REPORT for

American Institute of Chemical Engineers (AIChE)

Pulp and Paper Industry Energy Bandwidth Study

Prepared by

Jacobs Greenville, South Carolina, USA and

Institute of Paper Science and Technology (IPST) at Georgia Institute of Technology Atlanta, Georgia

August 2006

Project Number: 16CX8700

Table of Contents

1.	INTRODUCTION	2
2.	EXECUTIVE SUMMARY	3
3.	DOMESTIC ENERGY CONSUMPTION AND PRODUCTION	12
4.	PAPER INDUSTRY AVERAGE PROCESS ENERGY DEMAND	18
5.	OVERALL DOMESTIC ENERGY BALANCE	32
6.	ESTIMATED CONSUMPTION WITH "BAT"	33
7.	DESCRIPTION OF A MODERN MILL	44
8.	PRACTICAL MINIMUM ENERGY CONSUMPTION	56
9.	ACKNOWLEDGEMENTS	72
10.	APPENDIX	73
11.	REFERENCES	111

1. INTRODUCTION

The American Institute of Chemical Engineers (AIChE) has been requested to manage a Project, on behalf of the Department of Energy's Industrial Technologies Program (DOE-ITP), to develop estimates of the present energy consumption of the U.S. Pulp and Paper Industry and how much energy could be saved if more efficient types of pulp and paper manufacturing technologies as well as best practices were employed. Specifically, the energy estimates of the following cases were requested:

- An estimate of the current average energy consumption by mill areas / technologies based on the 2002 Manufacturing Energy Consumption Survey (MECS),
- An estimate of what the energy consumption would be by mill areas / technologies if "Best Available" practices were applied, i.e. current state-of-the-art (SOA) or Best Available Technologies (BAT),
- An estimate in selected mill areas / technologies of what the energy consumption would be if new technologies could be developed to drive energy consumption down to "practical minimum" using advanced technology not currently practiced. The difference between today's average and the "practical minimal technologies" represents an area of opportunity that could be used to direct research grant money to encourage the development of technologies that would result in reduced energy consumption, and
- An estimate of what the energy consumption would be of selected mill areas / technologies if "minimum theoretical" energy could be achieved, i.e. the energy use calculated from the first law of thermodynamics.

Jacobs, working in collaboration with the Institute of Paper Science and Technology (IPST) at Georgia Institute of Technology (GT), Atlanta, Georgia has developed the energy distribution matrix within the U.S. Paper Industry. This report outlines those findings.

Bob Kinstry

Robert B. Kinstrey Director, Pulp and Paper Consultancy Jacobs Engineering Group Inc. 1041 East Butler Road Greenville, SC 29606 Phone: 864 676 566 E-Mail: <u>Bob.Kinstrey@Jacobs.com</u>

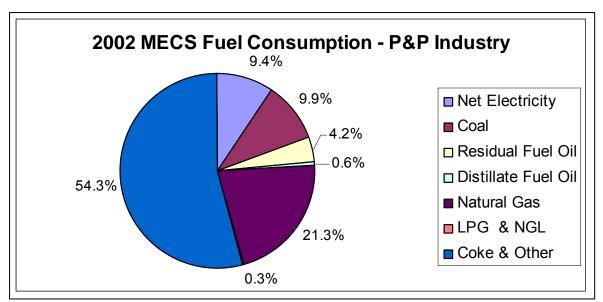
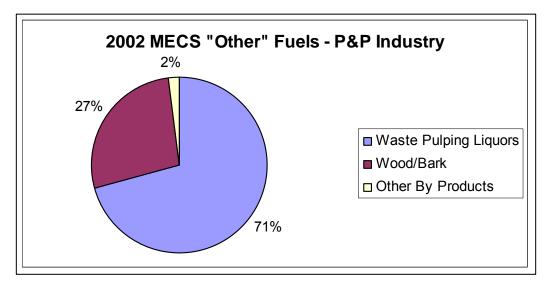
Dul Whit

David White, Ph.D. Associate Director, Research IPST @ Georgia Institute of Technology 500 10th St. N.W. Atlanta, GA 30332-0620 Phone: 404-894-1080 E-mail: david.white@ipst.gatech.edu

2. EXECUTIVE SUMMARY

In 2002 the U.S. Paper Industry produced 99.5 million tons of pulp and paper products while consuming 2,361 trillion Btus. The 2002 Manufacturing Energy Consumption Survey (MECS) data was used for energy consumption since these are the latest government published numbers and these consumption figures match published production data for the same time period. It should be noted that since 2002, the Pulp and Paper Industry has reduced its energy consumption, primarily through the use of waste energy streams, i.e. capturing the energy in waste heat streams, both air and liquid, as well as installing energy saving devices such as variable speed motors and more efficient lighting. By using data for the same time period (2002) the relative difference between actual and projected energy savings using Best Available Technology (BAT) can be estimated as well as the potential savings using advanced technologies, i.e. Practical Minimums.

The breakdown of fuels used by the Pulp and Paper industry is shown in Figure 2.1. The largest category of fuel used by the industry is black liquor and hog fuel (i.e. bark / wood waste) and represents about 54.3% of the industry's energy input. (These fuel categories are included in the MECS classification as "Other", with black liquor representing 71% of the 'other' category and hog fuel 27%, as shown in Figure 2.2). Natural gas is the second largest category at 21.3% with coal and net electricity at 9.9% and 9.4% respectively. Net electricity amounts to 65,339 million kWh while the industry's on-site generation is 51,208 million kWh, which is 44% of its total electrical requirements.

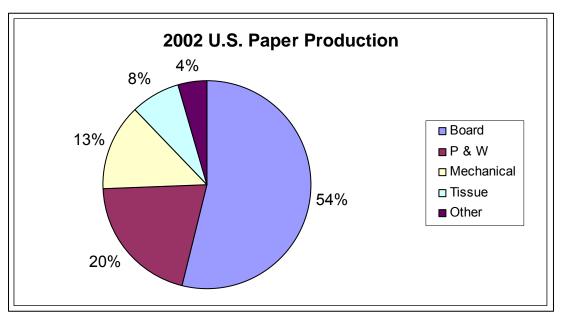

Figure 2.1

Figure 2.2

In 2002, paper and board production was 89.7 million tons and market pulp production was 9.9 million tons. The largest category of paper products is board (54%), followed by printing and writing paper (20%), mechanical paper grades (13%) and tissue products (8%), as shown in Figure 2.3. In 2002 pulp production was 86.4 million tons. The largest category was bleached kraft (34%), followed by unbleached kraft (23%), as shown in Figure 2.4. Recycled fiber accounted for 33% of the total pulp with old corrugated containers (OCC) being 59% of the total recycle fiber.

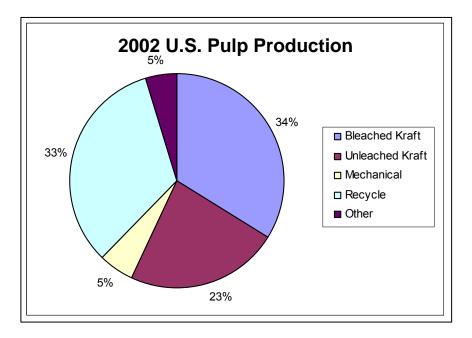


Figure 2.4

This study is production weighted, i.e., the energy consumed is based on the tons of pulp and paper produced by type (kraft, thermo-mechanical pulp (TMP), printing & writing, linerboard, etc.) multiplied by the energy consumed by ton for the various large process areas within a mill. Examples of large process areas are: pulping, bleaching, liquor evaporation, stock preparation, paper drying, etc. As such, even though TMP consumes a large quantity of electric power per unit of pulp produced, total energy consumed is small compared to the energy consumed by the U.S. pulp and paper industry since only a small quantity of TMP is produced in the U.S. This report focuses on the large blocks of energy consumed by the U.S. pulp and paper industry rather than the large process units with relative little impact on the industry's total energy consumption.

The distribution of energy used, based on MECS¹, in the pulp and paper industry is shown in Table 2.1. The energy consumed in the powerhouse is the energy that is lost within the powerhouse due to boiler efficiency, soot blowing, steam venting, turbine and transformer efficiency, etc. and is not the energy that exits the powerhouse and is used in the manufacturing processes.

By applying BAT – current design practices for the most modern mills - energy consumption within the Pulp and Paper Industry can be improved by 25.9% for an annual use estimate of 1,749 TBtu vs. the MECS data of 2,361 TBtu (Table 2.1). Purchased energy, including electric power, changed from 1,109 TBtu (MECS Case) to 597 TBtu (BAT Case), a 46.2% reduction, as shown in Figure 2.9. BAT calculations were based on the MECS energy distribution matrix. Published design unit energy consumptions for new or modern mill designs (vs. MECS unit consumption being "average" for 1990 vintage mills) were used to back calculate

energy consumption. Powerhouse energy efficiencies were raised and energy generated from hog fuel and black liquor remained constant since production remained constant from MECS. Both MECS and BAT are based on energy consumption, which incorporates recovered heat integration. There are many interrelationships between process areas, like between digesting / washing and evaporation that impact energy use. Energy heat recovery is just one of many relationships impacting gross energy consumption. Today's energy efficient mills do recover "waste" heat / energy.

Table 2.1 Energy Use Distribution within the Pulp and Paper Industry Total MECS vs. Total After Applying BAT									
Area	Total Energy Use 2002 MECS TBtu	Total Energy Use BAT TBtu	BAT Percent Change vs. MECS						
	(% of total)	(% of total) 527	(%)						
Paper Manufacturing	(32.9)	(30.1)	-32.1						
Pulping	708 (30.0)	508 (29.0)	-28.2						
Powerhouse Losses	755 (32.0)	592 (33.9)	-21.5						
Misc. & Environmental	122 (5.1)	122 (7.0)	0.0						
Total Industry Energy Consumption (Purchased and By-product Fuels)	2,361 (100.0)	1,749 (100.0)	-25.9						

The energy use for manufacturing pulp and paper, by type (direct fuel, electricity and steam), is shown in Table 2.2. Powerhouse loses in co-generation of the steam and electricity needed for the manufacturing processes account for the remaining energy consumed in the industry. Energy use by type within the pulp and paper manufacturing, after applying BAT, is also shown in Table 2.2.

The six major consumers by area within Pulp and Paper manufacturing are shown in Table 2.3. These six areas account for 84.6% (1,256 TBtu) of the 1,606 TBtu used in manufacturing under MECS and 83.1% (860 TBtu) of the 1,157 TBtu with BAT.

Paper drying and liquor evaporation, shown in Table 2.3, are self-explanatory. Paper Machine Wet End is the energy consumed in stock preparation ahead of the

paper machine and, includes refining, cleaning and screening, pumping of stocks, forming and pressing, etc. Pulping Chemical Preparation is the energy used in the pulp mill for chemical preparation, such as white liquor, and includes energy consumed in the lime kiln. Wood cooking is the energy consumed in the cooking of chemical pulps (sulfite, kraft and NSSC) and does not include the energy used for refining and grinding in the preparation of mechanical pulps, e.g. stone groundwood and TMP.

