

Catalytic Production of α,ω diols from Biomass

Bioenergy 2016

Breakout Session 3-C:

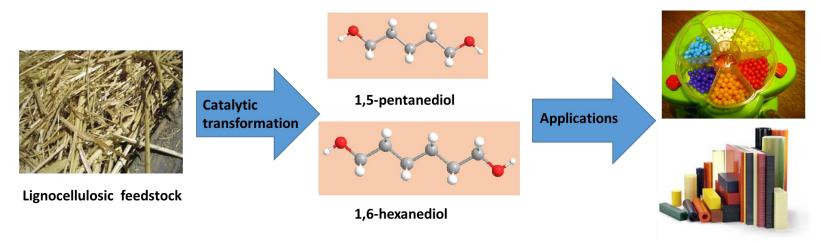
Innovative Approaches and Materials for Clean Energy

Washington, D.C., July 14, 2016

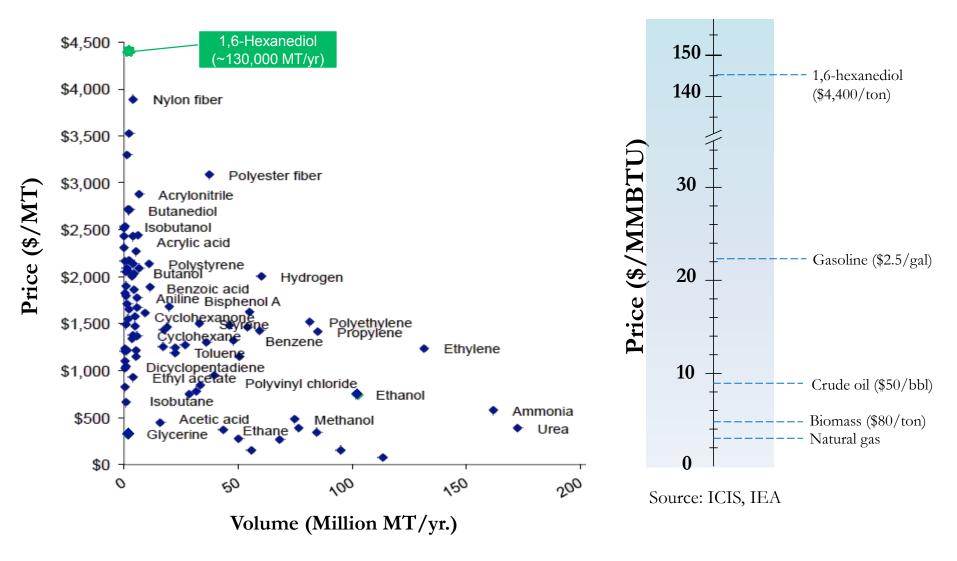
<u>Siddarth H Krishna</u>, Jiayue He, Kefeng Huang, Pranav Karanjkar, Kevin J Barnett, Sam Burt, Ive Hermans, Christos Maravelias, James A Dumesic, George W Huber.

University of Wisconsin-Madison

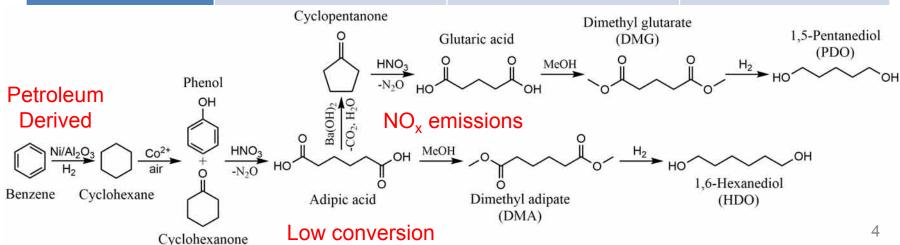
Department of Chemical & Biological Engineering


http://biofuels.che.wisc.edu/

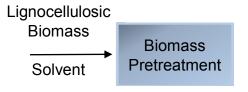
Catalytic Processes for Production of α,ω-diols from Lignocellulosic Biomass


Goal: Develop an integrated and efficient process to produce high value chemicals (1,5-pentanediol and 1,6-hexanediol) from lignocellulosic biomass

