

BioEngineering Advanced Materials and Chemicals

BioEnergy 2016 Conference

Adam Bratis PhD, Associate Lab Director, BioEnergy Science and Technology National Renewable Energy Laboratory (NREL)

July 14, 2016

NREL - National Asset with a Dedicated Mission

- Founded as Solar Energy Research Institute (SERI) 1977
- Designated national laboratory in 1991 and renamed National Renewable Energy Laboratory
- Today managed by the Alliance for Sustainable Energy, LLC, for the U.S. Dept. of Energy
- Nearly 1,700 employees
- Campus is a model of sustainable energy

Integrated Approach to Market-Relevant Solutions

Core Capabilities	Analysis & System Integration	Innovation & Application	Foundational Knowledge	
	Systems Engineering & Integration Decision Science & Analysis	Chemical Engineering	Chemical and Molecular Science	
Market-Relevant Solutions		Mechanical Design & Engineering	Biological/Bio-process Science & Engineering	
		Power Systems & Electrical Engineering	Materials Science & Engineering	
Impact	Provides market insight and informs landscape	Responds to market challenges with solutions and identifies knowledge gaps	Scientific discovery that fills gaps and disrupts current-generation technology	

"Analysis" driving "Applied R&D" which is informing "Foundational Science"

NREL Research Thrust Areas

Energy Systems Integration

Residential Buildings

Commercial Buildings Solar Wind and Water Biomass Hydrogen Geothermal

Advanced Biofuels

Vehicle Components and Systems Grids of all Scales

Renewable Integration & Storage

System Design & Operation Tools

Integrated Energy Planning

NREL BioEnergy Role in the Value Chain

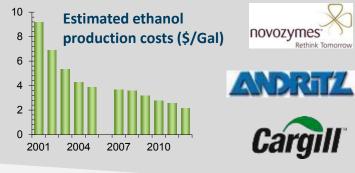
Past Example – Lab to Reality

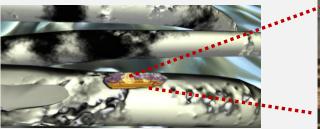
Integrating Capabilities to Enable Cellulosic Ethanol

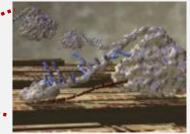
Partnered to develop, integrate and validate technologies that enabled first-of-a-kind commercialization of cellulosic ethanol in the U.S.

Used NREL pilot plant to integrate and scale technology advancements in pretreatment, enzymatic hydrolysis, and fermentation

INTEGRATION TO IMPACT


ABENGOA


INNOVATION TO APPLICATION


FOUNDATIONAL KNOWLEDGE

Fundamental understanding of protein-substrate interactions allows for rational design of superior cellulase enzymes



Current Endeavor – Renewable Carbon Fiber

Renewable Carbon Fiber Consortium (RCFC)

Lead: NREL

Partners: INL, Biochemtex, Johnson Matthey, CU-Boulder, Colorado School of Mines, ORNL, MATRIC, DowAksa, Ford, Michigan State University

Objective: Cost effective production of renewable carbon fibers from lignocellulosic biomass

Strategy:

- Deconstruction of biomass to sugars
- Biological production of strategic intermediates
- Chemical catalysis to acrylonitrile
 (ACN)
- Polymerization of ACN to Carbon Fiber for industrial testing and validation

Deconstruction of Biomass to Sugars

Goal:

 Production of biomass derived sugars from wheat straw (Biochemtex) and corn stover (NREL/INL)

Metric:

 Suitable for downstream conversion operations at a modeled cost of approximately \$0.10-0.15 per lb

Status

- >10 kg hydrolyzate delivered to ACN production team from both NREL and BioChemtex pilot plants
- Propionic acid fermentation performance very good on both sugar streams
- 2nd batches being produced for studies at higher sugar concentrations for fermentation optimization

Pretreatment and Enzymatic Hydrolysis sections in the BioChemtex PROESA™ pilot plant

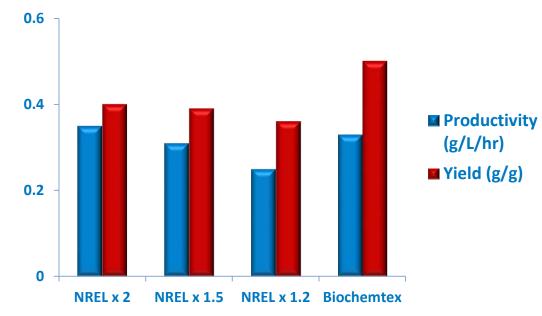
NREL's Integrated BioRefinery Research Facility (Pilot Scale)

Goal:

 Production of Propionic Acid from fermentation of biomass derived sugars

Metric:

- Productivity of 0.5 g/L/hr in Phase I
- Productivity of 2.0 g/L/hr in Phase II


Status

- Good initial utilization of all sugars even with real hydrolysate
- Batch productivities ~0.25-0.35 g/L/hr and titers ~30g/L
- Fed-Batch strategies being explored to improve both

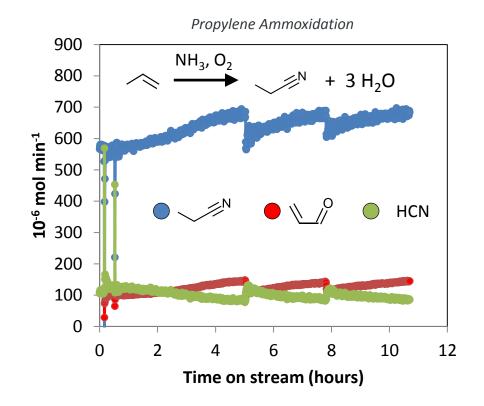
Hydrolysate Composition

Dilution	Total sugars (g/L)	Glucose (g/L)	Xylose (g/L)	Arabinose (g/L)	Acetate (g/L)	Furfural (g/L)
NREL x 1.2	130.5	75.0	48.8	6.7	2.93	0.35
NREL x 1.5	107.4	61.8	40.1	5.5	2.35	0.28
<u>NREL x 2</u>	<u>76.8</u>	<u>44.5</u>	<u>28.3</u>	<u>3.9</u>	<u>1.76</u>	<u>0.21</u>
<u>Biochemtex</u>	<u>77.2</u>	<u>37.3</u>	<u>37.3</u>	<u>2.6</u>	<u>3.1</u>	<u>0.0</u>

Productivity and Yield

NATIONAL RENEWABLE ENERGY LABORATORY

Goal:


 Production of Acrylonitrile (ACN) from biomass derived intermediate

Metric:

- "high conversion yields" that enable the total biomass to ACN yield targets (20% and 50% respectively)
- Ultimate cost of ACN production modeled at \$1/lb

Status

- Produced ~20g of ACN from each of the pathways for polymerization studies
- Propylene ammoxidation yields consistent with industrial single pass yields
- Novel catalytic strategy from non-propylene intermediates demonstrated >90% yields

Polymerization to PAN and Carbon Fiber

Goal:

 Production of poly-acrylonitrile (PAN) and Carbon Fiber from bio-ACN

Metric:

- PAN MWw >200,000
- Polydispersity Index (PDI) <5

Status

- ACN purification strategies being pursued
- Model ACN polymerization promising (95% yield, <2 PDI, 65,000 MWw) with strategies to improve
- NREL bio-ACN samples in hand and are informing purification and polymerizaton strategies.

Carbon Fiber Technology Facility at Oak Ridge National Laboratory

Questions?

nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.