Table 2.2 Energy Use by Type within the Pulp and Paper Manufacturing										
Total MECS vs. Total After Applying BAT										
Туре	Total Energy Use by Type 2002 MECS	Total Energy Use by Type BAT	BAT Percent Change vs.							
	TBtu (% of Total)	TBtu (% of Total)	MECS (%)							
Direct Fuel	132 (8.2)	104 (9.0)	-21.1							
Electricity	393 (24.5)	297 (25.7)	-24.4							
Steam	1,081 (67.3)	756 (65.3)	-30.1							
Total Manufacturing	1,606 (100.0)	1,157 (100.0)	-28.0							
Powerhouse Losses	755	592	-21.5							
Total Industry	2,361	1,749	-25.9							

Table 2.3 Major Energy Users by Area within the Pulp and Paper Manufacturing Total MECS vs. Total After Applying BAT									
Area	Total Energy Use by Area 2002 MECS TBtu (% of Total)	Total Energy Use by Area BAT TBtu (% of Total)	BAT Percent Change vs. MECS (%)						
Paper Drying	481 (32.4)	354 (34.2)	-26.4						
Paper Machine Wet End	211 (14.2)	95 (9.2)	-54.9						
Liquor Evaporation	195 (13.1)	171 (16.5)	-12.1						
Pulping Chemical Prep	140 (9.5)	84 (8.1)	-40.1						
Wood Cooking	149 (10.0)								
Bleaching	80 (5.4)	55 (5.3)	-31.3						
Process Sub Total	1,256 (84.6)	860 (83.1)	-31.5						
Other Processes	228 (15.4)	175 (16.9)	-23.4						
Total Process	1,484 (100.0)	1,035 (100.0)	-30.3						
Environmental & Utilities	122	122 122							
Total Manufacturing	1,606	1,157	-28.0						

Overall kraft pulping, bleached and unbleached, which accounts for 57% of the pulp production, accounts for 78% of the energy consumed for pulp production. Board and printing and writing grades, which combined account for 71% of the paper production (51% and 20% respectively), account for 66% of the energy consumed in paper manufacturing (47% and 19% respectively).

Figures 2.5, 2.6 and 2.7 graphically show the comparison of current energy consumption vs. BAT, Practical Minimum and Theoretical Minimum energy

consumption for paper drying, liquor evaporation and lime kiln, respectively. The potential energy savings, i.e. bandwidth, between BAT and Practical Minimum are: Paper Drying – 57%, Liquor Evaporation – 27% and Lime Kiln – 35%. Paper Drying shows the largest gap and potential energy reduction.

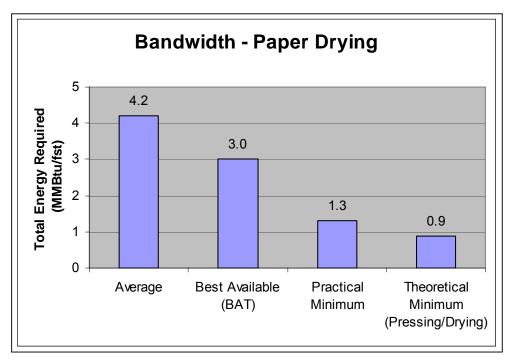


Figure 2.5

Figure 2.6

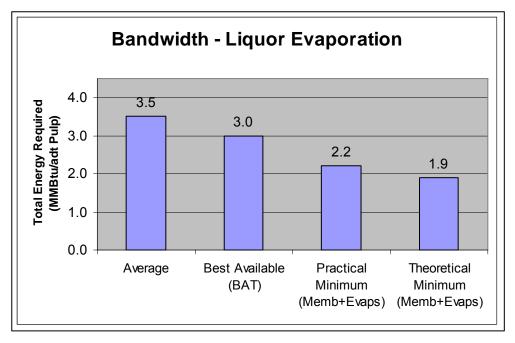


Figure 2.7

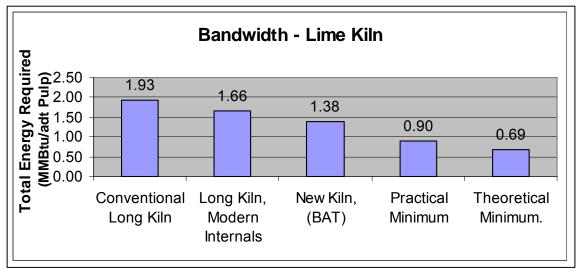
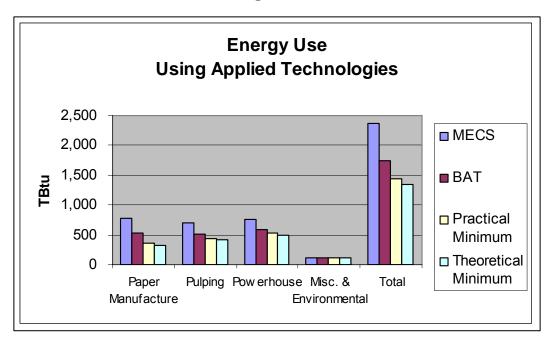



Figure 2.8 and Table 2.4 compares energy consumption using various applied technologies. In Figure 2.8, Practical Minimum and Theoretical Minimum reflect changes in paper drying, liquor evaporation and lime kiln direct fuel reflected in Figures 2.5, 2.6 and 2.7. No other changes have been made.

Figure 2.8

Table 2.4 Energy Use - Using Applied Technologies (TBtu)										
Area MECS BAT Practical Theoretic Minimum Minimum										
Paper Manufacturing	776	527	356	315						
Pulping	708	508	441	414						
Powerhouse Losses	755	592	528	496						
Misc. & Environmental 122 122 122 122										
Total Energy	2,361	1,749	1,447	1,347						

Figure 2.9 shows the impact on purchased fuels by applying BAT and the three Practical Minimum technologies shown above. Shown is a 48% reduction in purchased Fossil fuel between MECS and BAT and 80% reduction between MECS and Practical Minimum, reduction in total purchased energy are 46% and 75% respectively. Additional research (and deployment of technologies) to reduce these and other large energy use areas within the Pulp and Paper Industry will allow the industry to be a net exporter of energy rather than a consumer.

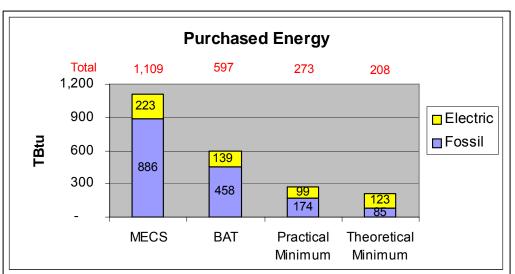


Figure 2.9

3. DOMESTIC ENERGY CONSUMPTION AND PRODUCTION

Paper Industry Energy Consumption Background

The Paper Industry (NAICS Code 322) in the United States used approximately 2,361 trillion Btus¹ (TBtu) while producing approximately 99.5 million tons² of pulp and paper products in 2002 (Table 3.1).

Table 3.1 2002 MECS Table 3.2 Energy Consumed Paper Industry, NAICS 322									
TBtu %									
Net Electricity	223	9.4							
Coal	234	9.9							
Residual Fuel Oil	100	4.2							
Distillate Fuel Oil	13	0.6							
Natural Gas	504	21.3							
LPG & NGL	6	0.3							
Coke and Other	1,281	54.3							
Total Energy	2,361	100.0							

The "Coke & Other" category above is largely byproduct fuels used as fuel and onsite electrical generation, as shown in Table 3.2. "Net Electricity" above, 223 TBtu (65,358 million kWh¹), is obtained by summing the purchases, transfers in and generation from noncombustible renewable resources, minus quantities sold and transferred out. It does not include electricity inputs from onsite co-generation or generation of combustibles fuels because that energy has already been included in generating fuel (e.g. coal, hog or black liquor). On-site generation has been taken into account separately (Table 3.3).

¹ 3412 Btus per Kilowatt-hour

Table 3.2 2002 MECS Table 3.5 Selected By-Products Paper Industry, NAICS 322								
Type TBtu								
Waste Gas	1							
Waste Pulping Liquors	820							
Wood and Bark	316							
Other By Products 21								
Total	1,158							

Table 3.3 2002 MECS Table 11.3 Components of On-site Generation Paper Industry, NAICS 322								
Component Million kWh								
Cogeneration	45,687							
Renewable, except wood & biomass	2,243							
Other 3,278								
Total On-site Generation 51,208								

These tables from the MECS served as the basis for the paper industry energy consumption in the current bandwidth study. Additionally, the numbers were checked against the energy³ consumption figures reported by American Forest and Paper Association (AF&PA) in the 2002 Statistics Report (Table 3.4), which show close agreement with the DOE MECS numbers. AF&PA did not report energy in the 2004 Statistical Report, so the 2002 Statistical Report figures were used. Neither database covers the complete paper industry and the accuracy of the data is dependent upon the effort the reporting companies invested in collecting the data. The MECS is based on companies that respond to the survey. AF&PA data is generally limited to AF&PA member companies, although some non-member companies have given AF&PA information, and not all member companies provide information to AF&PA. The two different databases agree closely with a difference of about 8%. Production in 2000 was 105.6 million tons vs. 2002 production of 99.5 million tons, a 5.8% change, which account for much of the difference. As a sanity

check, the AF&PA and MECS numbers were checked against Paperloop's (now RISI) Analytical Cornerstone^{®4} database which reports purchased energy consumed by the paper industry. The check did not show any significant difference and validated the AF&PA and MECS purchased energy numbers. The AF&PA data for 2000 shown in Table 3.4 reports self generated at 57.2%, which compares closely to the MECS "Other" of 54.3%.

Table 3.4 AF&PA 2002 Statistics Estimated Fuel and Energy Used										
Source	Source Estimated Fuel Used - 2000									
	TBtu	%								
Purchased Electricity	155	7.1								
Purchased Steam	34	1.6								
Coal	266	12.2								
No. 2 Oil	93	4.3								
No. 6 Oil	9	0.4								
Natural Gas	396	18.2								
LPG	1	0.1								
Other Purchased	23	1.0								
Energy Sold	Energy Sold (45) -2.1									
Total Purchased	932	42.8								
Hog	327	15.0								
Black Liquor	895	41.1								
Hydro Power	5	0.2								
Other	20	0.9								
Self Generated	1,247	57.2								
Total Energy	2,179	100.0								

Paper Industry Production

AF&PA 2004 Statistics reported the revised production data for the year 2002 as shown in Figures 3.1 and 3.2 and Tables 3.5 and 3.6. These data are the basis for the production figures used in the current bandwidth study. Note that all tonnage units in this report are short tons unless otherwise indicated. The AF&PA production figures were compared against Fisher International's database⁵. The check did not show any significant differences. From Table 3.6 it can be seen that kraft pulp accounts for 57% of the total pulp production (total virgin pulp is 66.8% of the total) in the U.S. and recycled OCC accounts for 19.3% of total pulp and over half of the recycled pulp (all recycle is 33.0% of the total pulp).

The data summarized in the tables shown above become the basis, energy consumption and industry production, for the bandwidth study.