- Funding: DOE Bioenergy Technologies Office
 - Topic Area 2: Hybrid chemical and biological upgrading processes with integration of separations
- **Prime Recipient:** University of Wisconsin (\$3.3 MM)
- **Principal Investigator**: George Huber
- Project Partners: University of Minnesota, Argonne National Lab, Glucan
 Biorenewables



High Value Commodity Chemicals from Biomass



α,ω -Diols have many uses in the Polymer Industry

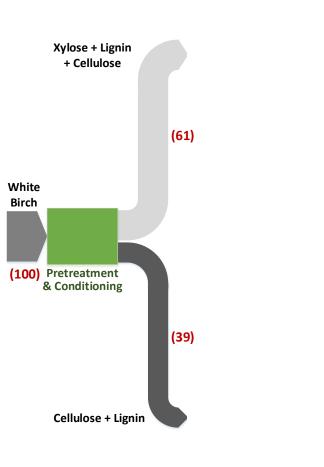
Particular	1,6-Hexanediol	1,5-Pentanediol	1,4-Butanediol
Applications	 Polyurethanes Coatings Acrylates Adhesives Polyester Resins Plasticizers Others 	 Polyester plastics Polyurethanes Pharmaceuticals Inks and coatings Plasticizers Solvent and industrial chemicals Others 	 Biodegradable plastics Hot melt polyesters Coatings Polyurethanes Adhesives Pharmaceuticals Fiber particle and composite
Major players	 BASF Ube Industries Lanxess Perstorp AB Lishui Nanming Chemical Fushun Tianfu Chemicals 	 BASF Ube Industries Marubeni Corporation Lishui Nanming Chemical 	 BASF Dairen Chemicals Lyondell Chemicals Shanxi Sanwei Group ISP Invista Mitsubishi Chemicals
Current market size (2013)	\$524 Million	< \$10 Million	\$5,550 Million

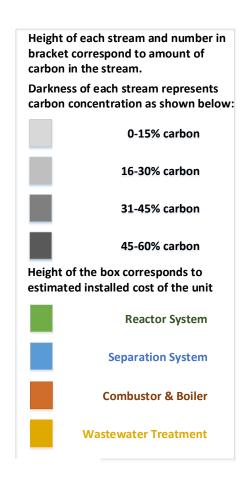
Chemistry: α,ω -diols from Lignocellulosic Biomass

- Utilize inherent functionalities present in biomass
 - C₅ & C₆ backbone
 - Selective removal of oxygen to produce partially oxygenated chemicals
- Integration of reaction studies with separations and technoeconomic analysis

Several Intermediates in our Process are also Valuable Chemicals

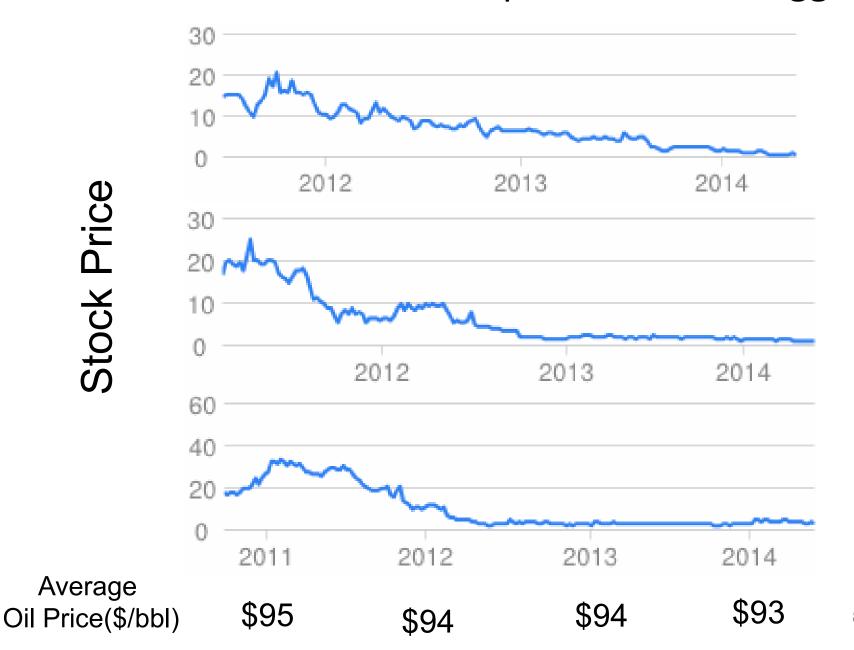
C₆ Stream


- Levoglucosenone: chiral building block pharmaceuticals
- Cyrene: polar aprotic solvent
- **Tetrahydrofurandimethanol**: α, ω –diol, potential polymer precursor


^{1.} M. Ostermeier and R. Schobert, "Total Synthesis of (+)-Chloriolide," *The Journal of Organic Chemistry*, 2014, **79**, 4038-4042.

