

Algae Biorefinery Development for Biofuels and Bioproducts

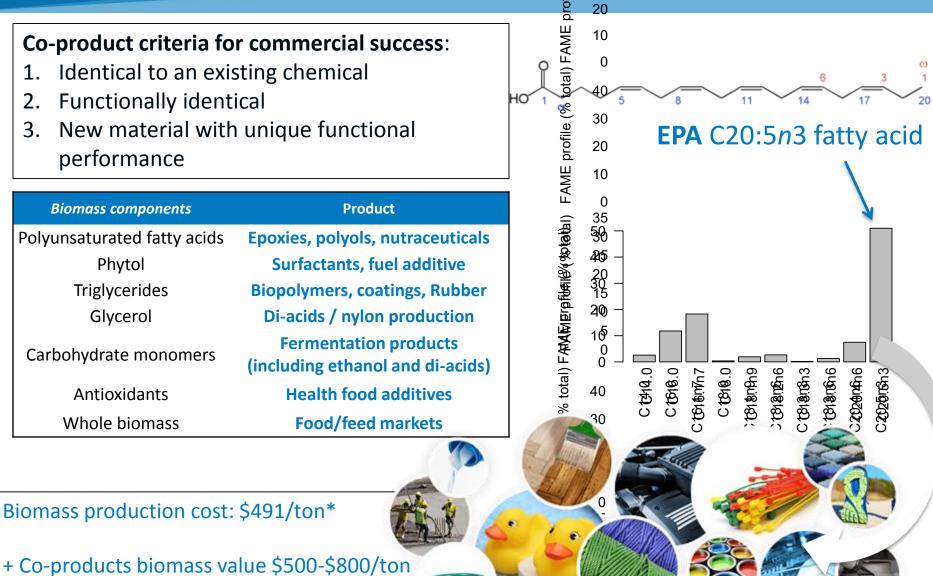
Lieve Laurens

Bioenergy 2016 Washington, DC July 14, 2016

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

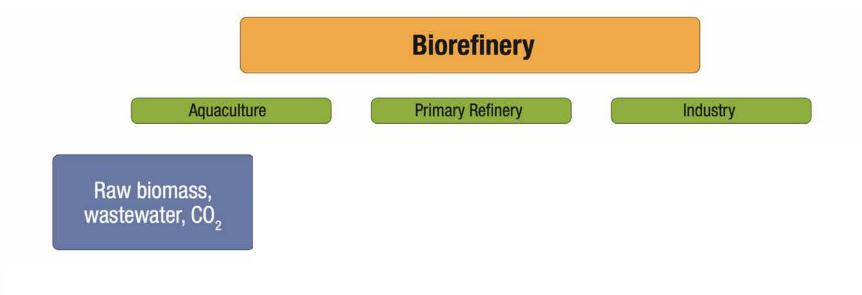
Algae-derived Commercial Products

Reduce cost of algal biofuels:


- Harness unique position of algae as highly efficient photosynthetic cell factories
- Identify key targets to contribute to lowering the overall cost of algal biofuels production
- Quantify impact of major components supporting a multi-product algal biorefinery model

$$C_{\text{production}} = \sum_{i} C_{\text{capital},i} + \sum_{j} C_{\text{operating},j} - \sum_{k} C_{\text{co-products},k}$$

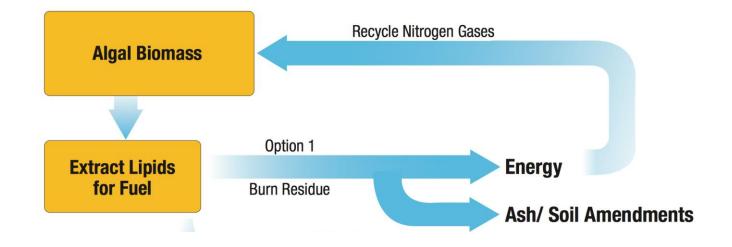
- Analogous to replacing the whole barrel paradigm; low volume product streams can provide large fraction of value
- Integrate biomass composition with cultivation and conversion performance