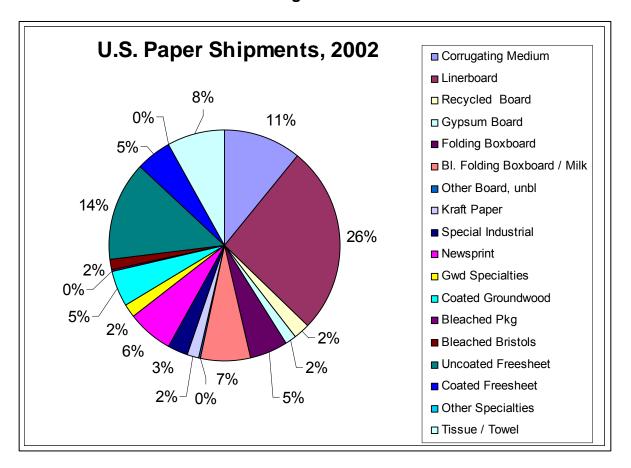
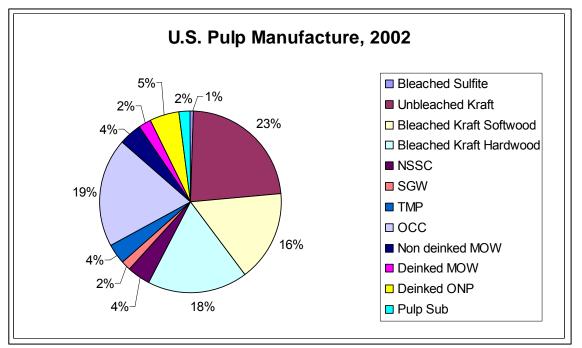



Figure 3.1

Table 3.5 AF&PA 2004 Statistics							
2002 Shipmer Paper Product	nts (1,000 tons)	% of Total					
Corrugating Medium	9,806	9.9					
Linerboard	23,509	23.6					
Recycled Board	2,062	2.1					
Gypsum Board	1,429	1.4					
Folding Boxboard	4,729	4.8					
Bleached Folding Boxboard / Milk	6,346	6.4					
Other Board, unbleached	247	0.2					
Kraft paper	1,545	1.6					
Special Industrial	2,323	2.3					
Newsprint	5,784	5.8					
Groundwood Specialties	1,668	1.7					
Coated Groundwood	4,481	4.5					
Bleached Packaging	291	0.3					
Bleached Bristol	1,350	1.4					
Uncoated Freesheet	12,428	12.5					
Coated Freesheet	4,481	4.5					
Other Specialties	83	0.1					
Tissue & Towel	7,127	7.2					
Subtotal	89,687	90.1					
Kraft Pulp, bleached	8,153	8.2					
Kraft Pulp, unbleached	na	na					
Sulfite Pulp	na	na					
Recycled Pulp	na	na					
Other Pulp / Dissolving Pulp	1,705	1.7					
Subtotal	9,858	9.9					
Total	99,545	100.0					

Figure 3.2

Table 3.6 AF&PA 2004 Statistics 2002 Pulp Production										
Type (1,000 tons) % of Total										
Bleached Sulfite	532	0.6								
Unbleached Kraft	19,917	23.0								
Bleached Kraft Softwood	13,848	16.0								
Bleached Kraft Hardwood	15,404	17.8								
NSSC	3,547	4.1								
SWG	1,416	1.6								
ТМР	3,264	3.8								
000	16,683	19.3								
Non Deinked MOW	3,658	4.2								
Deinked MOW	2,021	2.3								
Deinked ONP	4,442	5.1								
Pulp Substitutes	1,705	2.0								
Total	86,437	100.0								

4. PAPER INDUSTRY AVERAGE PROCESS ENERGY DEMAND

Average Energy Demand in Pulping and Papermaking

This study is production weighted, i.e., the energy consumed is based on the tons of pulp and paper produced by type (kraft, TMP, printing & writing, linerboard, etc.) multiplied by the energy consumed by ton for the various large process areas within a mill. Examples of large process areas are: pulping, bleaching, liquor evaporation, stock preparation, paper drying, etc. As such, even though TMP consumes a large quantity of electric power per unit of pulp produced, since only a small quantity of TMP pulp is produced in the U.S., total energy consumed is small compared to the energy consumed by U.S. pulp and paper industry. This report focuses on the large blocks of energy consumed by the U.S. pulp and paper industry rather than the large process units with relatively little impact on the industry's total energy consumption.

To establish a relationship between the MECS energy numbers and the AF&PA production (shipment) Jacobs and IPST/GT used as a starting point consumption figures, as units per ton, available from databases that Jacobs and IPST/GT had access to and information that had been published.

Comparison of the various databases shows that there are wide variations in the reported amount of energy used by different pulping processes and by the individual process steps. The same goes for the paper manufacturing energy information. The large differences between the databases and the published information are in part due to the large number of manufacturing variables, including age of equipment, mill / system configuration, and mill reporting systems (e.g., not all mills have the same accounting systems or mill system classifications; metering systems are in many cases missing; data is in some cases assumed based on other mill operations, leading to potentially incorrect results). Thus, using an average number based on the various databases minimizes the impact of the use of incorrect information.

The first step was to determine how much of the fuel consumed by the Paper Industry was actually available for manufacturing processes, i.e., we had to determine how much fuel was consumed in the powerhouse based on boiler efficiencies and energy estimates for auxiliary systems (fans, pumps, coal crushers, bark hog, turbine loses, transformer losses, environmental systems, etc.) and other losses such as leaks and venting. Based on a simple analysis, it was estimated that approximately 68% of the 2,361 Trillion Btu (TBtu) reported in MECS Table 3.2 is available for paper industry manufacturing processes, or 1,606 TBtu (Table 4.1).

The second step was to distribute the energy consumed in the pulp and paper making processes. We utilized published data that referenced energy consumption per ton. The references show a wide range of energy consumption for the same unit operation and/or paper grade. We made an initial estimate based on consumption numbers obtained from Paprican's book "Energy Cost Reduction in the Pulp and Paper Industry" and AF&PA reported production numbers. The unit consumption figures were adjusted so the total energy consumption matched the energy available for process after the powerhouse.

The next step was to distribute the energy into smaller energy process blocks. We utilized the available published data and adjusted the data based on our knowledge of the industry. To minimize errors, we elected to use as large a database of published information as we could find to generate an average since the published data for the same processes vary.

References used to establish the basis for unit consumption per ton were:

- Energy Cost Reduction in the Pulp and Paper Industry, a Monograph⁶;
- Energy Cost Reduction in Pulp & Paper Industry An Energy Benchmarking Perspective⁷,
- Pulp & Paper Industry, "Energy Best Practices,"⁸
- IPST's benchmarking model⁹
- White Paper No.10 Environmental Comparison Manufacturing Technologies¹⁰
- Energy and Environmental Profile of the U.S. Forest Products Industry Volume 1: Paper Manufacture¹¹,
- A Guide to Energy Savings Opportunities in the Kraft Pulp Industry¹²,
- Energy Efficiency and the Pulp and Paper Industry, Report IE962¹³;
- The Energy Roadmap Pulp and Paper for a Self-Sufficient Tomorrow¹⁴,
- Benchmarking Energy Use in Pulp and Paper Operations¹⁵

The energy use within the U.S. Pulp and Paper Industry manufacturing pulp and paper products is broken down into three use categories: Electric, Steam and Direct Fuel. Figure 4.1 shows the distribution. Figures 4.2 and 4.4 show the distribution on total energy (electric, seam and direct fuel) for pulping and for paper manufacturing by product, respectively. Kraft pulping, bleached and unbleached, accounts for 78% of the total energy consumed by pulping. Pulp mill energy use by type and papermaking energy use by grade are provided in Figures 4.3 and 4.5. Energy distribution within manufacturing is shown in Table 4.2.

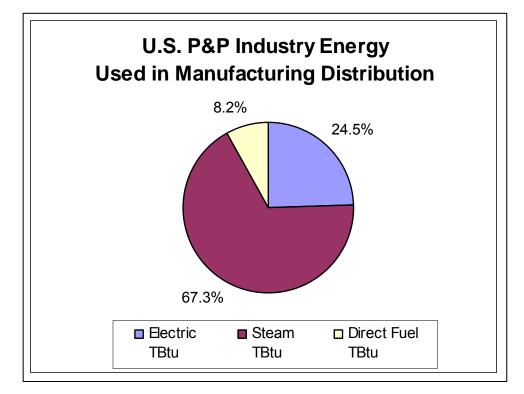
	MECS 2002 Table 3.2 NAICS 322	Fuel Utilized In Boilers	Boiler Efficiency	Net Energy	Used for Soot Blowing Steam	Used for Boiler Aux.	Net Energy	Percent of Energy Used to Generate Electricity	Electrical Generation Conversion Loss	System & Mechanical Loss	Total Available for Process	Electricity	Electricity	Direct Fuel	Steam	% of Feed Available for Process
	TBtu	%	%	TBtu	%	%	TBtu	%	%	%	TBtu	TBtu	BkWh	TBtu	TBtu	%
Purchased Electricity	223	0%	98%	223	0%	0%	223	0%	9%	2%	218.5	218.5	64.1			98%
Coal	234	100%	86%	201	2.5%	6.0%	184	19.3%	9%	6%	170.1	30.4	8.9	-	139.7	73%
Residual Fuel Oil	100	100%	86%	86	0%	4.0%	83	19.3%	9%	6%	76.3	13.6	4.0	-	62.6	76%
Distillate Fuel Oil	13	70%	86%	12	0%	3.0%	11	0.0%	9%	6%	10.7	-	-	3.2	7.5	82%
Natural Gas	504	70%	87%	458	0%	3.0%	444	4.9%	9%	6%	415.9	18.4	5.4	119.2	278.2	83%
LPG	6	0%	87%	6	0%	0.0%	6	0.0%	9%	0%	6.0	-	-	6.0	-	100%
Waste Pulping Liquors	820	100%	64%	525	7.5%	4.0%	464	19.3%	9%	6%	429.0	76.6	22.4	-	352.4	52%
Wood / Bark	316	100%	69%	218	1.5%	5.0%	204	19.3%	9%	6%	188.3	33.6	9.9	-	154.7	60%
Other By Products	22	80%	69%	17	0%	4.0%	16	0.0%	9%	6%	14.9	-	-	3.0	11.9	68%
Other	123	100%	69%	85	0%	4.0%	81	3.0%	9%	6%	76.4	2.1	0.6	-	74.3	62%
Subtotal - Fuels	2,138	-		1,607			1,494				1,388	174.7	51.2	131.4	1,081.4	65%
Total	2,361	-		1,830			1,717				1,606.10	393.27	115.26	131.43	1,081.40	68%

Table 4.1Powerhouse Energy Consumption

Boiler Efficiencies: conversion efficiency of the boiler, based on Jacobs' design rule of thumb.

Soot Blowing Steam: steam used in the boiler for tube cleaning, based on Jacobs' design rule of thumb.

Boiler Auxiliaries: include energy consumed for fans, pumps, coal crushers, bark hogs, environmental controls, steam leaks and venting, etc.


Electrical Generator Conversion Loss: energy / heat loss in the generator and condenser.

System and Mechanical Loss: energy / heat loss in transformers, radiation losses form pipes, venting and leaks.

Electricity generated on-site is 51.21 BkWh (44% of the total 115 BkWh) electricity used by the processes.

Total fuel consumed by the industry is 2,138 TBtu of which 1,388 TBtu (65% of the feed) is available for use in the pulp and paper manufacturing processes after the powerhouse (including 131 TBtu of fuel used directly as fuel in the process). The 2,007 TBtu difference between 2,138 TBtu and 131 TBtu is the fuel consumed in the powerhouse to co-generate the 1,256 TBtu of process steam and electricity.