^{2.} J. Sherwood, M. De bruyn, A. Constantinou, L. Moity, C. R. McElroy, T. J. Farmer, T. Duncan, W. Raverty, A. J. Hunt and J. H. Clark, "Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents," *Chemical Communications*, 2014, **50**, 9650-9652.

3. A.M. Allgeier, e. Korovessi, C.A. Menning, J.C Ritter, S.K. Sengupta, C.S Stauffer, "Process for preparing 1,6-hexanediol (US 8865,940 B2)," *USA Pat.*, 2014.


Sankey Diagram for Carbon Yields & Capital Cost

Focus on improving yield and lowering catalyst costs in C₆ pathway

2nd Generation Biofuel Companies have Struggled

Challenges with Pioneer Process Plants

- Rand Study (1981) prepared for US DOE because of underestimate for costs for coal to liquids technologies in 1970s
- Looked at 44 chemical process plants from 34 companies in chemical, oil, minerals and design

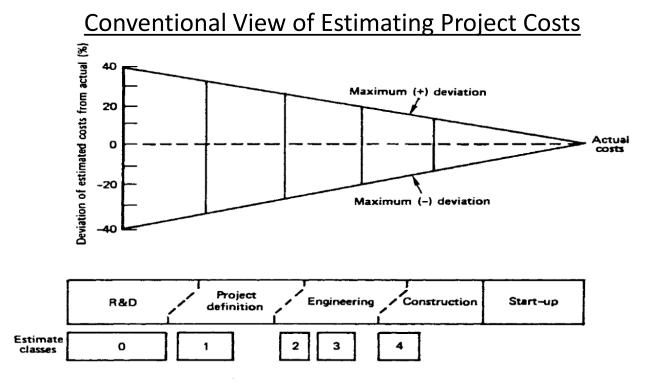


Fig. 4.1 — The conventional view of how information and project phase affect estimation accuracy

E. W. Merrow, K. E. Phillips, C. W. Myers, Understanding Cost Growth and Performance Shortfalls in Pioneer Process Plants, Rand Corporation, 1981, Prepared for US Department of Energy, R-2569-DOE.

Estimating Project Costs of Pioneer Plants

- Severe
 underestimation of cost
 and overestimation of
 performance are
 common in new
 technology
- Over 50% of first generation plants failed to meet production goals in the 2nd six months after start up

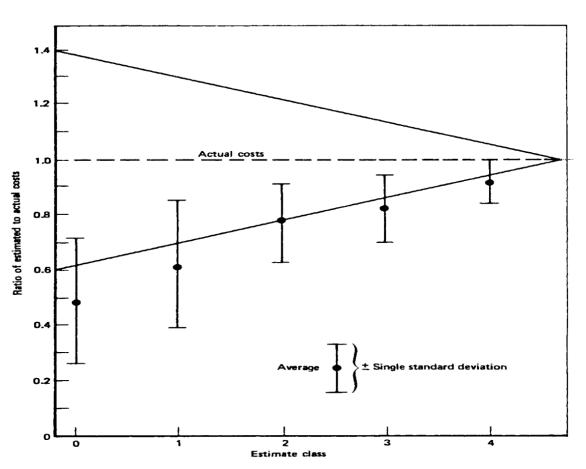
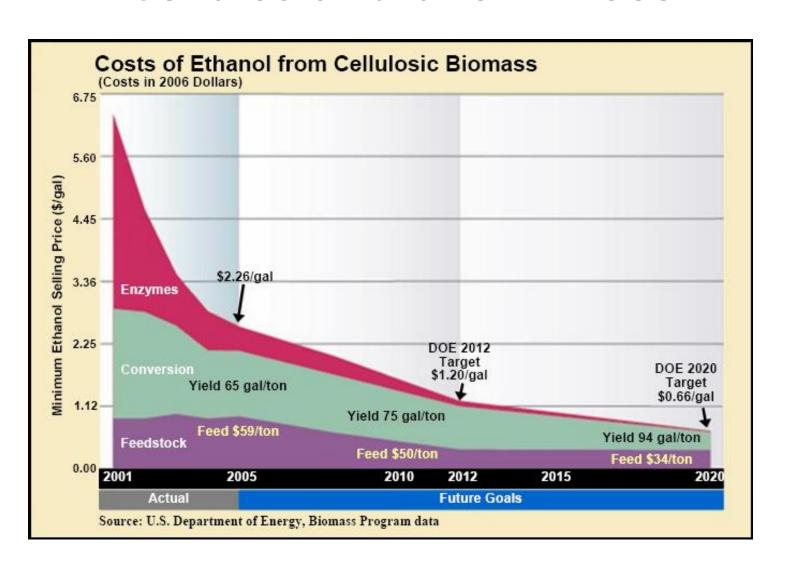



