Partition Floors				
	Infiltration	2302	10.10%	202	1.54%
	Internal Gains			2120	16.23%
	Duct Loss & Gain	140	0.62%	71	0.55%
	Ventilation	2177	9.55%	349	2.67%
	Blower Heat Gain			1707	13.06%
	Total Sensible	22788	100.00%	13065	100.00%
	Total Latent			1439	
	Total Cooling Load			14504	

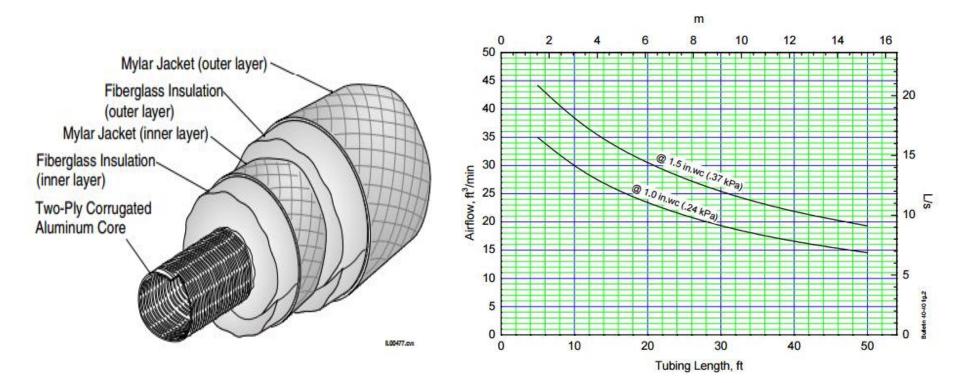
SYSTEMS | Combination Space & Water Heating

Polaris Condensing Water Heater & Unico M2430 2 Ton Hot Water Coil

- 95% CAE
- 120°F Operating Temp.
- Flow Rate: 4 GPM

Green Series M2430 Compact Air Handler

ECM blower


I-Series IS24G065 Outdoor Inverter Heat Pump (IS24G065)

SEER 14+

SYSTEMS | Distribution Fully-Ducted Supply System

SYSTEMS | Supply Duct Data

Design Airflow: 500 CFM

Supply Duct Number	Length from Plenum (ft)	Airflow Capacity (cfm)	Room or Zone
		@1.5 in. wc	•
1	22	29	LL Lounge
2	16	33	LL stairs
3	11	38	LL Bedroom 1
4	21	30	LL Bedroom 2
5	16	33	LL Bathroom
6	13	35	LL Mechanical
7	17	33	Front Entrance & stairs
8	10	38	Front Entrance & Stairs
9	20	30	Living Room
10	19	31	Living Room
11	16	33	Kitchen
12	24	28	Mud Room
13	18	32	ML Bathroom
14	30	25	Master Bedroom
15	28	26	Master Bedroom
16	15	34	Hallway
17	18	32	Hallway
18	18	32	UL Bedroom 1
19	25	27	UL Bedroom 2
20	13	35	UL Bathroom
21	4	44	UL Bathroom

SYSTEMS | Distribution Central Return System

Compact, simplified central return system to reduce ductwork and cost

- A centrally-located, dedicated return grille on each floor
- An additional high return grille in the second floor clerestory
- All spaces with doors have transfer grilles