Figure 4.1

Figure 4	4.2
----------	-----

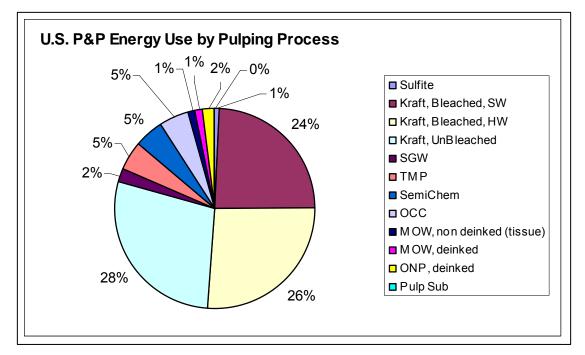


Figure 4.3

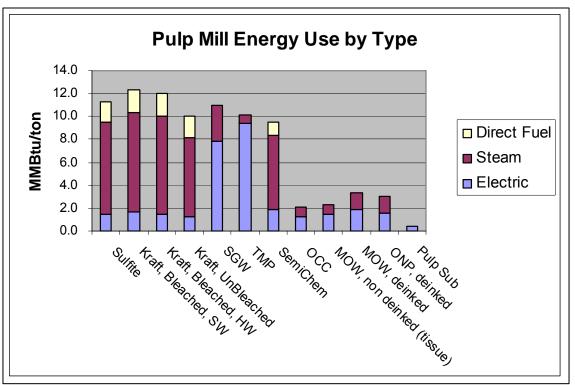


Figure 4.4

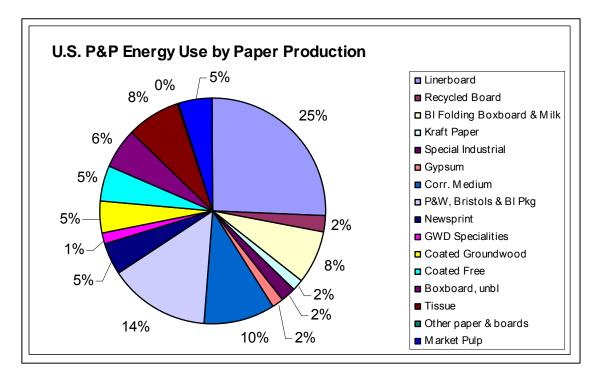
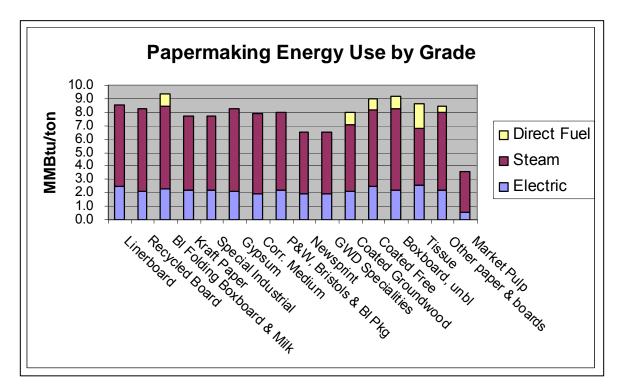



Figure 4.5

Table 4.2 U.S. P&P Energy Distribution												
	Elect	ric	Stea	m	Direc	t Fuel						
	TBtu	%	TBtu	%	TBtu	%						
Pulp Manufacture	158.6	40.3	449.3	41.5	100.2	76.2						
Paper Manufacture	206.9	52.6	537.8	49.7	31.3	23.8						
Utilities, excluding Powerhouse	27.8	7.1	94.3	8.7	0.0	0						
Total Manufacturing	393.3 (24.5%)	100.0	1,081.4 (67.3%)	100.0	131.4 (8.2%)	100.0						
Grand Total	1,606.1 (100.0%)											

Steam and Electrical Energy Use by Process Area

Overall average break-downs of the energy used within pulp and paper manufacturing are shown in Table 4.3 and 4.4, respectively.

Ene	Table 4.3 Energy Used within Pulp Manufacturing													
	Electr Ener		Ste Ene		Direct Fuel Energy									
	TBtu	% ^d	TBtu	% ^d	TBtu	% ^d								
Wood Preparation	17.8	11.2	14.4	3.2	0.0	0.0								
Cooking ^a	18.9	11.9	130.1	29.0	0.0	0.0								
Grinding / Refining ^b	36.8	23.2	-3.0	-0.7	0.0	0.0								
Screening / Cleaning ^c	13.1	8.3	0.0	0.0	0.0	0.0								
Evaporation	8.7	5.5	186.0	41.4	0.0	0.0								
Chemical Preparation	9.4	6.0	30.3	6.7	100.2	100.0								
Bleaching	15.6	9.9	64.8	14.4	0.0	0.0								
Recycle / Pulp Subs	38.2	24.1	26.7	5.9	0.0	0.0								
Total	158.6 (22.4%)	100.0	449.2 (63.5%)	100.0	102.2 (14.1%)	100.0								
Grand Total	707.9 (100.0%)													

a. For chemical pulps includes digesting through washing

b. Includes heat recovery for TMP refiners

c. Screening & cleaning for mechanical pulping, energy for screening & cleaning of chemical pulp is in the cooking numbers

d. The percentages above represent an overall average for all pulping processes and vary for individual processes (e.g., kraft, NSSC, etc.)

Enei	Table 4.4 Energy Used within Paper Manufacturing													
	Electr Ener		Stea Ener		Direct Fuel Energy									
	TBtu	% ^c	TBtu	%°	TBtu	% ^c								
Wet End ^a	103.2	49.9	107.8	20.0	0.0	0.0								
Pressing	36.5	17.7	0.0	0.0	0.0	0.0								
Drying	45.0	21.7	422.3	78.5	13.4	42.7								
Dry End [⊳]	18.4	8.9	0.0	0.0	0.0	0.0								
Coating Preparation	1.2	0.6	2.5	0.5	0.0	0.0								
Coating Drying	0.0	0.0	0.0	0.0	17.9	57.3								
Super Calendering	2.7	1.3	5.3	1.0	0.0	0.0								
Total	206.9 (26.7%)	100.0	542.3 (69.3%)	100.0	31.3 (4.0%)	100.0								
Grand Total	776.0 (100.0%)													
a Wet End includes st		tion throu	igh forming											

a. Wet End includes stock preparation through forming

b. Dry End includes calendering through winding

c. The percentages above represent an overall average for all papermaking processes and vary for individual processes (e.g., liner, uncoated freesheet, tissue, etc.)

Direct Fuel

In the area of pulp manufacturing 100% of the direct fuel is used in either the lime kilns (Kraft pulping - 99.3%) or sulfur burners (sulfite pulping - 0.7%).

In the area of paper manufacturing 100% of the direct fuel is used either for coating drying (57%) and/or in tissue drying (Yankee hoods and/or Through Air Drying (TAD) -43%).

Summary

Using the electrical, steam and direct fuel energy consumption data by pulping and paper grade, along with production data (Tables 3.5 and 3.6), total domestic energy consumption was obtained (Table 4.5). Figures 4.6, 4.7 and 4.8 graphically displays the energy consumption of a bleached hardwood kraft mill along with a printing and writing paper machine, unbleached kraft with linerboard machine and TMP with a Newsprint machine, respectively. The three combinations are shown to represent differences between pulping and paper machine combinations, however, pulping is not truly representative since most machines blend various pulps together rather than use just a single type, i.e. pulp for linerboard can be either 100% unbleached kraft, 100% OCC, or varying ratios of the two. The same is true for Printing & Writing (mixtures of bleached hardwood, bleached softwood and MOW) and Newsprint (mixtures of TMP, stone groundwood, kraft and ONP). Figures 4.9 and 4.10 show the distribution of energy consumption by major mill process area.

P&P Industry Energy Bandwidth Study

	Elec kWh/t	Elec MMBtu/t	Steam MMBtu/t	Direct Fuel MMBtu/t	Production 1000 t/yr	Production %	Elec Million kWh	Electric TBtu	Steam TBtu	Direct Fuel TBtu	Total TBtu
Sulfite	434.3	1.5	8.00	1.78	532	0.6%	231	0.8	4.3	0.9	6.0
Kraft, Bleached, SW	484.0	1.7	8.74	1.97	13,848	16.0%	6,702	22.9	121.0	27.3	171.2
Kraft, Bleached, HW	434.3	1.5	8.53	1.97	15,404	17.8%	6,690	22.8	131.4	30.4	184.6
Kraft, UnBleached	372.3	1.3	6.84	1.87	19,917	23.0%	7,415	25.3	136.3	37.3	198.9
SGW	2,283.3	7.8	3.16		1,416	1.6%	3,233	11.0	4.5	0.0	15.5
TMP	2,761.1	9.4	0.74		3,264	3.8%	9,012	30.7	2.4	0.0	33.2
SemiChem	564.6	1.9	6.42	1.17	3,547	4.1%	2,003	6.8	22.8	4.2	33.8
000	372.3	1.3	0.84		16,683	19.3%	6,211	21.2	14.1	0.0	35.2
MOW, non deinked (tissue)	434.3	1.5	0.84		3,658	4.2%	1,589	5.4	3.1	0.0	8.5
MOW, deinked	558.4	1.9	1.47		2,021	2.3%	1,129	3.9	3.0	0.0	6.8
ONP, deinked	465.3	1.6	1.47		4,442	5.1%	2,067	7.1	6.5	0.0	13.6
Pulp Sub	111.7	0.4			1,705	2.0%	190	0.6	0.0	0.0	0.6
Sub Total					86,437	100.0%	46,472	158.6	449.3	100.2	708.0
Linerboard	713.5	2.4	6.11		23,509	23.6%	16,774	57.2	143.6	0.0	200.8
Recycled Board	620.5	2.1	6.11		2,061	2.1%	1,279	4.4	12.6	0.0	17.0
BI Folding Boxboard & Milk	682.5	2.3	6.11	0.89	6,346	6.4%	4,331	14.8	38.7	5.6	59.2
Kraft Paper	651.5	2.2	5.47		1,545	1.6%	1,006	3.4	8.5	0.0	11.9
Special Industrial	651.5	2.2	5.47		2,323	2.3%	1,514	5.2	12.7	0.0	17.9
Gypsum	620.5	2.1	6.11		1,429	1.4%	886	3.0	8.7	0.0	11.7
Corr. Medium	558.4	1.9	6.00		9,806	9.9%	5,476	18.7	58.8	0.0	77.5
P&W, Bristols & BI Pkg	645.3	2.2	5.75		14,069	14.1%	9,078	31.0	80.9	0.0	111.9
Newsprint	558.4	1.9	4.63		5,784	5.8%	3,230	11.0	26.8	0.0	37.8
GWD Specialities	558.4	1.9	4.63		1,668	1.7%	931	3.2	7.7	0.0	10.9
Coated Groundwood	620.5	2.1	4.95	0.89	4,481	4.5%	2,780	9.5	22.2	4.0	35.6
Coated Free	719.7	2.5	5.69	0.89	4,481	4.5%	3,225	11.0	25.5	4.0	40.5
Boxboard, unbl	639.1	2.2	6.11	0.89	4,729	4.8%	3,022	10.3	28.9	4.2	43.4
Tissue	744.6	2.5	4.21	1.87	7,127	7.2%	5,307	18.1	30.0	13.4	61.5
Other paper & boards	651.5	2.2	5.79	0.39	330	0.3%	215	0.7	1.9	0.1	2.8
Market Pulp	160.3	0.5	3.07		9,858	9.9%	1,581	5.4	30.3	0.0	35.7
Sub Total					99,545	100.0%	60,636	206.9	537.8	31.3	776.0
Wastewater & Utilities	81.9	0.3	0.95		99,545		8,153	27.8	94.3	0.0	122.1
Grand Total							115,260	393.3	1,081.4	131.4	1,606.1

