

Duncan Prahl, RA
IBACOS
BA Tech Update, April 29, 2013
Denver CO



#### **Caveats About Me:**

- I'm an Architect
- I love math and science, but I'm not going to marry it
- My engineering skills are primarily based on osmosis and graphics
- "Close enough is good enough"





#### **Utility Unbundling**

- True costs becoming "transparent"
- Allows for next level of analysis
- Cash flow, Total Cost of Ownership







billing and collection.

Continued on next page

purchasing energy from Central Hudson or en

# Martha's Vineyard Community





#### **Specifications**

Building System Specification

Below Slab R-20 extruded polystyrene (XPS) foam

Foundation Walls R-20 poly iso foam

Framed Wall R-31 cellulose in 9-1/2" double stud wall

Windows U-value = 0.19, south windows SHGC = 0.62, all others SHGC = 0.48

Air Leakage for Houses 1, 117 to 184 cfm 50

3, and 4

Air Leakage for House 2 236 cfm 50

Roof R-50 unvented attic in 14" deep engineered I joist roof rafter

HVAC – Main Living Space 2-ton mini-split with single head in living room, HSPF 10, SEER 18,

programmable thermostat

Supplemental Heating –

Second-Floor Bedrooms

Supplemental Heating – 600-W radiant electric panel, individual non-programmable thermostat

First-Floor Master Bedroom in bedroom controlling that panel

Ventilation 70-cfm continuous ~55% sensible heat recovery, 35-W fan

Water Heating 50-gallon electric tank type, 0.94 energy factor (EF)

Photovoltaics 5.04-kW grid connected



All Electric Houses in Cold Climates

in each bedroom controlling the panel in that bedroom

400-W radiant electric panels, individual non-programmable thermostat

## Martha's Vineyard Community







Images courtesy South Mountain Company



### **Annual Energy by End Use**





#### Heating Energy Use, Houses 1 through 4, Nov 2010 to Jan 2011





## Fairview House, Urbana IL





#### Fairview House, Urbana IL





Ductless Wall Mounted Heat Pump

Electric Resistance Heater



## Fairview House, Urbana IL

| Building       | Illinois House - 1450 sf (135 m²) 3 Bedroom – Passive        |
|----------------|--------------------------------------------------------------|
| Assembly       | House                                                        |
| Foundation     | Slab on Grade                                                |
| Slab           | 2-3/4 in. (70 mm) XPS perimeter insulation R- 14 (U=0.07),   |
|                | 16 in. EPS under Slab R-64 (U=0.02)                          |
| Basement       | NA                                                           |
| walls          |                                                              |
| Floor over     | NA                                                           |
| basement       |                                                              |
| Walls          | 14 in. (356 mm) engineered I joist @ 24 in. (0.6 m) OC, with |
|                | R-1.5 fiberboard sheathing; blown in fiberglass R-57         |
|                | $(U_0=0.034)$                                                |
| Windows        | Triple glazed, insulated fiberglass frame, U-0.20, SHGC      |
|                | 0.23                                                         |
| Roof           | 16 in. (0.4 m) engineered I joists @ 24 in.(0.6m) OC; blown  |
|                | in fiberglass R-64 (U₀=0.017)                                |
| Air tightness* | 58 cfm @ 50 PA                                               |
|                | (~0.01 ACH nat.)                                             |



#### Urbana, IL. Annual Site Energy (kWh)





## **Heating vs. Internal Gains**





#### **Extenuating Circumstances**

- What do electric utilities want as load?
  - Good power factor
  - Good load factor
- So:
  - No induction cooking (lousy power factor)
  - No "spiky loads" (resistance heat elements)



#### Going All Electric (or mostly)

#### **Assumptions:**

- You can get a heat pump (minisplit, central unit) installed properly and cost competitively, minimum heating COP 2+
- HPWH (big tank, optimized for HP operation) COP 2+
- You are going to pay an Electric Service Charge anyhow
- Natural gas distribution adds \$1,000 to cost of lot (adds to house cost)
- Gas service charge \$8 / month (BEopt default, low I think) to \$20/month (probably where things are going)



