### U. S. Department of Energy Energy Savings Assessment (ESA)

# Process Heating Assessment and Survey Tool (PHAST) Introduction

Date: January 30, 2007 Instructor: Dr. Arvind Thekdi



U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

# Agenda

 ESA Training Web Cast Introduction – 15 minutes
 Process Heating Assessment and Survey Tool (PHAST) Software Demonstration – 45 minutes

- > Q & A − 20 minutes
- PHAST BestPractices- 30 minutes
  - Q & A 20 minutes
- □ Conclusion 10 minutes
- Reference Information
  - > DOE Resources
  - Calendar for Future ESA Training Web Casts



# **Process Heating ESA Plant Lead Web Cast**

### □ Purpose:

Help Plant Leads selected for a Department of Energy (DOE) Energy Savings Assessment (ESA) prepare for a successful assessment.

### □ Format:

- Introduce functionality, functions and results of the PHAST software
- Provides an overview. (In-depth training available.)

### □ Use DOE Software Tools to:

- Identify opportunities
- Provide estimates of energy and cost savings
- Not a replacement for in-depth project analysis.

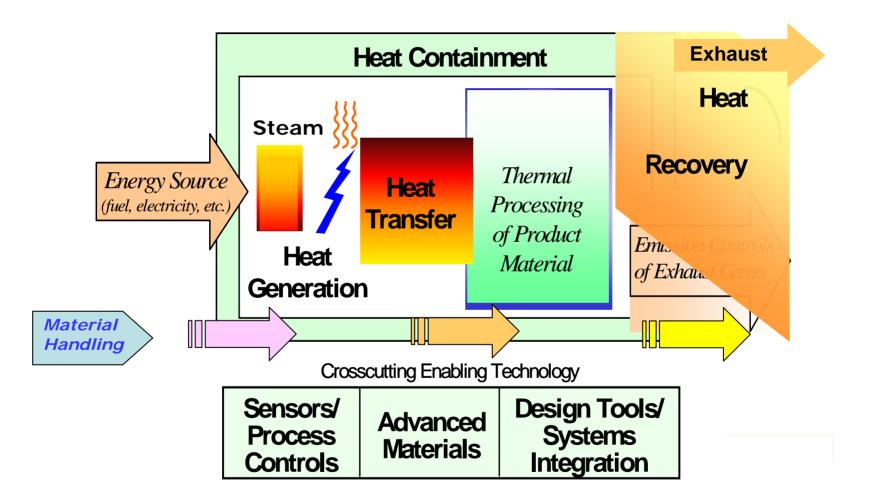




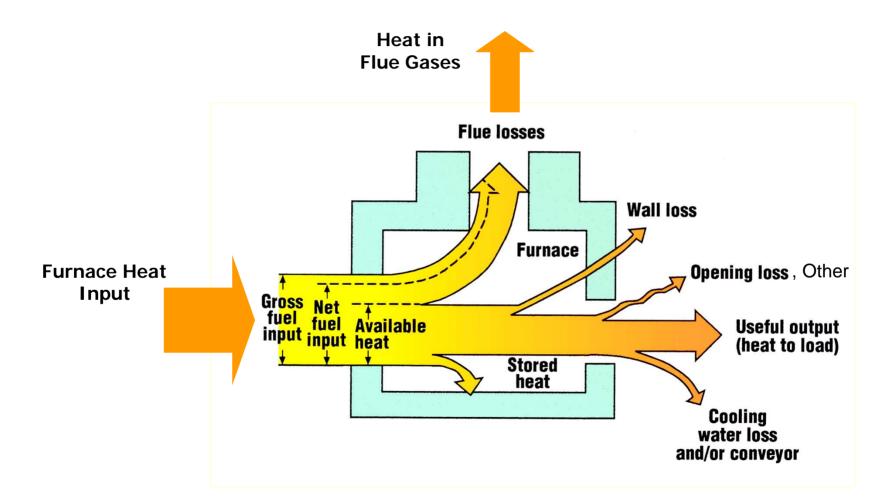
### What Is Process Heating ?