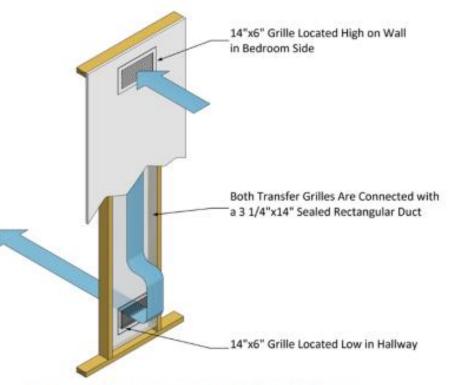
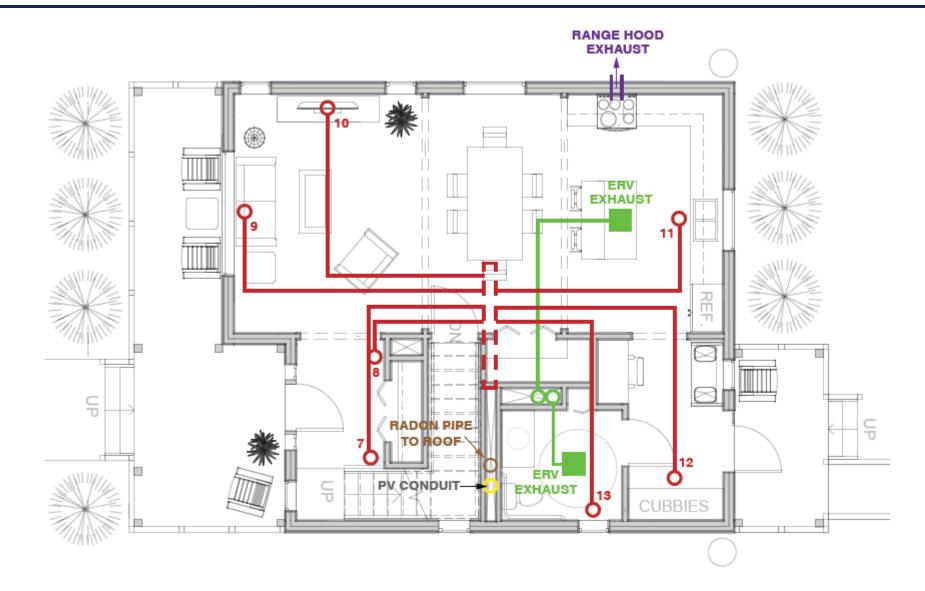
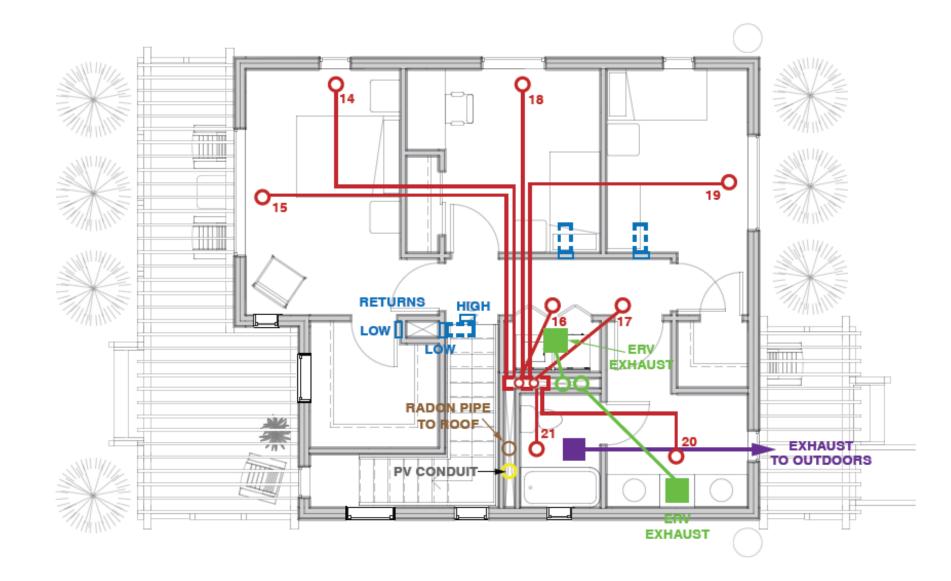


Figure 16. High/low through-the-wall transfer grille



SYSTEMS | Lower Level Mechanical Plan



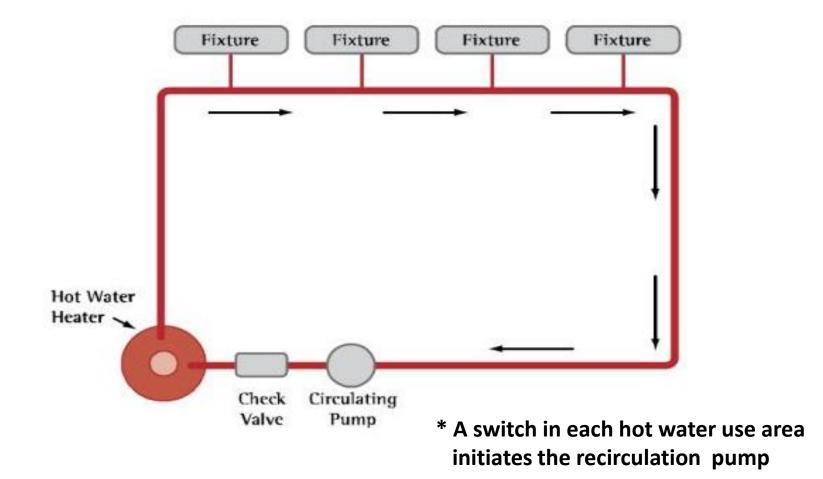
SYSTEMS | First Floor Mechanical Plan

SYSTEMS | Second Floor Mechanical Plan

SYSTEMS | Domestic Hot Water

Hot Water Goals

- Minimize cold water wasted waiting for hot water to arrive
- Limit hot water that remains unused in the pipes
- Comply with EPA WaterSense specifications
- High-efficiency, sealed combustion, condensing water heater

