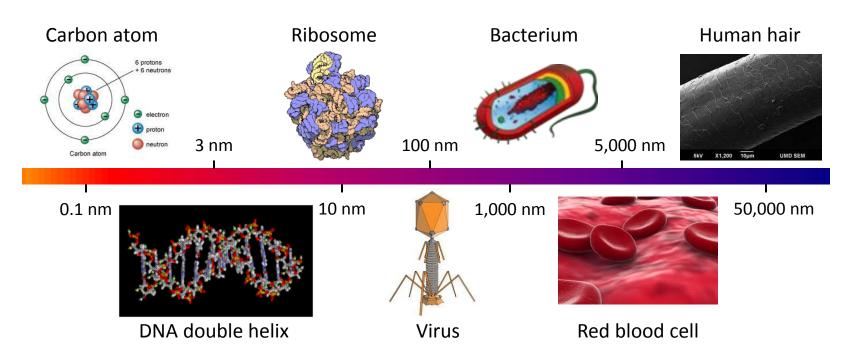


Nanoscale Materials in Medicine


Ram B. Gupta*, Courtney A. Ober

Auburn University Department of Chemical Engineering Auburn, Alabama gupta@auburn.edu

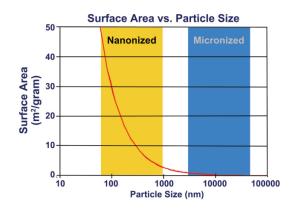
*Presently a program director at the National Science Foundation

Nanoscale Materials in Medicine

Nanoscale materials are the ideal size to therapeutically interact with and selectively influence cellular entities and processes at their natural scale.

Nanoscale materials have been used for:

- Targeted drug delivery
- Controlled drug release
- Dissolution rate enhancement


- Molecular diagnostics
- Contrast enhancement in imaging
- Gene therapy

Size Dependent Properties of Nanoparticles

Surface Area (per unit mass)

Percentage of Surface Molecules

Particle size (nm)	Surface molecules (%)
1	100.00
10	27.10
100	2.97
1,000	0.30

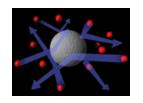
Dissolution Rate

Noyes-Whitney Equation

Dissolution Rate = $\frac{A \cdot D}{h} \mathbf{C}_{s} - C_{b}$

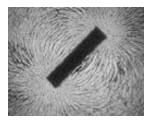
A = surface area D = diffusivity h = boundary layer thickness C_s = saturation solubility C_b = bulk concentration

Optical Properties



Size dependent fluorescent emission colors of ZnS-capped CdSe nanoparticles under UV light

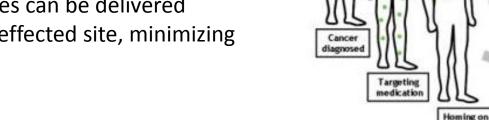
Settling Velocity and Brownian Motion



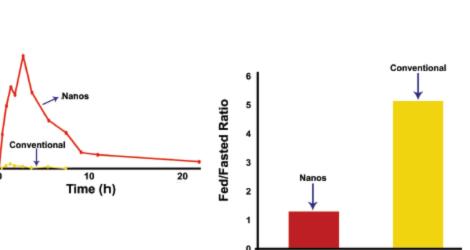
Settling Velocity $v = \frac{d^2g(\rho_s - \rho_l)}{18\mu_l}$

Brownian Displacement $x = \sqrt{\frac{2k_B Tt}{\pi \mu d}}$

Magnetic Properties


Ferromagnetic materials become superparamagnetic below ~20 nm

Merisko-Liversidge, E. M. and G. G. Liversidge. 2008. *Toxicol. Pathol.* 36: 43-48. Gupta, R. B. and U. B. Kompella. 2006. <u>Nanoparticle Technology for Drug Delivery</u>. Gao, X., et al. 2002. *Journal of Biomedical Optics* 7: 532–537.


