

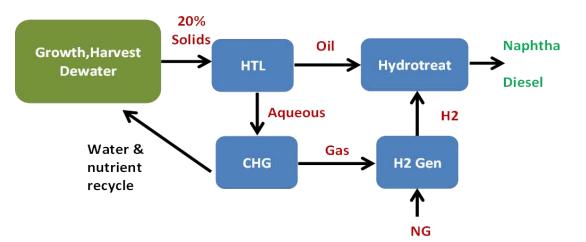
Proudly Operated by Battelle Since 1965

Recent Developments in Hydrothermal Processing of Algae

DC ELLIOTT Pacific Northwest National Laboratory

Bioenergy 2016, The National Algal Biofuels Technology Review, Washington, DC, July 14, 2016

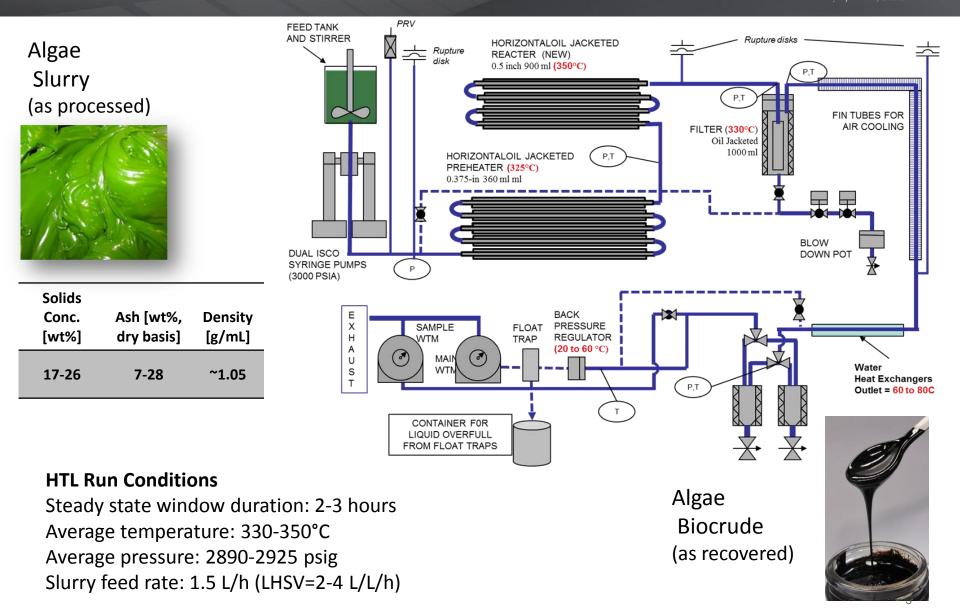
Outline



Proudly Operated by Battelle Since 1965

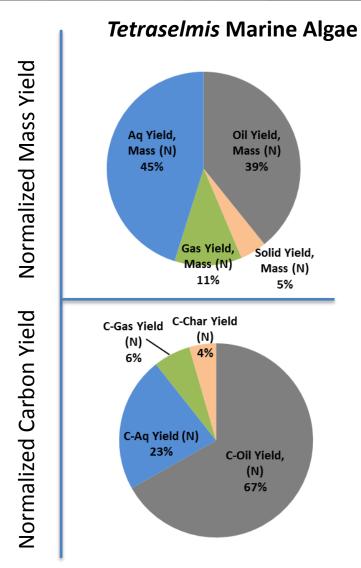
HTL at PNNL

- Upgrading of HTL biocrude
- CHG of aqueous phase
- Preliminary TEA/LCA
- Commercialization and future work