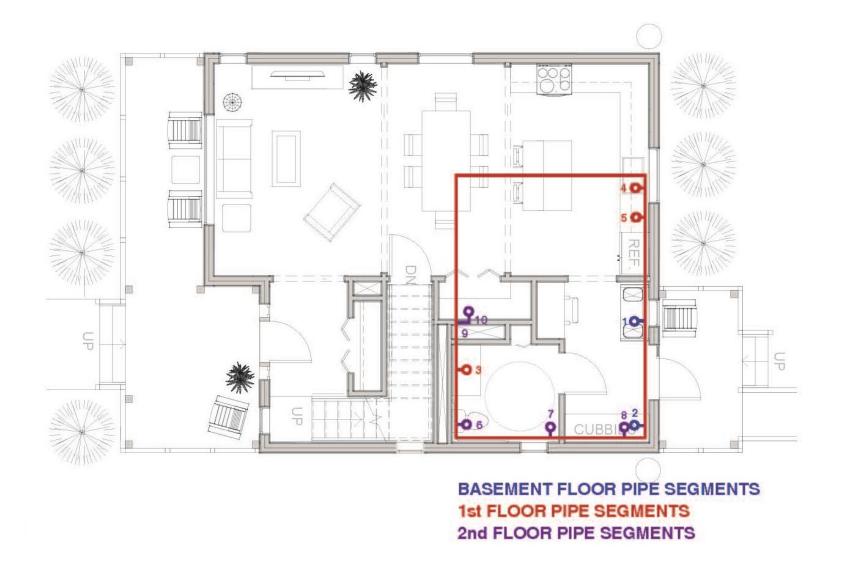


Polaris High-Efficiency Water Heater

- 96% thermal efficiency
- 100,000 Btu/hour input
- 34 gallon capacity
- 1% standby losses

