You are here

University of Maryland Wins Max Tech and Beyond Competition for Ultra-Efficient Clothes Dryer

September 10, 2013 - 12:00pm


The Energy Department announced today that the University of Maryland won the second annual Max Tech and Beyond design competition for ultra-low energy use appliances and equipment for the second year in a row. The team developed a heat pump clothes dryer that is nearly 59% more efficient than a traditional electric dryer.

The Max Tech and Beyond competition challenges university teams to go beyond the current "max tech," or maximum technology performance levels, by exploring new design concepts that could become the next generation of ultra-low energy use appliances and equipment. This experience also helps inspire the next generation of energy engineers and scientists that will help keep our national globally competitive.

With a comprehensive business plan, Ohio State University placed second in the challenge for its hybrid air/water conditioner (HAWC) that can achieve nearly a 73% energy cost savings over a conventional central air conditioning, dehumidification, and ventilation system.

In total, eight teams spent the 2012-2013 academic year in their respective laboratories, fine-tuning technology elements and gaining valuable knowledge of energy efficiency. These efforts served to produce ultra-efficient prototypes for demonstration and deployment in the global clean energy market.

Electric clothes dryers consume about 71 terawatt hours (TWh) of energy annually, and are one of the largest energy-consuming appliances in U.S. households. The University of Maryland prototype can dry clothes in 2 hours, and has a payback period of just 2.2 years. If fully deployed in the United States, this technology has the potential to achieve 25.8 TWh of annual energy savings.

The University of Maryland team is comprised of both engineering undergraduate and graduate students led by Dr. Yunho Hwang, who also led last year's winning entry, a super-efficient air conditioner. The winning prototype will be on display at this year's U.S. Department of Energy Solar Decathlon in Irvine, California.

Led by Dr. Mark Walter, Ohio State University's HVAC system achieves its efficiency gains through the combination of a heat pump with an energy waste recovery component. This component uses waste heat from the air conditioning cycle to regenerate a desiccant dehumidifier and to produce hot water. The first iteration of the HAWC prototype was 18% more efficient. When the equipment is system optimized, the project team expects savings up to 30%. The team's goal was to design a unit that was well suited to meet smaller loads and better control humidity, especially in newer buildings that tend to be better insulated and more air-tight.

Funded by the Energy Department's Building Technologies Office and managed by Lawrence Berkeley National Laboratory, the competition encourages participating students to connect with U.S. manufacturers and license their designs after successful demonstration. Through the Max Tech and Beyond competition, participating students gain firsthand experiences in new energy efficiency technologies as well as opportunities to strengthen their creativity, teamwork, and research skills. Twelve teams have been selected to compete in the 2013-2014 competition.

The Energy Department's Office of Energy Efficiency and Renewable Energy accelerates development and deployment of energy efficiency and renewable energy technologies and market-based solutions that strengthen U.S. energy security, environmental quality, and economic vitality.