Box Flow for Algae Application

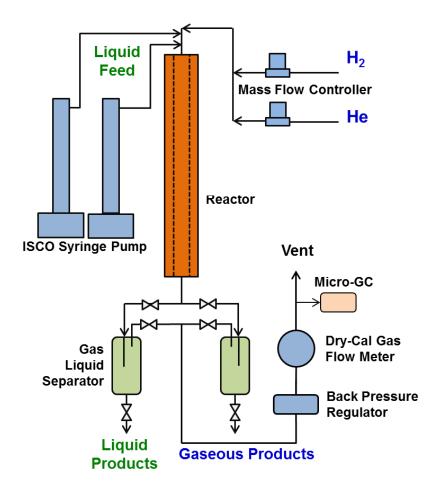
Simplified HTL Process Flow Diagram

NATIONAL LABORATORY
Proudly Operated by **Battelle** Since 1965


Pacific Northwest

HTL Results from Algae Slurry

Proudly Operated by Battelle Since 1965


Biocrude Properties	
Carbon [wt% dry]	79.4
Hydrogen [wt% dry]	10.1
H:C	1.51
Oxygen [wt% dry]	3.8
Nitrogen [wt% dry]	4.8
Sulfur [wt% dry]	1.4
HHV [mJ/kg]	39.2
TAN [mg _{KOH} /g _{oil}]	54
Density [g/mL]	0.99
Viscosity [cSt, 40°C]	245
Moisture [wt%]	6.6
Ash [wt%]	0.40
Filterable Solids [wt%]	0.05

Note: The solids concentration in the Tetraselmis was 17.8 wt% DAF.

Mini-scale Fixed Bed Hydrotreater

Proudly Operated by Battelle Since 1965

Reactor: ½" ID, ¾" OD, 25" long, 3/16" thermal well

Heater block: aluminum sheath (3" OD, 9" length) wrapped with heating tape; insulated.

HT Product Compared to Biocrude from Algae

Proudly Operated by Battelle Since 1965

Analyses	Tetraselmis			
Andryses	Biocrude	HT (95h)		
Carbon [wt%]	79.4	87.0		
Hydrogen [wt%]	10.1	14.9		
H:C atomic ratio	1.5	2.1		
Nitrogen [wt%]	4.8	<0.05		
Oxygen* [wt%]	3.8	0.9		
Sulfur [ppm]	14,000	15		
Moisture [wt%]	6.6	<0.5		
Density [g/cm ³]	0.99 [‡]	0.78 ⁺		
Viscosity [cSt]	245 [‡]	1.4 ⁺		
TAN [mg _{KOH} /g]	54	<0.01		
*Oxygen by difference *A	t 20°C [‡] At 40°	С		

HTL biocrude from algae can be upgraded to a hydrocarbon fuel

Good HDN, HDO, and HDS achieved with conventional catalyst

Analytical Data for Distillate Fractions

Proudly Operated by Battelle Since 1965

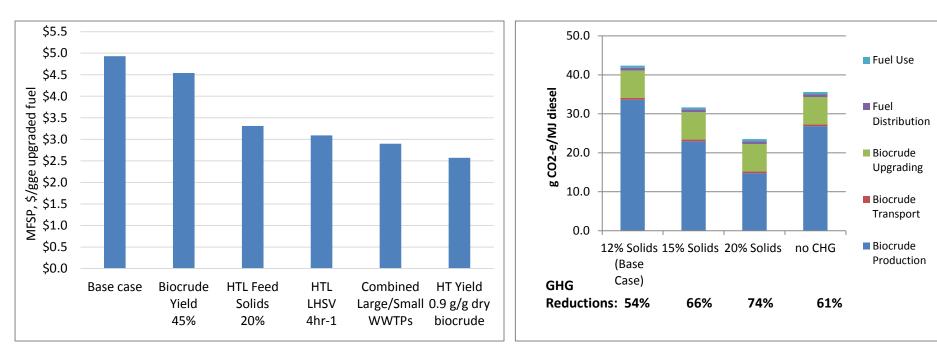
Sample ID#	Fraction	С	Н	Ν	0	TAN	KF
61573-62-D1	naphtha	83.41	14.15	<0.05	0.80	<0.01	<0.5
61573-62-D2	jet	86.19	13.67	0.10	0.60	<0.01	<0.5
61573-62-D3	diesel	85.39	13.83	0.14	0.84	<0.01	<0.5

Sample ID#	Fraction	Sulfur ASTM D5453 (ppm)	Flash Point (micro- cup) °C	Cloud Pt ASTM D5773 (°C)	Pour Pt ASTM D5949 (°C)	Freezing Pt ASTM D5972 (°C)	Cetane
61573-62-D1	naphtha	18.1					
61573-62-D2	jet	12.6	49.5	-41.6	-48	-36.9	
61573-62-D3	diesel	9.4		3.2	3	4.2	58.7