SYSTEMS | Demand Recirculation Pump & Loop

SYSTEMS | Hot Water Delivery System Calculations

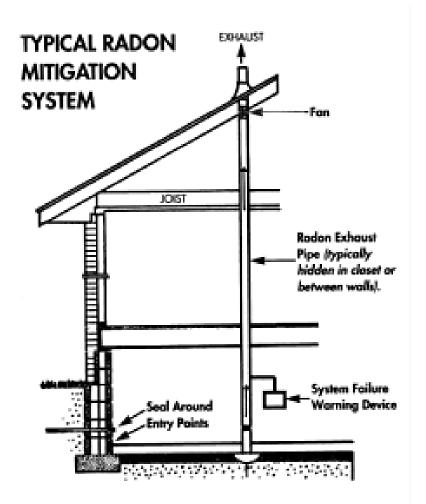

	Hot Water Delivery System Calculations Demand-Initiated Recirculation System Using CVPC SCH 40 Tubing										
		Den	nand-Initia	ted Recirc	culation Sys	tem Using CV	PC SCH 40 Tubin	g			
		Pipe	Water	Pipe	Water			Pipe	Water	Pipe	Water
		Diameter	Capacity	Length	Volume			Diameter	Capacity	Length	Volume
Fixture	Pipe Segment	[in]	[oz/ft]	[ft]	[gal]	Fixture	Pipe Segment	[in]	[oz/ft]	[ft]	[gal]
basement	Drop from Loop	1/2	1.89	6.5	0.096	2nd Floor	Drop from Loop	1/2	1.89	12.5	0.185
bathroom	1	1/2	1.89	1.5	0.022	Bath Sink 1	7	1/2	1.89	1.5	0.022
		Total Ho	t Water Vo	lume [gal]	0.118			Total Hot	Water Vol	ume [gal]	0.207
	-	Hot V	Vater Wait	Time [sec]	4.7		_	Hot W	ater Wait 1	īme [sec]	8.3
	Drop from Loop	1/2	1.89		0.089	2nd Floor	Drop from Loop	1/2	1.89	12.5	0.185
bathtub	2	1/2	1.89		0.022	Bath Sink 2	8	1/2	1.89	1.5	0.022
Total Hot Water Volume [gal]				0.111	Total Hot Water Volume [gal]					0.207	
	-		Vater Wait		3.0		T		ater Wait T	īme [sec]	<mark>8.3</mark>
1st Floor half	Drop from Loop	1/2	1.89		0.052	2nd Floor	Drop from Loop	1/2	1.89	12.5	0.185
	3	1/2	1.89		0.022	Clothes	9	· · ·	1.89	1	0.015
			t Water Vo		0.074	Washer	10	,	1.89	1.5	0.022
			Vater Wait		3.0			Total Hot	Water Vol	ume [gal]	0.221
1st Floor	Drop from Loop	1/2	1.89		0.052	1. Assum	es a bathroom	sink fau	cet flow i	rate of 1.	.5 gpm:
kitchen sink	4	1/2	1.89		0.022 0.074	the ma	aximum flow ra	te for W	aterSens	e labeleo	t
			t Water Vo		2.0	bathro	om sink faucet	S			
1st floor	Drop from Loop	1/2	Vater Wait ⁻ 1.89		0.052	2. Assum	es a kitchen fa	cuet flov	v rate of 2	2.2 gpm:	the
dishwasher	5	1/2	1.89		0.032		num flow rate f			•••	
Total Hot Water Volume [gal]				0.022	sink fa						
2nd floor tub Drop from Loop 1/2 1.89 12.5					0.185			ad flow	ato of 7	0 an. +1	ha
and shower	6	1/2	1.89	1.5	0.105		es a showerhe			•••	le
	0	· · ·	t Water Vo		0.022	maximum flow rate for WaterSense labeled					
			Vater Wait		6.2	showe	rheads.				

INTRO | GOALS | ENVELOPE | SYSTEMS | IAQ | ENERGY | CONSTRUCTABILITY | FINANCIAL | CONCLUSION

DOE Race to ZERO Student Design Competition | University of Minnesota

SYSTEMS | Demand Recirculation Hot Water Distribution

INDOOR AIR QUALITY | Goals


3-Step Indoor Air Quality Strategy

- Avoid pollutant sources
 - combustion pollutants
 - radon reduction strategies
 - VOCs, lead, etc.
 - avoidance of garage contaminants
- Ensure point-source removal
- Provide fresh air distribution

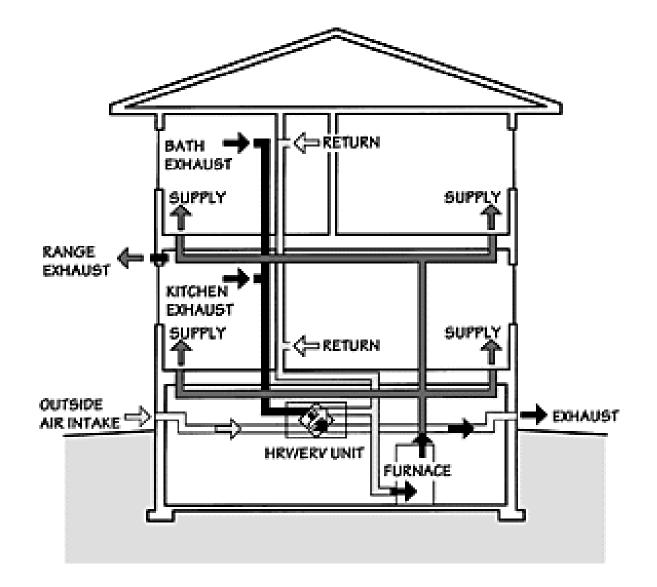
- Active sub-slab depressurization system to mitigate soil gases
- Material selection following EPA's Indoor AirPLUS to minimize indoor emissions
- Use of hard surface flooring to mitigate particulate loading

INDOOR AIR QUALITY | Whole House & Fresh Air Filtration

	Filtere	d Airb	orne C	ontaminan	ts		
	POLLEN	PET DANDER	DUST/LINT	DUST MITE MOLD SPORES		ODOR*	
		Particle Size Removal	Arrestance	Dust-Spot Efficiency Percent		Typical Applications	Most Common Air Filter Type
9	MERV 9	-	> 90 %	40 - 45%		Better Residential	Bag Filters
	MERV 10	-	> 95 %	50 - 55%		Better Commercial Buildings Hospital Laboratories	Pleated Filters Rigid Style Box Filters
J	MERV 11	-	> 95 %	60 - 65 %			
\mathbf{m}	MERV 12	-	> 95 %	70 - 75%			

INDOOR AIR QUALITY | Ventilation Rates

ASHRAE 62.2 2013						
# BR. 5						
Sq. Ft.	2544	2544				
Total Required Ventilation	121.32	106.32				