Table 4.5Energy Distribution Overview

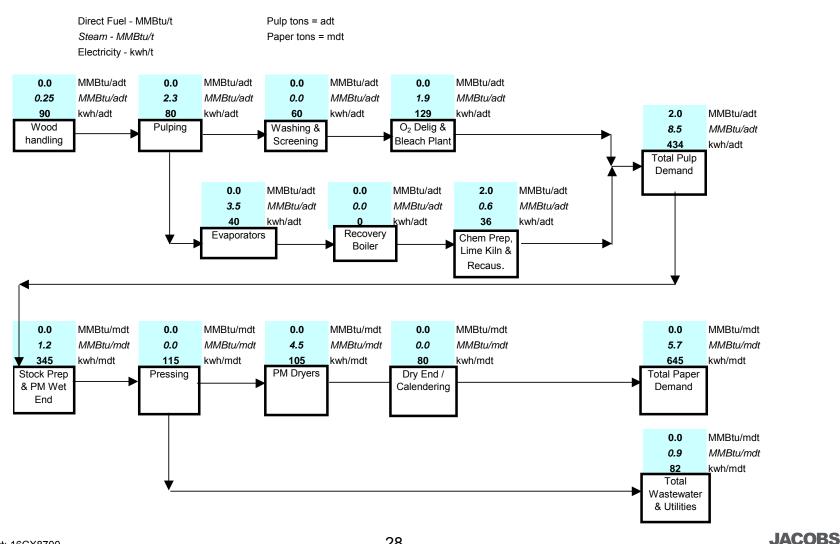
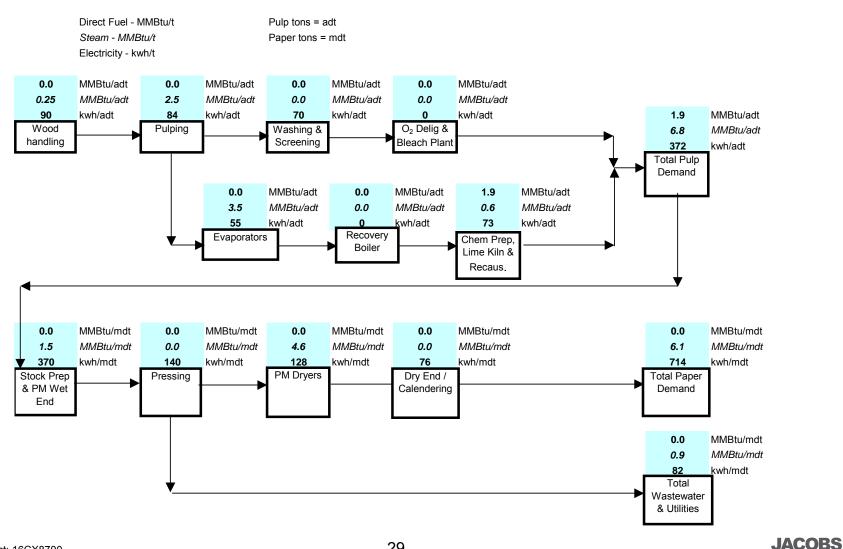



Figure 4.6 Average Bleached Hardwood Kraft Pulp and Printing and Writing Paper

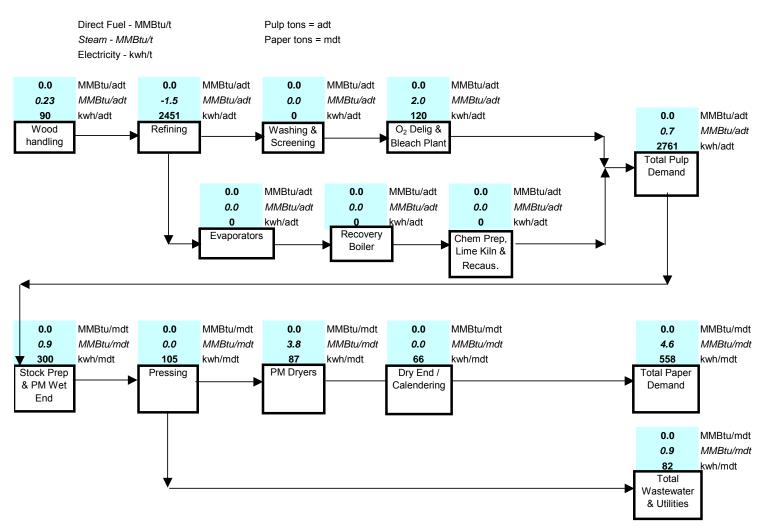

Project: 16CX8700

Figure 4.7 Average Unbleached Kraft Pulp and Linerboard

Project: 16CX8700

P&P Industry Energy Bandwidth Study

Figure 4.8 Average TMP and Newsprint

Project: 16CX8700

JACOBS

Figure 4.9

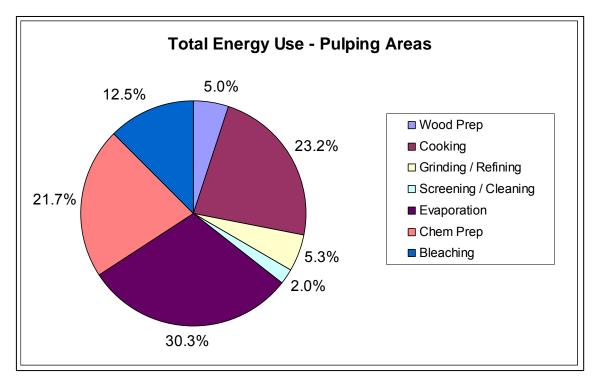
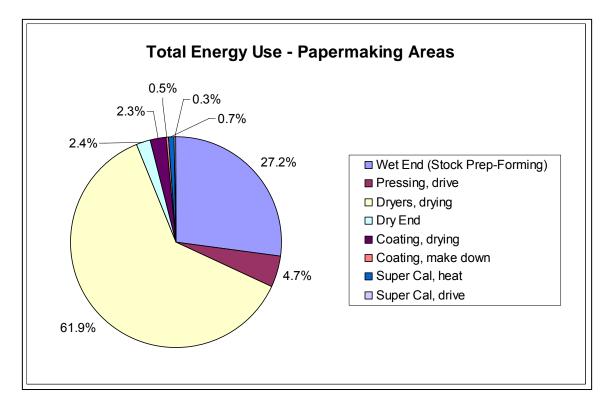



Figure 4.10

JACOBS

5. OVERALL DOMESTIC ENERGY BALANCE

Combination of the consumption data (Table 4.5) and the generation data (Table 4.1) allows the overall domestic energy balance to be calculated (Table 5.1). There is good agreement between the net mill demand and the MECS Industry Demand (Table 5.1).

COMPARI	COMPARISON OF TOTAL MILL NET FUEL DEMAND VERSUS MECS													
	Basis	Electric Energy	Steam Energy	Direct Fuel	Total Electric	Total Steam	Direct Fuel							
	MMton/yr	kWh/ton	MMBtu/ton	MMBtu/ton	MMkWh	TBtu	TBtu							
Total Pulping Process Demand	86.44	537.64	5.20	1.16	46,472	449.26	100.16							
Total Papermaking Demand	99.55	609.13	5.40	0.31	60,636	537.81	31.28							
Wastewater Treatment					8,153	94.33	0							
Total Industry Proc. Demand	99.55	1157.82	10.86	1.32	115,261	1,081.4	131.4							
Total Boilers Gross (Gen) Power Plant Demand	99.55 99.55				(51,210) 1,307	(1081.4)	2007.0							
Net Total Boilers Demand	99.55				(49,903)	(1,081)	2,007							
Total Mill Demand w/Direct					65,358	0	2,138.4							
MECS Industry Demand					65,358	0.0	2,138.0							

Table	5.1
-------	-----

The 4.5 TBtu (223 TBtu – 218.5 TBtu) difference in purchase electricity, due to 2% system loses, shown in Table 4.1, is equivalent to the 1,307 Million kWh shown above as powerhouse demand.

6. ESTIMATED CONSUMPTION WITH "BAT"

The estimated energy consumption using BAT was obtained by using the MECS / AF&PA production data as a basis and then using published data for either modern and/or model mills. We elected to use published information because modern design data related to new mills is limited; the last new, greenfield pulp mill built in the U.S. occurred in the early 1980's. (Recent construction of new mills has occurred in Asia and South America.) In some cases, such as sulfite pulping, there isn't any data that represents a current mill design since the pulping technology, for the most part, is being phased out. In cases like sulfite, the energy data used for the MECS distribution is reused.

The methodology that was used in the MECS distribution remains the same, (using the electrical, steam and direct fuel energy consumption data by pulping and paper grade, along with production data (Tables 3.5 and 3.6)), except that the BAT distribution is used to predict fuel use by back calculating through the powerhouse i.e., Table 6.1 was generated, and then Table 6.2 was back calculated. The efficiencies used in the powerhouse are the best rather than the average. Since pulp production has been maintained, the amount of energy available from hog fuel and black liquor has been maintained (Table 4.1) causing other quantities available from other energy sources to float.

The analysis showed that by using current design technology overall energy used in the papermaking and pulping processes could be reduced by 28.0%, from 1,606 TBtu to 1,157 TBtu. Tables 6.1 and 6.3 summarize the changes. Figures 6.1 through 6.4 show the energy distribution and use within the pulp and papermaking processes after applying BAT. Applying BAT reduces purchased fuels, excluding electricity, to 458 TBtu (Table 6.2). BAT is a combination of application of new technologies, such as shoe presses, and the improved utilization of energy by capturing and reusing energy contained in "waste" process streams, such as paper machine dryer hoods and bleach plant effluents. Figures 6.5 and 6.6 show the distribution of energy consumption by major mill process areas.

References used to establish the basis for unit consumptions were:

- Energy Cost Reduction in Pulp & Paper Industry An Energy Benchmarking Perspective¹⁶,
- Pulp & Paper Industry, "Energy Best Practices,"¹⁷
- A Guide to Energy Savings Opportunities in the Kraft Pulp Industry¹⁸,
- Energy Efficiency and the Pulp and Paper Industry, Report IE962¹⁹;
- Energy Cost Reduction in the Pulp and Paper Industry, a Monograph²⁰

