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Reduce cost of algal biofuels:

• Harness unique position of algae as highly 
efficient photosynthetic cell factories

• Identify key targets to contribute to 
lowering the overall cost of algal biofuels 
production

• Quantify impact of major components 
supporting a multi-product algal 

biorefinery model

• Analogous to replacing the whole barrel 

paradigm; low volume product streams 
can provide large fraction of value

• Integrate biomass composition with 
cultivation and conversion performance

Algae-derived Commercial Products
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Algae as Photosynthetic Chemical Factories
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EPA C20:5n3 fatty acid 

Biomass components Product

Polyunsaturated fatty acids Epoxies, polyols, nutraceuticals

Phytol Surfactants, fuel additive

Triglycerides Biopolymers, coatings, Rubber

Glycerol Di-acids / nylon production

Carbohydrate monomers
Fermentation products

(including ethanol and di-acids)

Antioxidants Health food additives

Whole biomass Food/feed markets

Biomass production cost: $491/ton*

+ Co-products biomass value $500-$800/ton

*Davis et al 2016: http://www.nrel.gov/docs/fy16osti/64772.pdf

Co-product criteria for commercial success:
1. Identical to an existing chemical
2. Functionally identical
3. New material with unique functional 

performance
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Algal Biorefinery
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Algae Biorefinery Potential – high volume products

Biomass components wt % Product Market* (ton/yr)

Fatty acids 10-45 Hydrocarbon fuel products (U.S. consumption) 16,000,000

Omega-3-fatty acids 3-10 Polyols – epoxy resin – polyurethane 8,000,000 –
11,000,000

3-10 Nutraceuticals 22,000
Hydroxy-, branched-, fatty acids/alcohols ~1 Surfactants, fuel additives 3,500,000
Sterols 2-4 Surfactants 6,400,000

2-4 Phytosterol nutra-/pharmaceuticals 25,000
2-4 Emulsifiers N/A

Phytol 3-4 Raw material for vitamin E, fragrance, soaps… 1
3-4 Surfactants, fuel additives 3,500,000

Polar lipids 10-35 Ethanolamine 600,000

10-35 Phosphatidylcholine, phosphoinositol and 
phosphatidyl ethanolamine (lecithin ) 20,000-30,000

* Market size estimated based on displacement volumes ¶ based on sorbitol market size

Glycerol 2-6 Di-acids for nylon production 2,500,000
2-6 Feed, pharmaceuticals 25,000

Fermentable sugars (glucose, mannose) 10-45 Polylactic acid (PLA) polymers 300,000
10-45 Di-acids (e.g. succinic, muconic, adipic acid) 2,500,000
10-45 Ethanol 60,000,000

Mannitol 3-6 Polyether polyols 2,300,000¶

Alginate ~3-5 Alginate additives N/A
Starch 5-40 Polysaccharide-derived bioplastics 2,000,000

Protein 19-40 Thermoplastics 5,000,000
Amino acids/peptides 19-20 Polyurethane 11,000,000
Amino acids/peptides 19-20 Biobutanol, mixed alcohol fuels 740,000

Whole biomass 100 Animal/Fish feed 16,000,000 –
190,000,000
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5 Potential Options for co-Products
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Davis et al 2014: www.nrel.gov/docs/fy14osti/62368.pdf
Laurens, L. et al., 2015, Green Chemistry, 2015, 17, 1145-1158
Dong, T., et al., 2016. Algal Research, doi:10.1016/j.algal.2015.12.021

Algal Biorefinery Process
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Davis et al 2014: www.nrel.gov/docs/fy14osti/62368.pdf
Laurens, L. et al., 2015, Green Chemistry, 2015, 17, 1145-1158
Dong, T., et al., 2016. Algal Research, doi:10.1016/j.algal.2015.12.021

Algae Biorefinery
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• “Whole cell” fractionation after 
acid pretreatment

• Techno-economic analysis (TEA) 
based on pilot scale data to show 
progress, cost reduction and 
reduced risk

Fuel Yield

Lipids (% DW) 27

Diesel Fuel Energy (103 btu/ton) 8,671

Fermentable Sugars (% DW) 48
Ethanol (gallon/ton) 79
Gasoline Fuel Energy (103 

btu/ton)
6,040

Combined Energy  (103 btu/ton) 15,693

Total Gasoline Gallon Equivalent 
per ton biomass (GGE/ton)

135

v 

 

Figure ES-1. Economic summary for ALU pathway 

  

Fuel Only
$19.80/GGE

+ ethanol 
from sugars
$19.80/GGE
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Value Proposition – Focus on co-Products

R. Davis (NREL) preliminary unpublished report

IHS Chemical Economics Handbook, Epoxy Resins, May 2014 & 
Surfactants, Household Detergents and their raw materials, June 2013

*Based on mid-harvest Scenedesmus biomass and 
demonstrated composition
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• Inclusion of co-products in algal biorefinery
processes improves overall economics – 30% 

reduction in Fuel Selling Price

• Value-added co-products are natively produced in 
photosynthetic algal cell factories

• Novel products may support novel conversion 

process pathways including co-product 
development alongside fuels

• Biomass composition drives conversion

efficiency parameters and is highly linked with 
cultivation

• Future R&D to support advanced algal systems 
economics based on the isolation and 
commercial harnessing of high-value, large 

market bioproducts and mapping over 
cultivation

Summary



Thank You!
Lieve.Laurens@nrel.gov
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ASU CalPoly Cellana GT TRL
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Integration of Composition with Cultivation

High	N	

Low	N	

Inoculum	
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Lipids (FAME) Carbohydrates Protein
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Nannochloropsis