ASHRAE 62.2 2010						
# BR.	5	3				
Sq. Ft.	2544	2544				
Total Required Ventilation	70.44	55.44				

MN Energy Code 2015						
# BR. 5						
Sq. Ft.	2544	2544				
Total Required Ventilation	140.88	110.88				
Total Cont. Required	70.44	55.44				

MN Energy Code 2015	3	BR	5 BR		
Win Energy Code 2015	Cont.	Total	Cont.	Total	
* From Table @ 2000-2500 sq ft.	55	100	70	140	
* From Table @ 2500-30000 sq ft.	60	120	75	150	

INDOOR AIR QUALITY | Balanced Source-Point Ventilation

INDOOR AIR QUALITY | Energy Recovery Ventilation

Venmar ERV Duo 2.0

- 70% SRE
- 60-120 CFM

Source Point CFM (continuous/high)

- 2nd Floor Bathroom = 10-20 cfm
- 2nd Floor Laundry = 10-20 cfm
- 1st Floor Half-Bath = 20-40 cfm
- 1st Floor Kitchen = 10-20 cfm
- Lower Level = 10-20 cfm

INDOOR AIR QUALITY | Dedicated Exhaust Fans

Dedicated Exhaust Fans

- Due to high use and pollutant potential a dedicated exhaust fan is being used in:
- Primary bath
 - Mitigate odors and humidity
- Kitchen range
 - Manage gases and particulates
 - Large area for improved capture efficiency

Panasonic FV-08VKM3

50 cfm intermittent

Ispira Venmar IU600ES

• 160 cfm intermittent

ENERGY PERFORMANCE | OptiMN Impact Home

- REM/Rate Model
 - Meets DOE ZERH
 - HERS Index = 32
 - ENERGY STAR Rating of 5 Star Plus
 - Estimated Annual Energy Cost = \$1,124

Annual Load		MMBtu/yr
Heating		29.9
Cooling		6.4
Water Heating		10.8
Annual Consu	mption	MMBtu/yr
Heating		32.0
Cooling		1.5
Water Heating		11.4
Lights & Appliances	5	19.0
Photovoltaics		-0.0
Total		63.8
Annual Energy	/ Cost	\$/yr
Heating		282
Cooling		38
Water Heating		97
Lights & Appliances	5	500
Photovoltaics		-0
Service Charges		204
^{Total} Design Loads	DΛ	1121 kBtu/hr
Space Heating		20.2
Space Cooling Utility Rates		10.3
Electricity	Xcel Energy Elec	
Gas	Xcel Energy Gas	

INTRO | GOALS | ENVELOPE | SYSTEMS | IAQ | ENERGY | CONSTRUCTABILITY | FINANCIAL | CONCLUSION

DOE Race to ZERO Student Design Competition | University of Minnesota 🏼 🗛

ENERGY PERFORMANCE | OptiMN Impact Home with PV

REM/Rate Model

- Meets DOE ZERH
- HERS Index = 0
- ENERGY STAR Rating of 5 Star Plus
- Estimated Annual Energy Cost = \$124

Annual Load		MMBtu/yr
Heating		29.9
Cooling		6.4
Water Heating		10.8
Annual Consu	mption	MMBtu/yr
Heating		32.0
Cooling		1.5
Water Heating		11.4
Lights & Appliance	S	19.0
Photovoltaics		-37.8
Total		26.0
Annual Energ	y Cost	\$/yr
Heating		282
Cooling		38
Water Heating		97
Lights & Appliance	S	500
Photovoltaics		-997
Service Charges		204
Total		124
Design Loads		kBtu/hr
Space Heating		20.2
Space Cooling		10.3
Utility Rates		
Electricity	Xcel Energy Elec	
Gas	Xcel Energy Gas	

INTRO | GOALS | ENVELOPE | SYSTEMS | IAQ | ENERGY | CONSTRUCTABILITY | FINANCIAL | CONCLUSION

DOE Race to ZERO Student Design Competition | University of Minnesota 🌆

PHOTOVOLTAIC SYSTEM | Aerial View

Maximum southern exposure allows for optimal energy generation

Total Area = 735 SF

Inclination angle = 28.4°

Azimuth angle = 180°

INTRO | GOALS | ENVELOPE | SYSTEMS | IAQ | **ENERGY** | CONSTRUCTABILITY | FINANCIAL | CONCLUSION DOE Race to ZERO Student Design Competition | **University of Minnesota**