Catalytic Hydrothermal Gasification

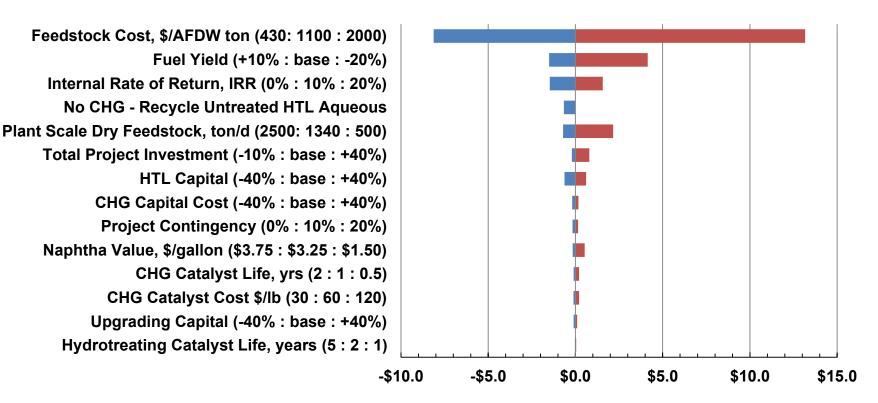
Proudly Operated by Battelle Since 1965

Description of CHG


- "Sister technology" to Hydrothermal Liquefaction (HTL)
- Can be used on any organic rich aqueous stream
- Produces methane gas rather than oil (catalytic action)
- Compact means to do "digestion" providing a fuel gas (CH₄/CO₂) without residual sludge
- Provides potential to recycle nutrients in biomass

Preliminary Algae TEA – Potential Improvements & Preliminary LCA

Proudly Operated by Battelle Since 1965


- Increased yields, solids loading, and reactor space velocity are possible with further testing.
- Combined improvements could reduce fuel MFSP by about half.

- Solids loading impacts GHGs (and \$).
- Reduction from petroleum fuel is
 >50% for all cases.

Proudly Operated by Battelle Since 1965

TEA Cost Variability

Cost Change from Baseline Case – Saltwater Algae

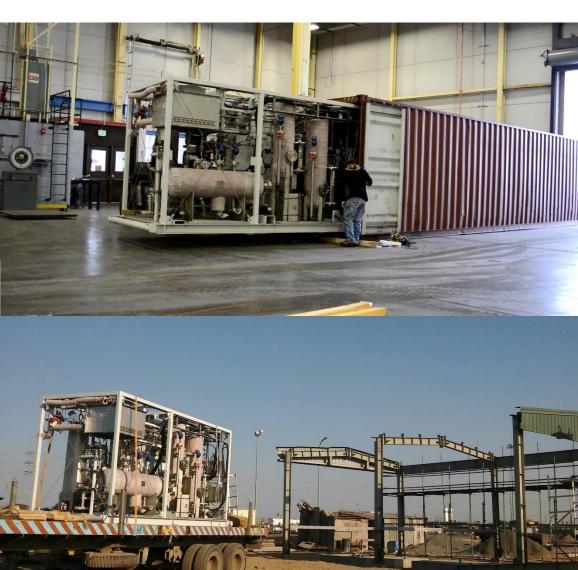
Techno-Economic Analysis of Whole Algae Hydrothermal Liquefaction (HTL) and Upgrading System: Freshwater versus Saltwater Algae Y Zhu, S B Jones, D B Anderson, R T Hallen, A J Schmidt, K O Albrecht, D C Elliott 2015 Algae Biomass Summit, September 29 - October 2, 2015 Washington, DC

10

Scale-Up and Technology Transfer

Proudly Operated by Battelle Since 1965

- Genifuel is the PNNL licensee.
- Federal Laboratory Consortium Award for Excellence in Technology Transfer
- R&D100 Award
- Engineering challenges remaining include;
 - slurry pumping,
 - efficient separations,
 - heat integration



Jim Oyler with the 1000 L/day (of 20 wt% BDAF) Hydrothermal Processing Pilot System continuous HTL/CHG system for algal feedstock NAABB-Reliance-PNNL-Genifuel

Scale-Up and Technology Transfer

- Technology developed at PNNL
- System design by Genifuel
- Assembled in Colorado
- Shipped to India
- On-site at RIL.

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Scale-Up and Technology Transfer

Proudly Operated by Battelle Since 1965

- Being installed at the RIL algae processing site in Gagva, India
 - Expected start-up Q3 2016
- Near Jamnagar
 - Largest petroleum refinery complex in the world