P&P Industry Energy Bandwidth Study

Table 6.1BAT Energy Distribution Overview

	Current Electric kWh/t	BAT Electric kWh/t	BAT Electric MMBtu/t	Electric % change	Current Steam MMBtu/t	BAT Steam MMBtu/t	Steam % change	Current Direct Fuel MMBtu/t	BAT Direct Fuel MMBtu/t	Direct Fuel % change	Production 1000 t/yr	Production %	Elec Million kWh	Electric TBtu	Steam TBtu	Direct Fuel TBtu	Total TBtu
Sulfite	434	406	1.4	-6.6%	8.0	7.64	-4.5%	1.8	1.8	-0.8%	532	0.6%	216	0.7	4.1	0.9	5.7
Kraft, Bleached, SW	484	363	1.2	-25.0%	8.7	6.34	-27.5%	2.0	1.4	-30.6%	13,848	16.0%	5,027	17.2	87.8	19.0	123.9
Kraft, Bleached, HW	434	347	1.2	-20.1%	8.5	5.58	-34.6%	2.0	1.3	-36.6%	15,404	17.8%	5,345	18.2	86.0	19.3	123.4
Kraft, UnBleached	372	269	0.9	-27.7%	6.8	4.66	-31.9%	1.9	1.5	-21.0%	19,917	23.0%	5,358	18.3	92.8	29.5	140.6
SGW	2283	2,133	7.3	-6.6%	3.2	3.00	-5.0%	0.0	0.0		1,416	1.6%	3,020	10.3	4.2	0.0	14.6
TMP	2761	2,088	7.1	-24.4%	0.7	0.58	-21.3%	0.0	0.0		3,264	3.8%	6,815	23.3	1.9	0.0	25.1
SemiChem	565	527	1.8	-6.6%	6.4	5.00	-22.1%	1.2	1.2	-2.0%	3,547	4.1%	1,871	6.4	17.7	4.1	28.2
OCC	372	206	0.7	-44.7%	0.8	0.60	-28.8%	0.0	0.0		16,683	19.3%	3,437	11.7	10.0	0.0	21.7
MOW, non deinked (tissue)	434	348	1.2	-19.9%	0.8	0.60	-28.8%	0.0	0.0		3,658	4.2%	1,273	4.3	2.2	0.0	6.5
MOW, deinked	558	472	1.6	-15.5%	1.5	1.33	-9.8%	0.0	0.0		2,021	2.3%	954	3.3	2.7	0.0	5.9
ONP, deinked	465	395	1.3	-15.1%	1.5	1.33	-9.8%	0.0	0.0		4,442	5.1%	1,755	6.0	5.9	0.0	11.9
Pulp Sub	112	104	0.4	-6.6%	0.0	0.00	0.0%	0.0	0.0		1,705	2.0%	178	0.6	0.0	0.0	0.6
Sub Total											86,437	100.0%	35,248	120.3	315.3	72.7	508.3
Linerboard	714	472	1.6	-33.9%	6.1	3.08	-49.6%	0.0	0.0		23,509	23.6%	11,096	37.9	72.4	0.0	110.3
Recycled Board	620	315	1.1	-49.2%	6.1	4.00	-34.5%	0.0	0.0		2,061	2.1%	649	2.2	8.2	0.0	10.5
BI Folding Boxboard & Milk	683	512	1.7	-25.0%	6.1	3.41	-44.2%	0.9	0.9	-0.9%	6,346	6.4%	3,249	11.1	21.6	5.6	38.3
Kraft Paper	651	472	1.6	-27.6%	5.5	3.08	-43.7%	0.0	0.0		1,545	1.6%	729	2.5	4.8	0.0	7.2
Special Industrial	651	472	1.6	-27.6%	5.5	3.08	-43.7%	0.0	0.0		2,323	2.3%	1,097	3.7	7.2	0.0	10.9
Gypsum	620	315	1.1	-49.2%	6.1	4.00	-34.5%	0.0	0.0		1,429	1.4%	450	1.5	5.7	0.0	7.3
Corr. Medium	558	472	1.6	-15.5%	6.0	3.08	-48.7%	0.0	0.0		9,806	9.9%	4,628	15.8	30.2	0.0	46.0
P&W, Bristols & BI Pkg	645	460	1.6	-28.7%	5.7	4.16	-27.6%	0.0	0.0		14,069	14.1%	6,472	22.1	58.5	0.0	80.6
Newsprint	558	328	1.1	-41.3%	4.6	3.32	-28.3%	0.0	0.0		5,784	5.8%	1,897	6.5	19.2	0.0	25.7
GWD Specialities	558	328	1.1	-41.3%	4.6	3.96	-14.5%	0.0	0.0		1,668	1.7%	547	1.9	6.6	0.0	8.5
Coated Groundwood	620	555	1.9	-10.6%	4.9	4.44	-10.3%	0.9	0.9	-0.9%	4,481	4.5%	2,487	8.5	19.9	3.9	32.3
Coated Free	720	500	1.7	-30.5%	5.7	3.83	-32.6%	0.9	0.9	-0.9%	4,481	4.5%	2,240	7.6	17.2	3.9	28.7
Boxboard, unbl	639	355	1.2	-44.5%	6.1	4.33	-29.1%	0.9	0.9	-0.9%	4,729	4.8%	1,679	5.7	20.5	4.2	30.4
Tissue	745	669	2.3	-10.1%	4.2	3.96	-6.0%	1.9	1.9	0.0%	7,127	7.2%	4,768	16.3	28.2	13.2	57.7
Other paper & boards	651	467	1.6	-28.3%	5.8	4.00	-30.9%	0.4	0.4	0.0%	330	0.3%	154	0.5	1.3	0.1	2.0
Market Pulp	160	160	0.5	-0.2%	3.1	2.53	-17.7%	0.0	0.0		9,858	9.9%	1,577	5.4	24.9	0.0	30.3
Sub Total											99,545	100.0%	43,720	149.2	346.5	31.0	526.7
Wastewater & Utilities	82	82	0.3	0.0%	0.9	0.95	0.0%	0.0	0.0		99,545		8,153	27.8	94.4	0.0	122.2
Grand Total													87,120.5	297.26	756.14	103.73	1,157.1
Current (MECS)													115,260.2	393.27	1,081.40	131.43	1,606.1
Difference, %													-24.4%	-24.4%	-30.1%	-21.1%	-28.0%

Table 6.2Powerhouse Energy Consumption after BAT

	Estimate Based on BAT TBtu	Fuel Utilized In Boilers %	Boiler Efficiency %	Net Energy TBtu	Used for Soot Blowing Steam	Used for Boiler Aux. %	Net Energy TBtu	Percent of Energy Used to Generate Electricity %	Electrical Generation Conversion Loss %	System & Mechanical Loss	Total Available for Process TBtu	Electricity	Electricity	Direct Fuel TBtu	Steam TBtu	% of Feed Available fo Process %
Purchased Electricity	139	0%	98%	139	0%	0%	139	0%	9%	2%	135.8	135.8	39.8	-	-	98%
Coal	166	100%	88%	146	2.0%	6.0%	134	19%	9%	6%	123.8	23.5	6.9	_	100.3	75%
Residual Fuel Oil	60	100%	88%	53	0%	4.0%	51	19%	9%	6%	47.0	8.9	2.6	-	38.1	78%
Distillate Fuel Oil	9	70%	88%	8	0%	3.0%	8	0%	9%	6%	7.7	-	-	2.5	5.2	83%
Natural Gas	156	70%	89%	144	0%	3.0%	139	5%	9%	6%	130.4	3.0	0.9	94.1	33.3	84%
LPG	5	0%	88%	5	0%	0.0%	5	0%	9%	0%	4.7	-	-	4.7	-	100%
Waste Pulping Liquors	820	100%	68%	558	5.5%	4.0%	505	19%	9%	6%	465.9	88.4	25.9	-	377.5	57%
Wood / Bark	316	100%	70%	221	1.0%	5.0%	208	19%	9%	6%	192.1	36.4	10.7	-	155.6	61%
Other By Products	16	80%	70%	12	0%	4.0%	11	0%	9%	6%	10.7	-	-	2.4	8.3	67%
Other	62	100%	70%	43	0%	4.0%	42	3%	9%	6%	39.0	1.2	0.3	-	37.8	63%
Subtotal - Fuels	1,611	-		1,190			1,103				1,021	132.1	47.3	103.7	756.1	63%
Total	1,749			1,329			1,242				1,157.1	297.3	87.1	103.7	756.1	66%
2000 MECS Difference, %	2,361 -25.9%			1,830 -27.4%			1,717 -27.7%				1,606 -28.0%	393.3 -24.4%	115.3 -24.4%	131.43 -21.1%	1081.4 -30.1%	

	Table 6.3 U.S. P&P Energy Distribution								
	l	Electric			Steam		D	irect Fue	I
	MECS TBtu	BAT TBtu	Diff. %	MECS TBtu	BAT TBtu	Diff. %	MECS TBtu	BAT TBtu	Diff. %
Pulp Manufacture	158.6	120.3	-24.2	449.2	315.3	-29.8	100.2	72.7	-27.4
Paper Manufacture	206.9	149.2	-27.9	537.8	346.5	-35.6	31.3	31.0	-1.0
Utilities, excluding Powerhouse	27.8	27.8	0.0	94.4	94.4	0.0	0.0	0.0	0.0
Total Manufacturing	393.3	297.3	-24.4	1,081.4	756.1	-30.1	131.4	103.7	-21.1

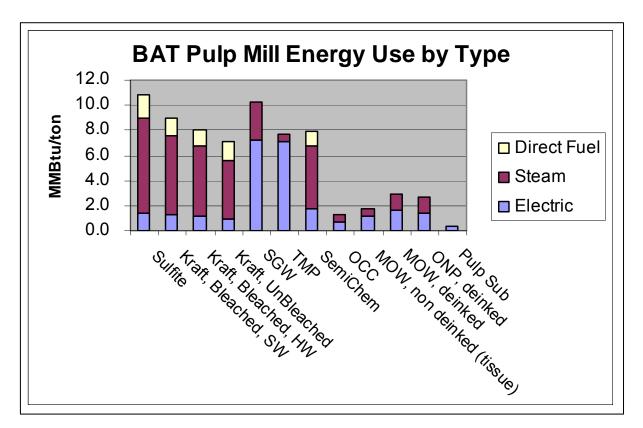


Figure 6.2

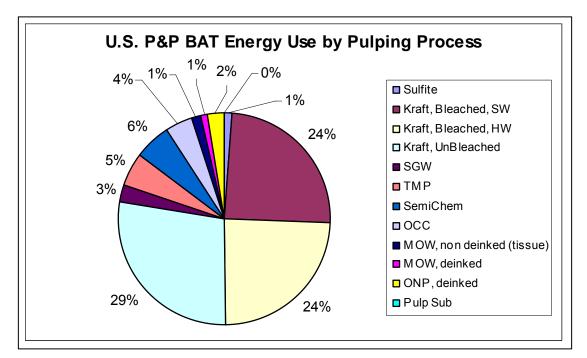


Figure 6.3

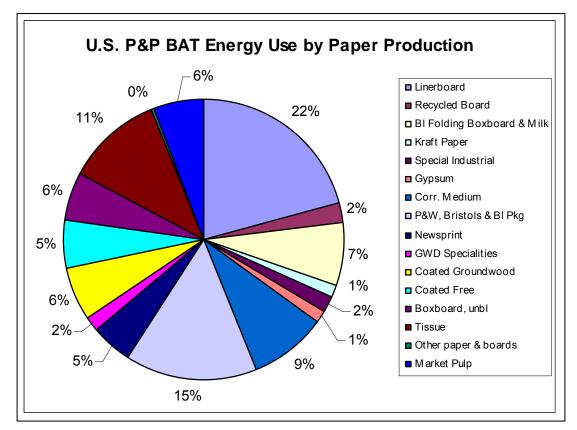


Figure 6.4

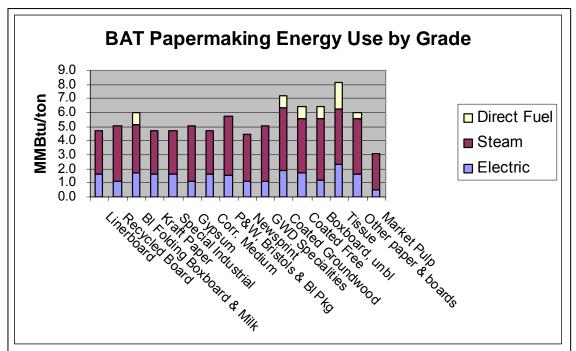


Figure 6.5

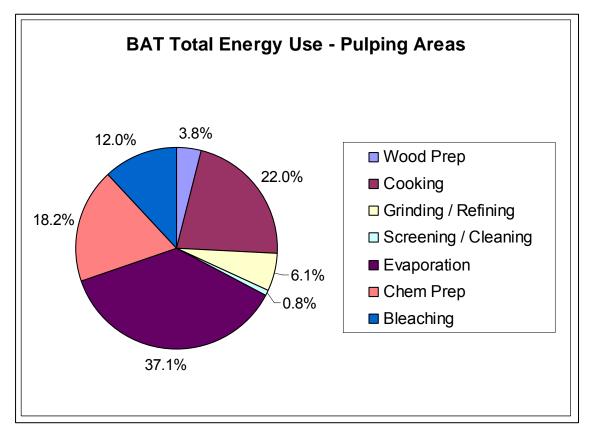
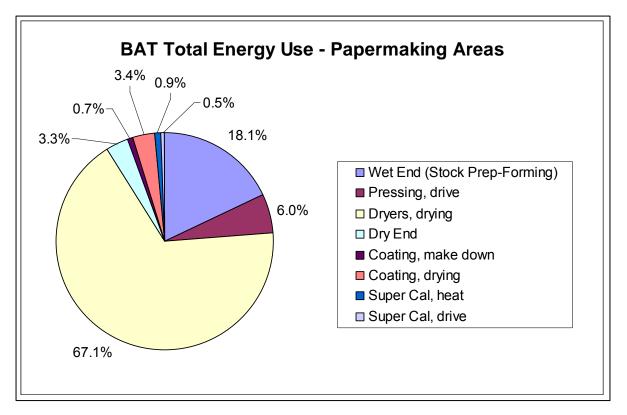
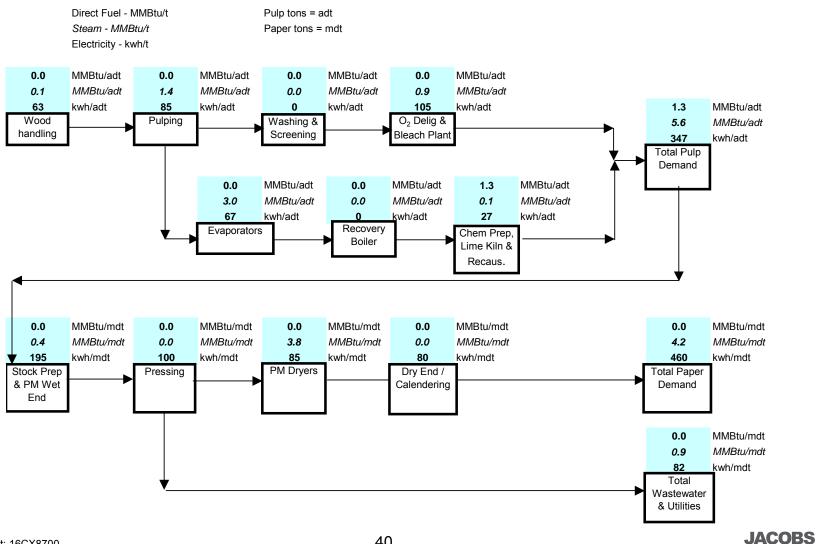




Figure 6.6

Energy consumption in the BAT Hardwood Kraft mill with Printing and Writing, BAT Unbleached Kraft with Linerboard and TMP with Newsprint are shown graphically in Figures 6.7, 6.8 and 6.9, respectively. Figure 6.10 shows the heat balance for a typical modern batch digester system.