Merisko-Liversidge, E. M. and G. G. Liversidge. 2008. Toxicol. Pathol. 36: 43-48. http://www.edinformatics.com/nanotechnology/nanomedicine.htm

Advantages of Nanoparticles in Medicine

- Nanoparticles dissolve faster, and thus possess increased potency, due to their increased surface area
- Nanoparticles are less effected by the fed/fasted state, delivering more consistent performance
- Nanoparticles can enhance imaging contrast, allowing for more accurate diagnostics
- Nanoparticles can be delivered directly to an effected site, minimizing side effects

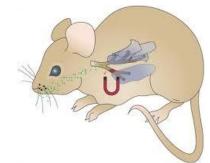
Mean Blood Conc. (µg/ml)

Improved Imaging

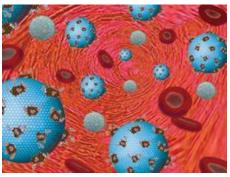
> Killing cancer cells

tumor

Localized therapy

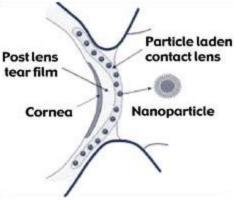


Efficient Delivery of Therapeutic Nanoparticles



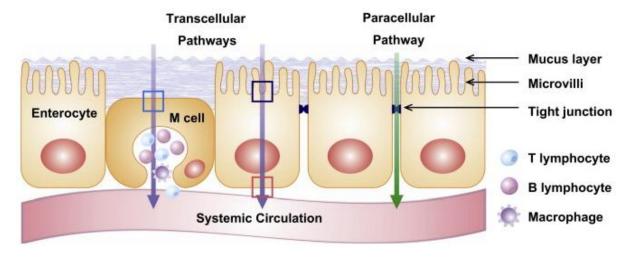
Routes and delivery systems by which therapeutic nanoparticles can be delivered:

- Peroral
 - Nanoparticulate suspensions
 - Tablets
- Parenteral
 - Nanoparticulate suspensions
 - Implants
- Pulmonary
 - Aerosol suspensions
 - Dry powder inhalers
- Ocular
 - Ocular inserts
 - Mucoadhesive gels
- Topical
 - Ointments
 - Transdermal patches


Localized delivery of magnetic nanoparticles

Inhaled nanoparticles in the brain

Injectable gel of therapeutic nanoparticles

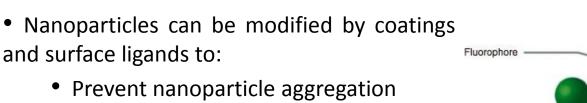


Drug delivery from a soft contact lens

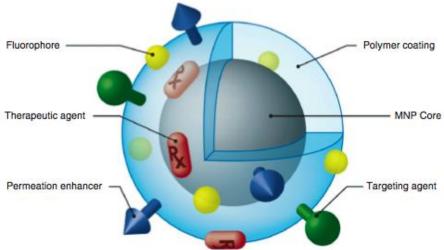
Date, A. A. and V. B. Patravale. 2004. *Current Opinion in Colloid & Interface Science* 9(3-4): 222-235. National Institute of Advanced Industrial Science and Technology. Jha, G. and A. Kumar. 2011. *Chronicles of Young Scientists* 2(1): 3-6.

Biological Transport of Nanoparticles

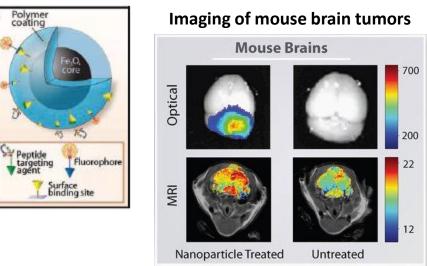
- Nanoparticles typically reach their targeted site through circulatory transport or through tiny openings at cellular or subcellular membranes.
 - The diameter of the narrowest capillaries is approximately 2000 nm
 - For efficient transport, nanoparticles should be < 300 nm
 - Transport across membranes can be transcellular or paracellular


Uptake of Nanoparticles in the Intestinal Epithelium

Gupta, R. B. and U. B. Kompella. 2006. <u>Nanoparticle Technology for Drug Delivery</u>. Chen, M. C. et al. 2011. *Biomaterials* 32(36): 9826-9838.

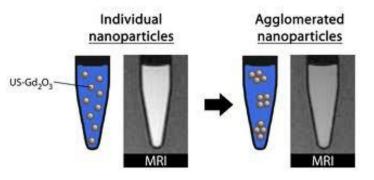

7

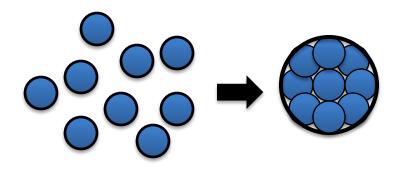
Modified Nanoparticles for Multifunctionality



- Selectively accumulate in tumor tissue
- Deliver therapeutics
- Avoid macrophage uptake
- Extend circulation time
- Enhance contrast for imaging
- Enhanced imaging contrast was achieved in mice brain tumors using functionalized iron oxide nanoparticles
 - PEGylated chitosan-branched copolymer coating
 - Chlorotoxin targeting ligand
 - Near-IR fluorophore

Sun, C. et al. 2008. *Adv. Drug Delivery Rev.* 60(11): 1252-1265. Veiseh, O. et al. 2008. *Cancer Res.* 69(15): 6200-6207.