# Supplying heat to materials in

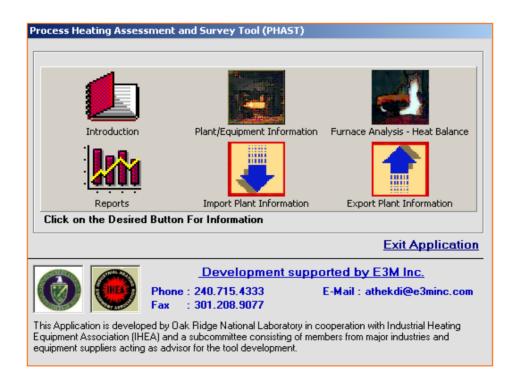

- Furnaces
- Ovens
- Heaters
- □ Thermal oxidizers
- Dryers
- Boilers
- Other heating equipment




### Commonly Used Equipment for Process Heating

- □ Fuel fired furnaces
  - Natural draft
  - Forced draft
  - Balanced draft
- Boilers
  - Direct fired
  - > Process heat recovery
  - Heat recovery with use of duct burners
- Cogeneration Systems
- Thermal oxidizers

### **Process Heating System Components**




### Heat Supply, Demand and Losses in a Heating System



### Process Heating Assessment and Survey Tool (PHAST)

A Tool Developed by Industry – Government Collaboration







# Process Heating Assessment and Survey Tool (PHAST)

Download it from

http://www.eere.energy.gov/industry

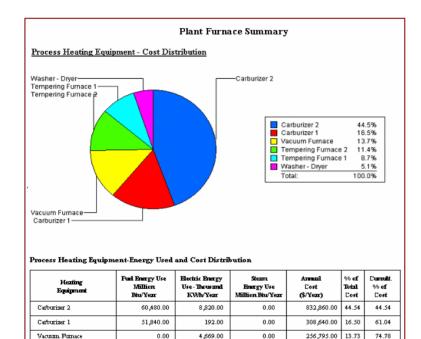
It includes

- Installation instructions for MS Windows 2000 and XP
- User manual
- Useful calculators
- Survey forms
- PHAST program

### Process Heating Assessment and Survey Tool (PHAST)

How can PHAST help my facility?

- □ Estimate annual energy use and energy cost for:
  - Furnaces, heaters and boilers
- □ Identify furnace energy use, efficiency and losses
  - detail heat balance and energy use analysis
- Perform "what-if" analysis for potential energy reduction and efficiency improvements
  - Analyzes changes in operation, maintenance and retrofits of components/systems
- Obtain information on energy saving methods
- Identify additional resources





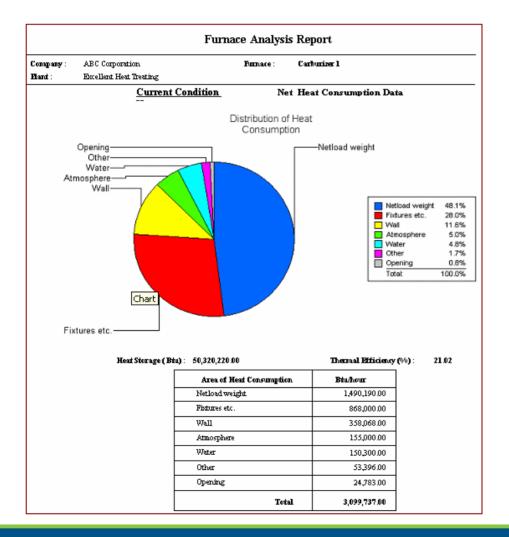

## Energy Use and Cost Distribution Report for Heating Systems

86.19

94.86 100.00



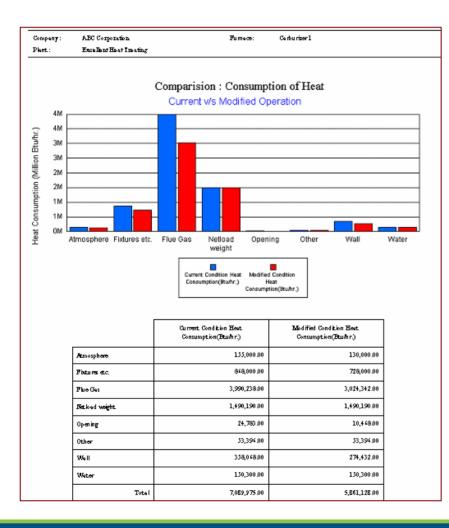
#### Use this report to:


- 1. identify equipment with high energy use, and
- 2. select one or more furnaces for further analysis

- Estimated annual energy use and cost for heating equipment
- Lists heating equipment and % of total energy cost used for each piece of equipment
  - Ranked by annual cost of energy used.