1

PHOTOVOLTAIC SYSTEM | Solar Array Analysis

- tenK is Minnesota made, allowing for a Made in Minnesota rebate for 10 years
- Model XT-A 410W system utilizes parallel architecture, a redundant inverter bus, and polycrystalline cells
- 20 410 watt panels
- Maximum power generation of 8.2 kW
- Cost before rebates = \$41,000
- Cost after federal tax credit = \$28,700
- Annual energy savings = 10,337 kWh
- At \$0.10/KWh, the PV system will save approximately \$1,034 per year
- HERS Score with PV = 0

PHOTOVOLTAIC ARRAY | Costs & Payback

Year	KWh Produced	MiM Rebate	Annual PV savings	Total Annual Savings	Annual Payback (\$)
0	11,086	\$2,772	\$1,033	\$3 <i>,</i> 805	24896
1	11,086	\$2,590	\$1,138	\$3,728	21168
2	11,086	\$2,421	\$1,140	\$3,560	17607
3	11,086	\$2,262	\$1,142	\$3,404	14203
4	11,086	\$2,114	\$1,144	\$3,258	10945
5	11,086	\$1,976	\$1,145	\$3,121	7824
6	11,086	\$1,847	\$1,147	\$2,994	4830
7	11,086	\$1,726	\$1,149	\$2,875	1955
8	11,086	\$1,613	\$1,150	\$2,763	-808
9	11,086	\$1,508	\$1,151	\$2,659	-3466
10	11,086	\$1,409	\$1,153	\$2,562	-6028

- kWh production was given by NREL calculator using local weather data and assumed to be constant
- PV information can be found in energy analysis
- Made in Minnesota (MIN) rebate is given for 10 years & awarded for using local MN solar panels
- Payback is in year 8

INTRO | GOALS | ENVELOPE | SYSTEMS | IAQ | ENERGY | CONSTRUCTABILITY | FINANCIAL | CONCLUSION

DOE Race to ZERO Student Design Competition | University of Minnesota

LIGHTING | Annual Electricity Cost Comparison

LED Lights						Incandesc	ent Lights
FIXTURE	Units	LED Watt	Hours/Day	Total Watt/Day	Total kWh/year	Watts/Unit	Total kWh/year
Track Lighting	1	16	8	128	46.72	65	189.8
Island Lighting	1	60	8	480	175.2	65	189.8
Ceiling Lights							
(Bed 1)	1	16.92	3	50.76	18.5274	65	71.2
(Bed2)	1	16.92	5	84.6	30.879	65	118.6
(Bed3)	1	16.92	3	50.76	18.5274	65	71.2
(Closets)	4	16.92	2	135.36	49.4064	65	189.8
(Foyer)	2	16.92	5	169.2	61.758	65	237.3
(Hall)	1	16.92	5	84.6	30.879	65	118.6
(Bath)	3	16.92	4	203.04	74.1096	65	284.7
(Living/Dining)	2	16.92	8	270.72	98.8128	65	379.6
Sconce Fixture	2	13	12	312	113.88	65	569.4
Vanity Fixtures	3	13	4	156	56.94	65	284.7
Wall-Mounts	2	11.6	12	278.4	101.616	100	876.0
				Total	877.2556		3580.65
				Cost (\$/kWh)	\$0.10		\$0.10
				Total (\$/yr)	\$87.73		\$358.07
		1	Fotal Sav	vings (\$/yr)		\$270.34	l i

INTRO | GOALS | ENVELOPE | SYSTEMS | IAQ | ENERGY | CONSTRUCTABILITY | FINANCIAL | CONCLUSION

DOE Race to ZERO Student Design Competition | University of Minnesota

APPLIANCE CHOICE | Balancing Cost & Performance


Ventless washer-dryer combo for ZERO impact on house pressure during operation


Efficient fan motors for air handler, ERV, bath fan, and range hood

ENERGY STAR rated appliances and fans

CONSTRUCTABILITY | Familiar Systems & Materials

Approachable and Appropriate Construction Materials and Methods

- Simplified shape in 4' modules
- Use of traditional framing techniques
- Use of prefabricated roof trusses
- Use of readily accessible building materials
- Simplified duct and hot water systems
- A "Construction Quality Management Plan" for unique and sequence sensitive details

	Annual	Monthly
Medium Family Income (MFI)	\$63,900	\$5, 325
Home Ownership Affordability	\$24,282	\$1,650.75
Utility Costs	\$1, 121	\$93
Property Tax	\$1, 917	\$108
Insurance	\$780	\$92
Mortgage Insurance	\$1 <i>,</i> 598	\$133.13
Down Payment	\$62,369	
Monthly Household Debt	\$320	\$26.63
Amount Available for Mortgage Payment	\$18,547	\$1,546

Monthly Payment of Opti-MN House What can the Homeowner Afford?