Generic multifunctional nanoparticle



Challenges in Nanoparticle Formulation

- N/ PC TO
- The high surface energy of nanoparticles causes them to agglomerate, losing their unique size dependent properties.

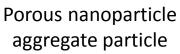
Lack of contrast from agglomerated nanoparticles

Loss of surface area from agglomeration

- There are still many questions regarding the use of therapeutic nanoparticles
 - Ability of nanoparticles to penetrate the blood-brain barrier could be problematic
 - Potency of nanoparticle formulations could increase undesirable side effects
 - Nanoparticles could cause side effects not observed with conventional formulations
 - Public perception of nanoparticles is sometimes negative

Unique Nanoparticle-Based Formulations

• Nanoparticles can be deagglomerated by precipitation on larger pharmaceutical carriers (e.g. lactose, cellulose, etc.)


• Porous nanoparticle aggregate particles (PNAPs) have been developed to deliver drugs deep within the lung but prevent nanoparticle expulsion during exhalation

• Unique nanoparticle morphologies have been examined for their potential in controlled release applications

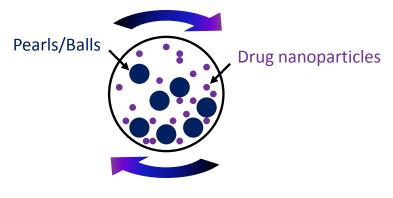
Sanganwar, G. P. et al. 2010. Eur. J. Pharm. Sci. 39(1-3) 164-174. Sung, J. C. et al. 2007. Trends in Biotechnology 25(12): 563-570. Shchepelina, O. et al. 2010. Macromolecular Rapid Communications 31(23) 2041-2046.

Nanosupport (100-500 nm

9

Nevirapine particles on the surface of a lactose particle

ggregate particle

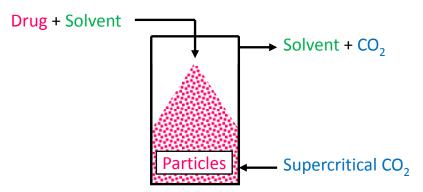

Top-Down Production

Disassembling macroscale materials into nanoscale constituents through applied force

Examples:

- Pearl/ball milling
- High pressure homogenization

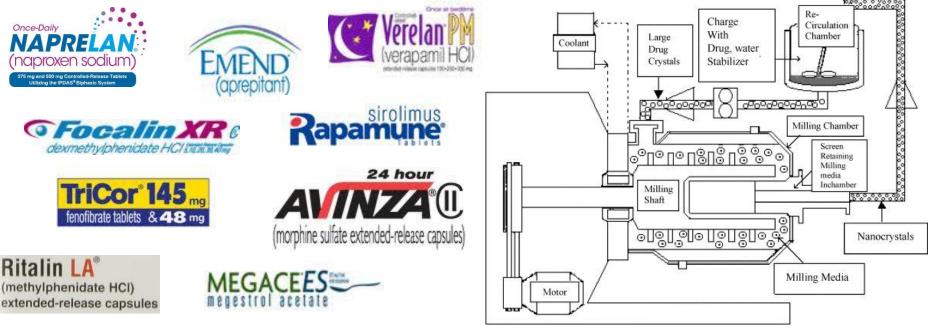
Rotating pearl/ball mill


Bottom-Up Production

Assembling nanoscale materials from molecular solutions through precipitation

Examples:

- Supercritical fluid precipitation
- Emulsification-diffusion



Supercritical antisolvent (SAS) precipitation

Ober, C. A. and R. B. Gupta. 2011. *Ide@s CONCYTEG* 6(72): 714-726.

loaded albumin nanoparticles Decreased toxicity compared to previous formulations

- Improved efficacy
- The performance, administration, and storage of numerous drugs have been enhanced through nanoparticle formulations produced by media milling (Nanocrystal[®] Technology, Elan)

Date, A. A. and V. B. Patravale. 2004. Current Opinion in Colloid & Interface Science 9(3-4): 222-235. Bawa, R. 2008. Nanotechnology Law and Business, pp. 135-155.

Commercial Nanoparticle Products

Abraxane

(nanoparticle albumin-bound paclitaxel)