Figure 6.7 BAT Bleached Hardwood Kraft Pulp and Printing and Writing Paper

Project: 16CX8700

JACOBS

Direct Fuel - MMBtu/t Pulp tons = adt Steam - MMBtu/t Paper tons = mdt Electricity - kwh/t MMBtu/adt 0.0 MMBtu/adt MMBtu/adt MMBtu/adt 0.0 0.0 0.0 MMBtu/adt MMBtu/adt 0.0 MMBtu/adt MMBtu/adt 0.1 1.4 0.0 85 63 kwh/adt kwh/adt 18 kwh/adt 0 kwh/adt 1.5 MMBtu/adt Wood Pulping Washing & O₂ Delig & 4.7 MMBtu/adt handling Screening Bleach Plant kwh/adt 269 Total Pulp Demand 0.0 MMBtu/adt 0.0 MMBtu/adt 1.5 MMBtu/adt 3.0 MMBtu/adt 0.0 MMBtu/adt 0.1 MMBtu/adt 67 kwh/adt n kwh/adt 27 kwh/adt Recovery Evaporators Chem Prep, Boiler Lime Kiln & Recaus. 0.0 MMBtu/mdt 0.0 MMBtu/mdt 0.0 MMBtu/mdt 0.0 MMBtu/mdt 0.0 MMBtu/mdt 0.4 MMBtu/mdt 0.0 MMBtu/mdt 2.7 MMBtu/mdt 0.0 MMBtu/mdt 3.1 MMBtu/mdt 75 172 kwh/mdt 120 kwh/mdt 105 kwh/mdt kwh/mdt 472 kwh/mdt PM Dryers Dry End / Stock Prep Pressing Total Paper & PM Wet Calendering Demand End 0.0 MMBtu/mdt 0.9 MMBtu/mdt 82 kwh/mdt Total Wastewater & Utilities

Figure 6.8 BAT Unbleached Kraft Pulp and Linerboard

Project: 16CX8700

P&P Industry Energy Bandwidth Study

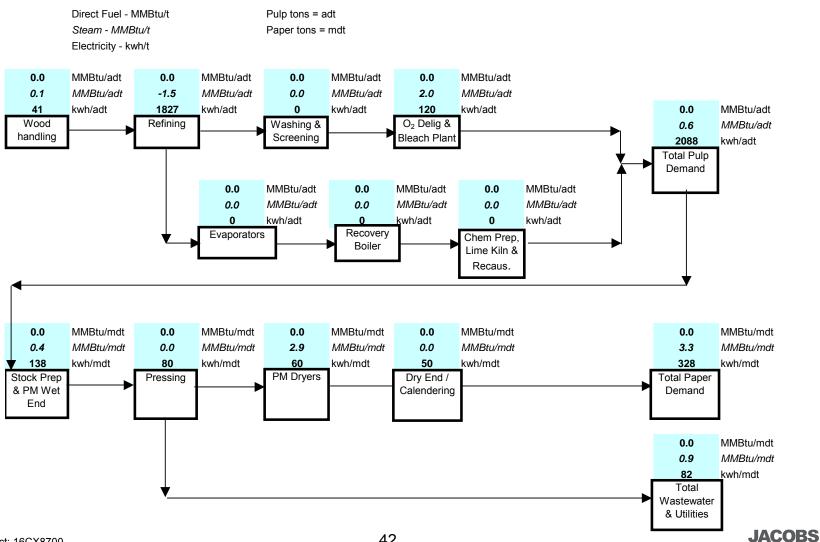
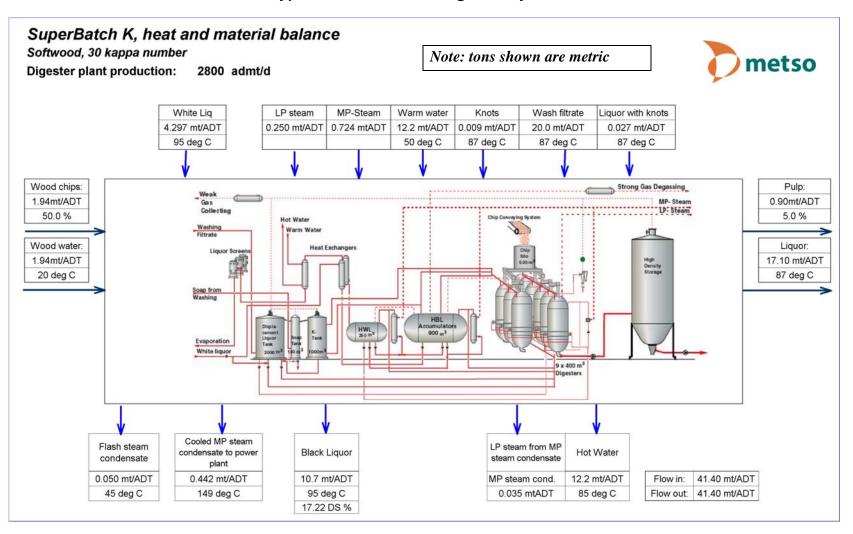



Figure 6.9 **BAT TMP and Newsprint**

Figure 6.10 Typical Modern Batch Digester System²¹

7. DESCRIPTION OF A MODERN MILL

The kraft process accounts for almost 57% of the pulp manufacturing capacity and 76% of the pulping energy consumption in the U.S. As shown in Table 3.6 and Figure 4.2 the breakdown for kraft pulp is:

Table 7.1 Kraft Pulping			
Туре	Pulp Production (% of Total)	Pulping Energy Use (% of Total)	
Bleached Hardwood	17.8%	26%	
Bleached Softwood	16.0%	24%	
Unbleached, mostly softwood	23.0%	28%	
Total	56.8%	78%	

The energy use shown above does not take into consideration the energy recovered by burning the black liquor in the recovery boiler.

The last greenfield kraft mills built in the U.S. were constructed in the early 1980's. Both were built in association with new printing and writing paper machines. The processes have improved since then; as such, the process for a modern mill is defined and discussed in more detail²² below.

Area	Equipment	Energy
Wood room	Area where wood is processed for cooking. Wood is received as either chips and/or logs. Chips are prepared off site, generally at a sawmill, and although they generally receive preliminary screening at the source, they typically are re-screened at the mill to remove oversized chips and saw dust. Today most mills receive and process long logs (e.g. logs that are about 60' in length) rather than as short wood (generally about 8' in length). This improves yield by eliminating the need for slashers / cutting log to shorter lengths. Flumes have been eliminated.	Electrical Demand ²³ ; Debarking: 10 kWh/adt (9.1 kWh/adst) Chipping: 15 kWh/adt (13.6 kWh/adst) Conveying: 20 kWh/adt (18.1 kWh/adst)

Area	Equipment	Energy
	Debarking is done dry, which minimizes the moisture going to the hog fuel boilers. Once the 60' logs are chipped they are conveyed to a storage pile. Conveyors use about 1/3 less energy than pneumatic systems and do less damage to the chips. Chips are screened to eliminate oversized and saw dust. From storage chips are conveyed to the digesters.	
Digesting	Digesting is the area of the mill where chips are "cooked" to convert the chips into fibers. Digesting is one of the major steam consumers in the pulp mill. Modern displacement batch digesters and/or continuous digesters use about ½ of the steam required in conventional batch digesters. The newer systems also produce a more uniform pulp quality, which in turn allows	Steam ²⁴ - Conventional Batch: 3.5 – 4 GJ/adt (3.0-3.4 MMBtu/adst) Steam - Displacement Batch & Continuous: 1.7-2.5 GJ/adt (1.5-2.1 MMBtu/adst)
Screening and Washing	yields to be increased. Today knots and shives are removed in multi stage pressure screens that utilize slots, rather than the older open screens that utilized holes. Modern screens run at higher consistency, thus reducing energy consumption. Washing has evolved from the older design drum washers to more efficient drum washers, displacement washers, pressure washers and belt washers. All have improved washing efficiency and minimize the need for wash/shower water.	
	Minimizing shower water is critical since the evaporators are the largest consumers of steam in the pulp mill. Today the clean condensate from the evaporators is used for showers. Mills balance salt cake loss vs. dilution factor to optimize energy and chemical costs.	

Area	Equipment	Energy
Oxygen Delignification	Oxygen delignification consists of pre- washing (brown stock washing), oxygen mixing, one or two stages reactors, and post- washing. Minimizing cooking liquor carry over is critical to maintaining pulp strength. Generally the reactors are operated at about 85-100°C and utilize medium consistency (12%). (Note: originally systems operated at high consistency (20%+) but have shifted to	Electricity: 75 kWh/adt (68 kWh/adst) Steam: 0.6 GJ/adt (0.5 MMBtu/adst)
	medium consistency to improve pulp quality)	
	Almost all modern mills utilize O_2 delignification. A worldwide survey conducted in 1997 showed the average delignification for hardwood was 40% and 47% for softwood ²⁵ .	
Bleaching	Today most modern bleach pulp mills utilize oxygen delignification prior to bleaching. Softwood mills generally utilize a four stage (excluding O_2 Delignification) ODEopDD ² sequence while hardwood mills utilize a three stage ODEopD sequence. Without O_2 delignification the softwood bleach sequence would be a five stage DEopDED.	Electrical Demand/stage: 20-30 kW/adt (18.1-27.2 kWh/adst) Electrical Demand for ODEopDED: 257 kWh/adt (233 kWh/adst)
	Elemental chlorine has been eliminated from the bleaching process due to environmental concerns. On an equivalent chlorine (Cl_2) basis, production of sodium chlorate for the generation of chlorine dioxide (ClO_2) , production of ClO_2 requires about 17% more electricity that Cl_2 .	
	E stage filtrate is used to pre-heat the CIO_2 solution to reduce energy use. D stage filtrate flow is counter current to reduce water usage. Use of wash presses allows efficient washing with minimal shower water use. Bleach effluents as low as 5 m ³ /adt (1321 gal/ton) have been achieved ²⁶ .	
	On an overall basis, utilizing O ₂ delignification	

² The following describes the symbols used to define a bleach sequence: $O - O_2$ delignification; D – chlorine dioxide (ClO₂); E – caustic (NaOH) extraction; small o and p represent oxygen and peroxide reinforcements.