- Using a median family income (MFI) of \$63,900 for a family of four, which is 80% of Hennepin County's MFI of \$82,300
- Utility costs found by REM/Rate estimates
- Down Payment is paid in year 1, and is calculated to be 20% of home's value

82% of what the family of four can afford

INTRO | GOALS | ENVELOPE | SYSTEMS | IAQ | ENERGY | CONSTRUCTABILITY | **FINANCIAL** | CONCLUSION DOE Race to ZERO Student Design Competition | **University of Minnesota**

\$1,264

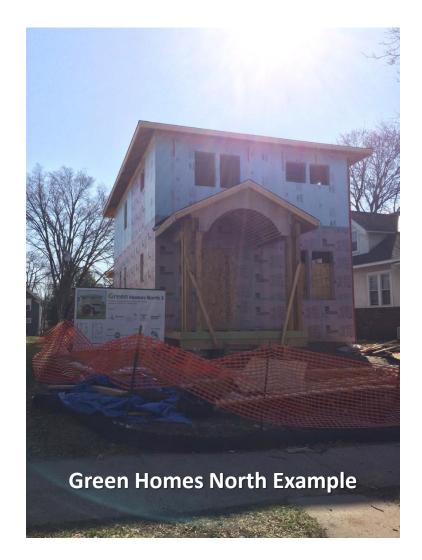
	Annual	Monthly
Medium Family Income (MFI)	\$63,900	\$5,325
Home Ownership Affordability	\$24,282	\$1,650.75
Utility Costs	\$1, 121	\$93
Property Tax	\$1, 296	\$108
Insurance	\$780	\$92
Mortgage Insurance	\$1,600	\$90
Down Payment	\$7,600	
Monthly Household Debt	\$320	\$26.63
Amount Available for Mortgage Payment	\$14,894	\$1,241.13

Monthly Payment of Opti-MN House with Special Financing

What can the Homeowner Afford?

- Using the maximum median family income of \$63,900
 Minnesota Housing Finance
 Agency as the cap for "Low income" category of mortgage
 products for first-time
 homebuyers
- Utility costs found by REM/Rate estimates
- Down Payment is 5% of mortgage amount

Well within reach of the future homeowner


INTRO | GOALS | ENVELOPE | SYSTEMS | IAQ | ENERGY | CONSTRUCTABILITY | **FINANCIAL** | CONCLUSION DOE Race to ZERO Student Design Competition | **University of Minnesota**

\$731.65

Hard Cost Preliminary Cost Estimate

\$226,800 or \$133 per ft²

\$318,900 TOTAL project cost after adding the competition 40.6% for soft costs

Preliminary Budget					
Line Item	Base Model Cost	Opti-MN House Cost	Cost/SF		
Site Preparation					
Lot Cost	\$5,000.00	\$5,000.00	\$2.22		
Utility Connections	\$7,800.00	\$8,827.05	\$3.47		
Concrete	\$20,500.00	\$23,199.29	\$9.12		
Misc. Prep Costs	\$13,500.00	\$15,277.58	\$6.01		
Subtotal Prep Costs	\$46,800.00	\$52,303.91			
General Construction			\$0.00		
Framing	\$27,501.00	\$21,098.09	\$12.23		
Windows and Doors	\$8,694.80	\$10,294.80	\$3.87		
Insulation	\$12,604.00	\$12,418.59	\$5.61		
Drywall	\$2,784.45	\$2,160.72	\$1.24		
Misc. General Construction Costs	\$2,278.15	\$2,831.87	\$1.01		
Subtotal General Construction	\$53,862.40	\$48,804.07			

OptiMN

Preliminary Budget					
Line Item	Base Model Cost	Opti-MN House Cost	Cost/SF		
Interior Finishing					
Finish Carpentry	\$14,098.25	\$10,636.40	\$6.27		
Tile Work	\$1,430	\$1,078.86	\$0.64		
Flooring	\$10,345	\$7,804.77	\$4.60		
Painting	\$3,000	\$2,263.35	\$1.33		
Misc. Interior Painting Costs	\$1,500	\$1,131.67	\$0.67		
Punch List	\$2,000	\$1,508.90	\$0.89		
Subtotal Interior Finishes	\$32,373.25	\$24,423.95			
Exterior Finishes					
Exterior Cladding	\$6,455	\$7,304.95	\$2.87		
Porches	\$3,300	\$3,3734.52	\$1.47		
Landscaping Improvements	\$1,500	\$1,697.51	\$0.67		
Misc. Exterior Finishing Costs	\$100	\$113.17	\$0.04		
Subtotal Exterior Finishes	\$11,355	\$12,850.14			
Garage Construction	\$12,885	\$12,885			