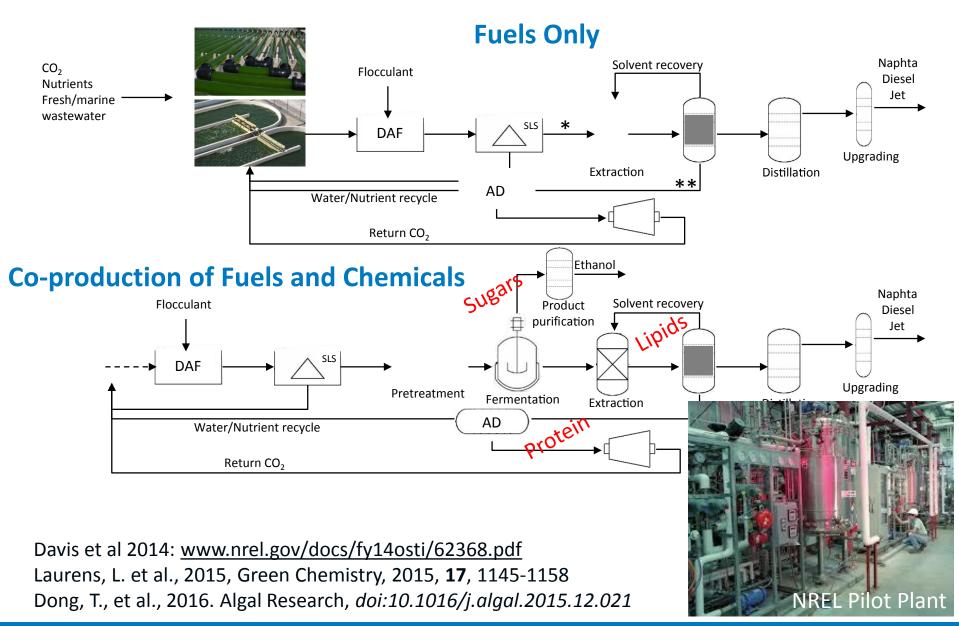
Algae as Photosynthetic Chem

*Davis et al 2016: <u>http://www.nrel.gov/docs/fy16osti/64772.pdf</u> NATIONAL RENEWABLE ENERGY LABORATORY

Algal Biorefinery

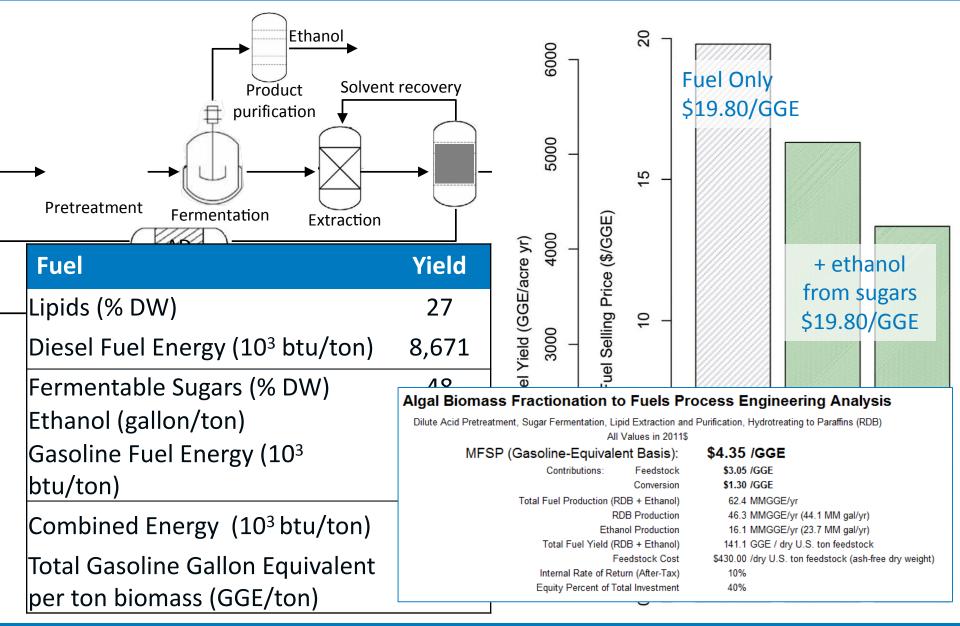


Algae Biorefinery Potential – high volume products


Biomass components	wt %	Product	Market* (ton/yr)
Fatty acids	10-45	Hydrocarbon fuel products (U.S. consumption)	16,000,000
Omega-3-fatty acids		Polyols – epoxy resin – polyurethane	8,000,000 – 11,000,000
$HO'_{1\alpha} \xrightarrow{5} B_{8} \xrightarrow{11} 11 \xrightarrow{14} 17 \xrightarrow{2}$	× <u>3-10</u>	Nutraceuticals	22,000
Hydroxy-, branched-, fatty acids/alcohols	_/ ~1	Surfactants, fuel additives	3,500,000
Sterols	2-4	Surfactants	6,400,000
	2-4	Phytosterol nutra-/pharmaceuticals	25,000
номон	2-4	Emulsifiers	N/A
Phytol	3-4	Raw material for vitamin E, fragrance, soaps	1
	3-4	Surfactants, fuel additives	3,500,000
Polar lipids	10-35	Ethanolamine	600,000
	10-35	Phosphatidylcholine, phosphoinositol and phosphatidyl ethanolamine (lecithin)	20,000-30,000
Glycerol OH	2-6	Di-acids for nylon production	2,500,000
НООН	2-6	Feed, pharmaceuticals	25,000
Fermentable sugars (glucose, mannose)	10-45	Polylactic acid (PLA) polymers	300,000
	10-45	Di-acids (e.g. succinic, muconic, adipic acid)	2,500,000
	10-45	Ethanol	60,000,000
Mannitol	3-6	Polyether polyols	2,300,000 [¶]
Alginate	~3-5	Alginate additives	N/A
Starch	5-40	Polysaccharide-derived bioplastics	2,000,000
Protein	19-40	Thermoplastics	5,000,000
Amino acids/peptides	19-20	Polyurethane	11,000,000
Amino acids/peptides	19-20	Biobutanol, mixed alcohol fuels	740,000
Whole biomass	100	Animal/Fish feed	16,000,000 – 190,000,000