### "Furnace" Heat Balance Energy Use – Losses Distribution



 Analysis of energy used in part of a furnace under a given operating condition.



### Energy Use in Current vs. Modified Conditions



 Compares energy use for current operations and with potential changes (what-if analysis) in operating conditions for the furnace.

 Results calculated with furnace energy balance.



### Process Heating Assessment and Survey Tool (PHAST)



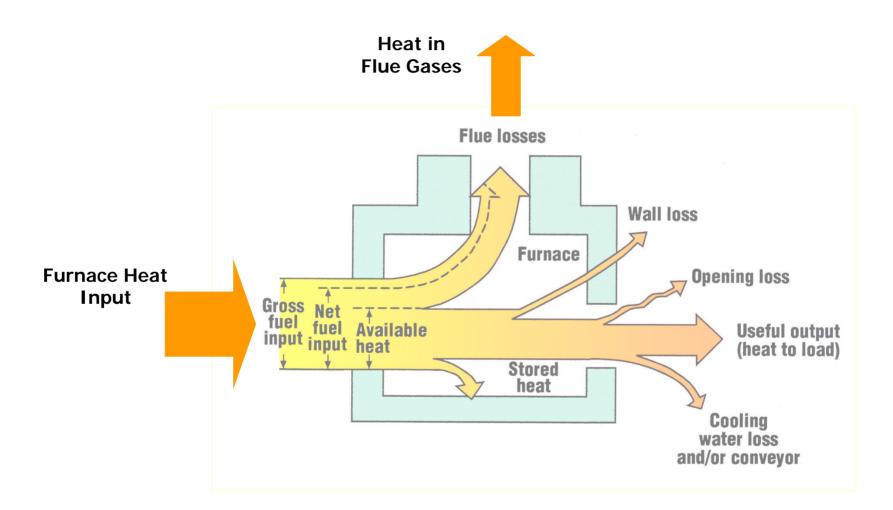


### Process Heating Best Practices: Heat Generation

### Best Practices for Air Flow

- Control burner fuel/air ratio to maintain near Stoichiometric combustion - usually less than 2% O<sub>2</sub> and minimum CO (<10 ppm), combustibles in flue gases
- > Avoid excess air, replace constant-air-supply burners
- Control make-up air to minimum required for applications where it is necessary for safety reasons
- > Use forced air burners with on-ratio high turndown
- Preheat combustion air for high temperature processes
- Use O<sub>2</sub> enrichment where economical based on energy savings, productivity gains, etc.
- Control flame size, shape to ensure complete combustion within the furnace.




### Benefits of Heat Generation Best Practices

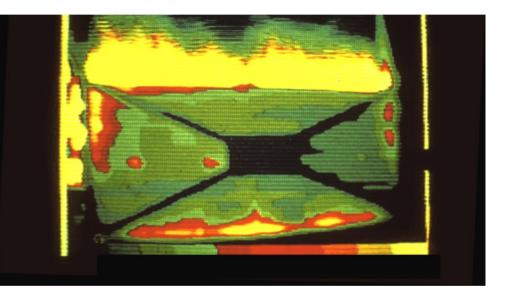


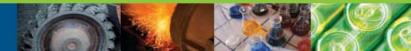
- Energy Saving Potential> 2% to 10%
- Typical implementation> 1 to 8 weeks
- Typical payback period1 to 6 months