# Non Scientific Survey of Gas Service Charges (Hint: Google "Natural Gas Service Charge")

| Utility                         | \$\$/<br>Month | Utility                       | \$\$/<br>Month | Utility                   | \$\$/<br>Month |
|---------------------------------|----------------|-------------------------------|----------------|---------------------------|----------------|
| Oklahoma Natural<br>Gas Company | \$13           | NJ Natural Gas<br>Company     | \$8            | <b>Dominion East Ohio</b> | \$21           |
| Duke Energy Ohio                | \$15           | PG&E                          | \$3            | Washington Gas - DC       | \$8            |
| Centerpoint Energy              | \$14           | Yankee Gas                    | \$15           | Washington Gas - MD       | \$10           |
| Kansas Gas<br>Service           | \$15           | Midwest Natural<br>Gas        | \$12           | Washington Gas - VA       | \$11           |
| Georgia Natural<br>Gas          | \$5            | Central Hudson Gas & Electric | \$17           | Duke Energy Kentucy       | \$16           |
| DTE Energy                      | \$11           | Con Ed                        | \$19           | Virginia Natural Gas      | \$11           |
| Peoples Gas                     | \$22           | Keyspan Gas                   | \$15           | Atlanta Gas Light CO      | \$11           |
| Consumers Energy                | \$11           | Northshore Gas                | \$22           | Florida City Gas          | \$9            |
|                                 |                | Chattanoga Gas                | \$15           |                           |                |

Average ~\$13 /month



All Electric Houses in Cold Climates

#### **EIA Gas and Propane Prices**





#### Do some "Architect Math"

- Take metered data, convert Lighting Appliances and Misc. Electric (LAME) loads to Internal Gains using BA HSP Protocol formulae
- Turn some LAME Loads to Fossil Fuel (Range & Dryer) using BA HSP values based on house size and # of BR
- Add gas meter charges in \$4 increments, starting at \$8/mo
- Compare to propane at \$2 & \$3/gal
- Lot costs \$1,000 more for natural gas infrastructure, meter set, hot tap, etc. (~\$7/mo for a 30 year loan, 7%)
- Convert space heat to fossil fuel (90% furnace)
  - site kWh → Btuh x 90% eff x fuel Btu content



Cheap Electric Cheap Gas Cheap Propane

# Fossil Fuel Range and Dryer... Go Electric





Cheap Electric Cheap Gas Cheap Propane

#### Add Heating Load .... Go Electric





Expensive Electric Cheap Gas Cheap Propane

#### Fossil Fuel Range and Dryer... Go Propane





### Add Heating Load.... Go Propane





Moderate Electric Cheap Gas Expensive Propane

#### Fossil Fuel Range and Dryer... Go Electric





#### Add Heating Load .... Go Gas





Expensive Electric Cheap Gas Expensive Propane

# Fossil Fuel Range and Dryer... Go Figure





Expensive Electric Cheap Gas Expensive Propane

# Add Heating Load .... Go Gas (if service charge is less than \$20)





#### Where does that leave us?

- Internal gains from LAME are providing ~50% of the annual heating loads
- As loads have dropped, other costs should be considered as part of total cost of ownership.
- Local & regional policy may drive fuel choices (e.g. regional GHG reductions or peak loads impacting electric utility strategy)
- The future of distributed natural gas may not be too far off...



#### **Future of Natural Gas Storage**

- ARPA-E aggressively funding (~\$30M) natural gas for vehicular applications, including advanced storage
  - Goal to get approximate Btu density of gasoline from natural gas using "low" pressure distribution
- Gas utilities change from distribution infrastructure to "home delivery"?









#### Your Car may change the game

- If policy is moving us towards natural gas vehicles,
   then having distribution infrastructure may be desirable
- Cost of infrastructure typically recovered through the monthly service charges / distribution charges
- Due to fixed cost of infrastructure, low usage may drive fixed costs up for consumer.
- Recommendation:
- Still install infrastructure, but consider offering an "off grid" fossil fuel option for buyers



#### **Thank You**

Questions?