Fig. 4.3 - Experience of the pioneer plants sample with estimation accuracy

E. W. Merrow, K. E. Phillips, C. W. Myers, Understanding Cost Growth and Performance Shortfalls in Pioneer Process Plants, Rand Corporation, 1981, Prepared for US Department of Energy, R-2569-DOE.

DOE Predictions on the Cost of Cellulosic Ethanol in 2005

New Technologies in the Petrochemical Area do Make Money

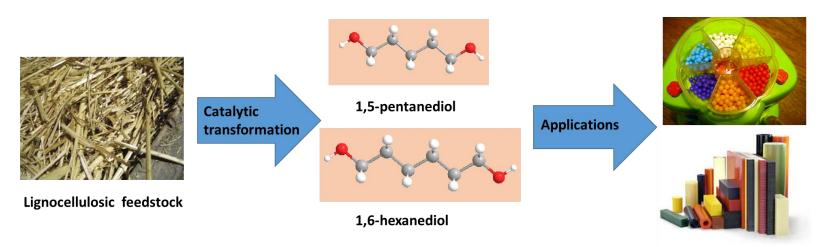
The time required for commercialization can vary substantially.

10

The Role of Academia and Industry in Developing New Technologies

Role of Academia

- Primary goal is to publish in high impact journals
- Basic science, research innovation, new ideas, initial patents
- Inexpensive, inexperienced (graduate students and post-docs)
- Use scientific expertise to solve specific problems and ignore others

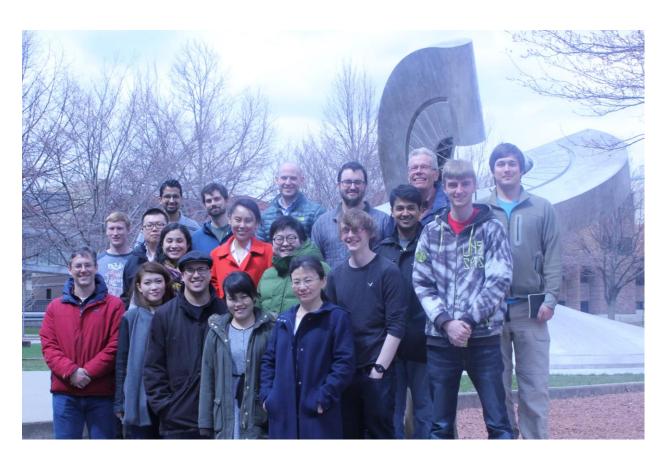

Role of Industry

- Primary goal is to make money
- Process development, demonstration and scale up
- Further patent prosecution and IP portfolio
- Experienced but expensive
- Marketing and consumers
- Identifying and focusing on key technology bottlenecks

Leverage the expertise of both sides to tackle bioenergy challenges

Conclusions

- We are developing new pathways for production of high value oxygenated commodity chemicals from biomass
- Coupling basic research with technoeconomic analysis identifies bottlenecks in the process and informs target research areas
- Pioneer technologies often involve cost underestimations and performance overestimations
- Synergies between academia and industry are critical to developing next generation bioenergy technologies



Huber Research Group

huber@engr.wisc.edu

http://biofuels.che.wisc.edu/