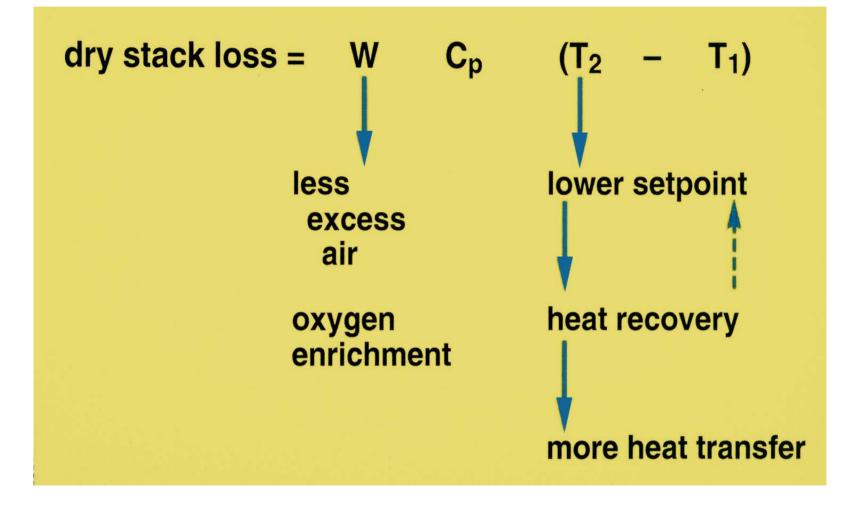
# Recall: Heat Supply, Demand and Losses




### Process Heating Best Practices: Heat Containment


- Optimize insulation (type and thickness)
- Reduce cooling losses by insulating water or air-cooled parts in a heating system
- Reduce radiation losses by eliminating or minimizing furnace openings
- Use devices (e.g., radiation shields) to minimize radiation and convection losses
- Use draft control to eliminate or reduce furnace leakage (cold air into *or* hot gas out)
- Repair cracks, openings, seals in refractory, burner blocks, around doors or heater tubes.




### **Benefits of Heat Containment**

- Energy Saving Potential
  - > 2% to 10%
- Typical implementation
  - > 1 to 8 weeks
- Typical payback period
  1 to 6 months





### **Reduce Flue Gas Heat Losses**





### Process Heating Best Practices: Heat Recovery

### Use heat of flue gases

- Combustion air preheating
- Charge/Load preheating
- Steam generation
- Water, liquid or air heating for use in other processes (e.g., plant building heat or cooling)
- Cascade heat to lower temperature processes
- Use absorption cooling systems where chilled water (liquid) or air (gases) are required in the plant.
- Use energy from heated products after thermal processing
  - Many of the methods suggested above



### **Benefits of Heat Recovery**

- Energy Saving Potential
  - ▶ 10% to 30%
- Typical implementation
  > 4 to 12 weeks
- Typical payback period
  6 to 24 months



### Process Heating Best Practices: Heat Transfer

- BestPractices for heating equipment (e.g., furnace, heat exchanger)
  - Clean heat transfer surfaces
  - Enhance convection heat transfer (e.g., recirculation fans, jets)
  - Control temperature profile (LMTD) to maximize heat transfer.
- Avoid flame impingement on heater tubes by selecting proper burner and flame shape-size
- Use process modeling to optimize temperature profile during heating to maximize heat transfer while avoiding product overheating.