Preliminary Budget					
Line Item	Base Model Cost	Opti-MN House Cost	Cost/SF		
Roofing					
Roofing	\$5,662.44	\$11,815.77	\$2.52		
Gutters	\$1,120	\$844.98	\$0.50		
Subtotal Roofing	\$6,782.44	\$12,660.75			
Electrical Systems					
Lighting Package	\$2,250	\$2,946.26	\$1.00		
Electrical Labor	\$7,395	\$8,368.72	\$3.29		
Subtotal Electrical Systems	\$9,645	\$11,314.98			
Plumbing Systems					
Plumbing Fixtures	\$2,000	\$3,908.90	\$0.89		
Plumbing Labor	\$13,000	\$9,807.83	\$5.78		
Misc. Plumbing Systems Costs	\$250	\$188.61	\$0.11		
Subtotal Plumbing Systems	\$15,250	\$13,905.34			

OptiMN

Preliminary Budget				
Line Item	Base Model Cost	Opti-MN House Cost	Cost/SF	
HVAC Systems				
Heating and Cooling	\$14,000	\$10,600	\$6.23	
Ventilation	\$1,100	\$1,544.84	\$0.49	
Subtotal HVAC Systems	\$15,100	\$12,144.84		
Energy Conservation				
Appliances	\$2,700	\$2,595	\$1.20	
Subtotal Energy Conservation	\$2,700	\$2,595		
Other				
General Requirements	\$8,830	\$9,992.67	\$3.93	
Builder's Profit	\$2,849.72	\$3,224.95	\$1.27	
Overhead	\$7,064	\$7,994.14	\$3.14	
Warranty Accrual	\$1,500	\$1,697.51	\$0.67	
Subtotal Other	\$20,243.72	\$22,909.26		
	1			
GRAND TOTAL	\$226,996.81	\$226,797.24		
5% Contingency		\$11,339.86		

Department of Energy's CHALLENGE

to build a Zero Energy Ready Home

Urban Homeworks' MISSION

to produce equitable, dignified, communities

Green Homes North INITIATIVE

to revitalize North Minneapolis neighborhoods with affordable, sustainable, and quality homes

Team OptiMN's GOAL

is to design a home that makes an **IMPACT** by achieving all of the above

HERS score of 32 without PV **HERS score of 0** with PV

Department of Energy's CHALLENGE

to build a Zero Energy Ready Home

Urban Homeworks' MISSION

to produce equitable, dignified, communities

Green Homes North INITIATIVE

to revitalize North Minneapolis neighborhoods with affordable, sustainable, and quality homes

Team OptiMN's GOAL

is to design a home that makes an **IMPACT** by achieving all of the above

An affordable house design that is larger, more flexible, and higher performance.

Department of Energy's CHALLENGE

to build a Zero Energy Ready Home

Urban Homeworks' MISSION

to produce equitable, dignified, communities

Green Homes North INITIATIVE

to revitalize North Minneapolis neighborhoods with affordable, sustainable, and quality homes

Team OptiMN's GOAL

is to design a home that makes an **IMPACT** by achieving all of the above

Giving new life to a vacant lot with a highly efficient home design for the future

Department of Energy's CHALLENGE

to build a Zero Energy Ready Home

Urban Homeworks' MISSION

to produce equitable, dignified, communities

Green Homes North INITIATIVE

to revitalize North Minneapolis neighborhoods with affordable, sustainable, and quality homes

Team OptiMN's GOAL

is to design a home that makes an **IMPACT** by achieving all of the above

We successfully met these goals by creating an affordable, highperformance home that truly benefits the owner, the community, and the environment

CONCLUSION | And One Last Thing...

"Urban Homeworks plans to propose the "Impact Home" in their next funding cycle for Green Homes North!"

INTRO | GOALS | ENVELOPE | SYSTEMS | IAQ | ENERGY | CONSTRUCTABILITY | FINANCIAL | **CONCLUSION** DOE Race to ZERO Student Design Competition | **University of Minnesota**

1 1

CONCLUSION | A Special Thank You from Team OptiMN

CONCLUSION | A Special Thank You from Team OptiMN