* Market size estimated based on displacement volumes ¶ based on sorbitol market size

5 Potential Options for co-Products



Algal Biorefinery Process

NATIONAL RENEWABLE ENERGY LABORATORY

Algae Biorefinery

NATIONAL RENEWABLE ENERGY LABORATORY

Value Proposition – Focus on co-Products

Product	Revenue Potential (\$MM/yr)	Yield (ton/yr)	Global Market Volume (ton/yr)	Process Complexity (Low/Medium/High)	Industry Involvement
Primary fuel product for reference					
Hydrocarbon fuels (from lipids)	\$40.7	12.8 MM gal/yr	56,900 MM gal/yr ¹¹ (U.S. Consumption)	Low	Sapphire, Cellana, GAI
Sugars					
Succinic acid (from sugars + glycerol)	\$136.3	78,000	441,000 ^{15-23 A}	High	Myriant, Bioamber, Succinity/BASF, Reverdia
Hydrocarbon fuels (from sugars + glycerol)	\$20.7	6.4 MM gal/yr	56,900 MM gal/yr ¹¹ (U.S. Consumption)	Medium	Amyris, Solazyme, LS9
Lipids				1	
Surfactants from sterols	\$16.6	7,000	6,414,000 ⁴	Medium	BASF, Solazyme
Polyols via polyunsaturated fatty acids	\$24.1	15,200	8,047,000 ¹³	High	Cargill, Dow, Urethane Soy Systems, Bio-Based Technologies, Arctic Foam (UCSD)
Protein					
Protein → C4+ OH (SNL/Liao process)	897		734,400 as isobutanol ¹⁴ 36,400 as plasticizer ¹⁴	Medium	[Early R&D]
Animal/fish feed	\$4.0 - \$16.0	45,700	16,538,000 - 190,126,000 ⁶⁻⁹	Low	Mars, GAI, Europe/Asia company interests
Bioplastics	\$41.8	69,900	1,545,000 ²⁴	Medium	Algix
Galdieria via mixotrophic growth on protein stillage + HTL	owth on protein stillage + \$20.3 6.4 Mil		56,900 MM gal/year ¹¹ (U.S. Consumption)	Medium	[Early R&D]

IHS Chemical Economics Handbook, Epoxy Resins, May 2014 & Surfactants, Household Detergents and their raw materials, June 2013

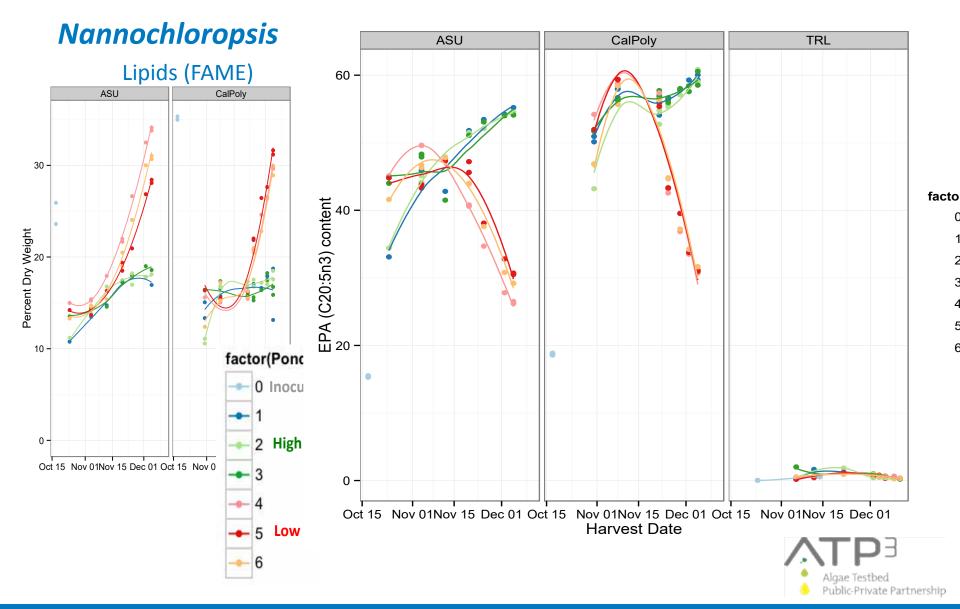
*Based on mid-harvest *Scenedesmus* biomass and demonstrated composition

R. Davis (NREL) preliminary unpublished report

NATIONAL RENEWABLE ENERGY LABORATORY

Summary

- Inclusion of co-products in algal biorefinery processes improves overall economics – 30% reduction in Fuel Selling Price
- Value-added co-products are natively produced in photosynthetic algal cell factories
- Novel products may support novel conversion process pathways including co-product development alongside fuels
- Biomass composition drives conversion
 efficiency parameters and is highly linked with
 cultivation
- Future R&D to support advanced algal systems economics based on the isolation and commercial harnessing of high-value, large market bioproducts and mapping over cultivation


Thank You! Lieve.Laurens@nrel.gov

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Integration of Composition with Cultivation