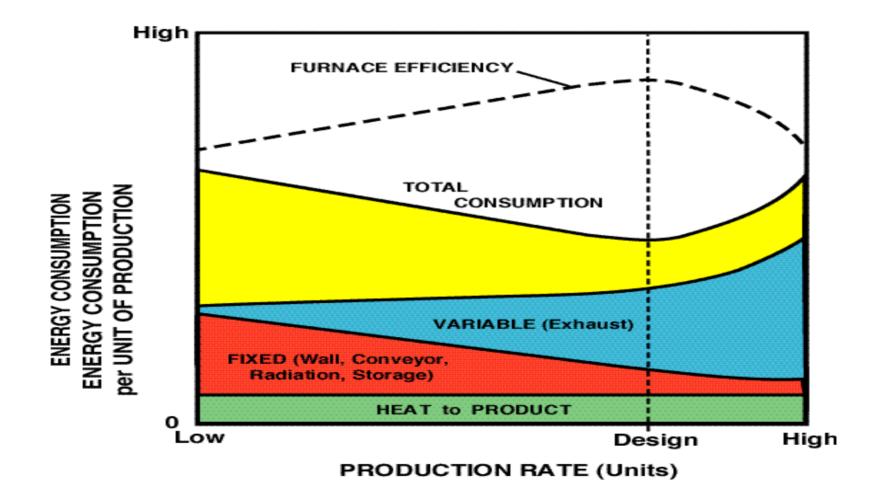


### Benefits of Heat Transfer Best Practices



- Energy Saving Potential5% to 10%
- Typical implementation> 1 to 12 months
- Typical payback period
  > 6 to 30 months




### Use Sensors & Controls, and Advanced Materials

- Use computer models to set furnace controls and operating conditions
- Monitor in-line process parameters (e.g., surface temperature, pressure) and couple with models
- Continuous monitoring of flue gas composition (e.g., O<sub>2</sub>, combustibles) for optimum operations
- Use advanced materials (alloys, ceramics and insulation) for radiant tubes, fixtures, rails, etc.

- Energy Saving Potential
  > 2% to 10%
- Typical implementation
  - I to 8 weeks
- Typical payback period> 1 to 24 months



### **Optimize Production Rate for Energy Consumption Per Unit of Production**







### **Process Heating Best Practices: Operations and Maintenance**

- Operate the systems close to design capacity
- Avoid part load operations, especially for systems using fixtures, trays, conveyors, etc.
- Schedule nearly continuous operations to avoid long delays and hold periods
- Analyze system performance to determine equipment operating mode (e.g., shut-down or maintain operating temperature or maintain at intermediate temperature).
  - > There is no one answer for all situations.
- Consider using variable (or two) speed motors for fans, blowers to save power.

### **Questions and Answers**





# Use PHAST at Your Plant to Analyze Heating Systems

- Understand energy use and cost
- Analyze energy distribution and losses
- Identify potential project areas for energy savings and cost reduction
- Benchmark plants at a corporate level
- Benchmark individual systems at the plant level
- □ Monitor performance over time.

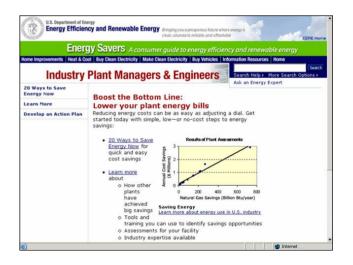
### **Download the Tool**

### DOE BestPractices Web site: <u>http://www.eere.energy.gov/industry/</u> <u>bestpractices/software.html</u>



# **Find Additional Training**

Visit the DOE BestPractices Training Web site: www.eere.energy.gov/industry/bestpractices/ training


See the Training Calendar for events in your area: www.eere.energy.gov/industry/bestpractices/ events\_calendar.asp

Become a Qualified Specialist: www.eere.energy.gov/industry/ qualified\_specialists.html



### See the "Industrial Energy Savers" Web Site

- □ 20 ways to save energy now
- Tools & training you can use to identify savings opportunities
- Industry expertise available
- □Assessments for your plant
- Develop an Action Plan
- Learn how others have savedAccess the National IndustrialAssessment Center (IAC) Database



### **EERE Information Center**

On-call team of professional engineers, scientists, research librarians, energy specialists, and communication information staff.

- Voice: 877-337-3463
- Fax: 360-236-2023
- E-mail: <u>eereic@ee.doe.gov</u>
- Web site: <a href="http://www.eere.energy.gov/informationcenter">www.eere.energy.gov/informationcenter</a>



### Web Site and Resources

Visit these DOE Web sites for the latest information and resources:

Industrial Technologies Program (ITP) Web site:

www.eere.energy.gov/industry/

**BestPractices Web site:** 

www.eere.energy.gov/industry/bestpractices

Save Energy Now Web site:

www.eere.energy.gov/industry/saveenergynow



- Fact Sheets
- Newsletters
- Tip Sheets
- Brochures
- Reports
- Software Tools
- Data



### **Acknowledgments**

# U.S. Department of Energy's Industrial Technologies Program