Area	Equipment	Energy
	reduces the electrical consumption of the bleach plant by 99 kWh/adt or about 28% ²⁷ .	
Lime Kilns	Lime kilns convert calcium carbonate (lime mud) produced during recausticizing to calcium oxide (lime). They consume approximately 5% of the total fuel used by the industry, including fuel used in the powerhouse. The kiln is a long thermal reactor. Reducing the moisture content of the lime mud is critical to reducing energy consumption. Modern filters have discharge solids of about 80-85% vs. the older units with 65-70% solids. For each 1% increase in solids feeding the kiln, roughly 44 MJ/t (0.4 MMBtu/adst) of lime is saved in evaporation costs. ²⁸	Direct Fuel: 6-7 GJ/t lime (5.2 - 6.0 MMBtu/st lime) (1.4 - 1.6 MMBtu/adst pulp ³ , ²⁹)
	Modern mills have flash dryers following the filters. Today's kilns have electrostatic precipitators in lieu of scrubbers. Although today's kilns utilize significantly less energy per ton of lime (6-7GJ/t) (5.2-6.0 MMBtu/st) than kilns of a few years ago (~11-13 GJ/t lime) (9.5-11.2 MMBtu/st) they still utilize about twice the theoretical energy (3.2 GJ/t) (2.48 MMBtu/st).	
	Lime kilns are also being used to destruct the odorous non-condensable gases (NCG) that are generated during the pulping process. These gases generally have a good fuel value and buring the NCG can reduce the amount of purchased energy used in the kiln.	
Evaporators	Black liquor evaporators typically use the most steam in a kraft mill. Evaporators raise the weak liquor solids generated during washing (~14%) to that required for firing in a recovery boiler. Historically long tube evaporators raised solids to about 50% then the final increase to about 65% was accomplished in the cascade evaporator that utilized the recovery boiler flue gas. Due to air emissions, the cascade evaporator is no	7 Effect: Steam ³⁰ : 390 kJ/kg water (168 Btu/lb) Electricity ³¹ : 20-30 kWh/adt 18.1-27.2 kWh/adst)

³ Assuming 480 lbs of active CaO used per ton pulp in the causticizer

Area	Equipment	Energy
	longer an option for a modern mill. Today, a concentrator that utilizes steam to raise solids to as high as 80% has replaced the cascade.	
	Use of multiple evaporative stages (effects) improves the steam utilization efficiency, or steam economy, and reduces total steam demand. A four effect system typically utilizes 670 kJ/kg (288 Btu/lb) of water evaporated and has a steam economy of 3.1 while a 7 effect system utilizes 390 kJ/kg (168 Btu/lb) and has an economy of 5.4.	7 Effect Evap.: 14 to 65% solids; Concentrator: 65 to 80% solids
	Vapor re-compression evaporative units are also installed that utilize low-pressure steam, typically "waste" steam, and raise the liquor solids prior to the main evaporators.	
Recovery Boilers	A recovery boiler separates the organic from the inorganic solids in the black liquor. The inorganic is removed from the boiler as smelt, dissolved in water (forming green liquor) and after recausticizing is reused as pulping liquor (white liquor). Organics are burned to generate steam. Recovery boiler can generate 60-80% of the pulp mill's steam demand ³² . The higher the percent solids fired the greater the amount of steam generated (rule of thumb: 5% increase in solids = 2% increase in steam generation). Keeping a boiler clean improves generation efficiency.	
	The conventional or Tomlinson boiler is used at all kraft mills. Black liquor gasification has been widely discussed as a process to replace the Tomlinson, but today they have seen limited commercial installation. Pressurized gasifiers have the potential to be safer (no smelt) than a Tomlinson and have overall higher energy efficiency.	
	There are three atmospheric gasifiers installed in North America. Two are installed at mills that utilize a carbonate cook to produce pulp for corrugating medium and one is installed at a kraft mill.	
	Steam is used in soot blowers to keep the	

Area	Equipment	Energy
	recovery boiler's tubes and gas passages clean. Fans and feed water pulps are the major consumers of electricity. Modern boilers utilize three or four air systems to insure good mixing within the boiler to minimize liquor carry over (reduces plugging) and minimize emissions of TRS.	
	Historically recovery boilers had steam drum operating pressure that ranged from 600 to 900 psi. Today recovery boilers operate at pressures that range from 1200 to 1500 psi. The higher operating pressure of the Tomlinson high-efficiency recovery boiler (HERB) improves the efficiency of the turbine-generators that are downstream of the recovery boiler. In a case study, the electrical generating efficiency increased to 16.3% ³³ vs. 11.9% for a conventional Tomlinson (at 1250 psi).	
Auxiliary Equipment	Historically, kraft mills consumed 70-100 m^3/adt^{34} (18,500-26,420 gal/adt) of water. Today a typical mill used 50 – 70 m^3/adt (13,200-18,500 gal/adt). Mills designed for low water consumption can achieve 10 m^3/adt (2,642 gal/adt).	
	In a kraft mill, pumps consume approximately 40-45% of the electrical demand. Demand for fans is another 10-15%, mostly in the kiln, boilers and pulp dryer ³⁵ . Variable speed drives are being used on units with large capacity variations vs. control valves / dampers.	
	Steam stripping of foul condensates is common to remove methanol for the pulp mill effluent. Although the stripper requires as little as 55 MJ/adt (0.05 MMBtu/adst) of steam with an efficiently designed integrated stripper ³⁶ , burning the methanol off-gas can result in a net excess energy of 130 MJ/adt (0.11 MMBtu/adst).	Aerobic: 30-70 kWh/adt (27-64 kWh/adst)
	Wastewater treatment systems consume considerable electrical energy ³⁷ , ³⁸ . It has been reported that an aerobic-aerobic system	Aerobic-aerobic: 35-50% reduction

Area	Equipment	Energy
	can reduce energy by 35-50% from a conventional aerobic system ³⁹ , ⁴⁰ . Captured methane can be used as fuel.	

Modern Papermaking Technology

During the last decade papermaking has undergoing significant changes that affects energy use. These changes will be discussed below.

Area	Equipment	Energy
Stock Preparation	The introduction of slotted screens has reduced sheet breaks and improved quality thus has energy consumption per ton of paper shipped. Additionally, the use of medium consistency fine slotted screening between the blend chest and machine chest, in place of the traditional low consistency hole screen in the thin stock loop, has reduced horsepower required and has in some cases allowed the elimination of centrifugal cleaners.	
	Hybrid conical refiners combine the maintenance efficiencies of disk refiners with the refining efficiency of a Jordan. The impact is reduced energy consumption, about 40% to 70% ⁴¹ , to develop fibers to the desired quality.	Hybrid refiners: Energy reduction 40- 70% Compact Wet End: Energy reduction about 25% ⁴³ under
	Compact wet ends / stock systems, such as systems by POM ⁴² , significantly reduce the energy requirements by reducing pumping and agitation requirements. Systems also reduce the grade change time and as such reduce the amount of stock loss and off standard, again reducing the overall energy required per ton of product shipped.	certain conditions
	Variable speed pumps are used in lieu of constant speed pumps and control valves, which reduces energy consumption. Variable spend pumps are generally used for applications greater than 50 Hp.	

Area	Equipment	Energy
Forming	Twin wire or gap formers are the technology for all high-speed paper machines. This technology applies to printing and writing, tissue, newsprint and board grades. Multi layered sheet forming allows the optimization of fiber resources, allowing the minimization of basis weight.	Flat Fourdrinier ⁴⁵ : 10- 12 kWh/t (9-11 kWh/adst) Twin Wire: 5 kWh/t less (4.5 kWh/adst)
	All twin wire formers require mist removal systems that utilize fans, an energy change from traditional flat fourdrinier machines.	
	Historically, adjusting the slice screws across the face of the headbox was used to control the basis weight profile. Modern machines use a system to vary the consistency across the width of the headbox to control basis weight. This system significantly improves the basis weight profile and allows basis weight to be optimized for the desired physical paper properties, thus reducing the overall energy efficiency.	
	Double doctors installed on the couch generally improve solids by 2-3% ⁴⁴ , which equates to a 1% improvement in solids exiting the press section.	
	Compact wet ends including use of inline de- aeration allows for the reduction of water volume and can reduce overall water use.	
Pressing	Shoe presses are standard on all grades. Historically the shoe press was introduced in the early 80's and was applied to board grades. However, today, they are the press of choice for newsprint and printing and writing grades, and are starting to be used for tissue grades. The high loading and long press nip improve water removal vs. traditional suction / venta-nip presses and even long nip presses popular on board grades in the 70's. Shoe presses generally achieve exiting sheet consistencies to range between 45-50%, significantly dryer than a traditional Tri-nip press section with consistencies of about 40%. Rule of thumb	

Area	Equipment	Energy
	for every 1% improvement in press consistency equals 4% improvement is drying efficiency.	
	Modern press sections also utilize steam boxes to improve water removal as well as improve moisture profiling, again improving the overall energy efficiency of the paper machine.	
	Trends towards use of higher ash content in the furnish/sheet have also been shown to result in higher exiting press solids.	
Drying	Drying efficiencies have been improved through changes in the design of dryer felts, which has eliminated the need for steam heated felt dryers. Today's felts also allow the water evaporated from the paper to be removed more efficiently.	
	Dryer felt tensions have also been increased from historical tensions of about 7 pli to 14 pli. General rule of thumb, every 1 pli increase is equal to 0.7% improvement in drying efficiency ⁴⁶ , ⁴⁷ .	
	Modern, high-speed paper machines generally use single tier dryer sections while slower machines use historical two-tier arrangements.	
	Close clearance stationary siphons in dryers vs. rotary siphons reduce the amount of condensate levels in the dryer can improve the thermal efficiency and reduce the required differential pressure. Stationary siphons generally have about 5-10% improved energy efficiency.	
	All modern dryer sections have closed, high efficiency hoods.	
	Assuming that an energy demand of 2.83 MJ/kg (1,217 Btu/lb) of evaporated water (MJ/kg _w) can be reached, the energy needed for drying from 50% to 90% is 2.64 GJ/ADmt (2.27 MMBtu/adst) of paper produced. ⁴⁸	

Area	Equipment	Energy
Tissue Drying	Good performance for tissue machine drying steam and gas usage is 6.0 MMBtu/ton tissue. Low energy users utilize 4-5 MMBtu/ton ⁴⁹ tissue.	
	TAD (Through Air Dried) machines typically use significantly more energy per kg of product than conventional Yankee machines. This is because more water is dried and less is mechanically pressed from the sheet.	
Surface Treatment	For grades that require surface treatment, such as starch sizing for printing and writing, the use of metering blade size presses vs. the traditional puddle presses allows for higher starch solids to be applied. Traditionally solids were in the 1-2% range. Metering blade units allow application of 8% solids, greatly reducing water that must be evaporated in the after drying section.	
Calendering	The introduction of on-line "super calenders" has eliminated the need for off machine super calenders for many grades. These units are more efficient and eliminate the need for rereelers.	
Drives	Until the mid 60's steam turbines and line shafts drove almost all paper machines. During the 70's sectional electric DC drives were the power of choice. Since the 80's AC drives have been the system of choice. An advantage of AC drives is the elimination of auxiliary fan driven motor cooling system.	
	Elimination of the small, inefficient low- pressure turbines has also allowed steam to be used in the powerhouse in more efficient high-pressure turbine-generators.	
Auxiliary Systems	Vacuum pumps use a significant quantity (10-15%) of a paper machine's electrical requirements. A considerable amount of the energy consumed by a liquid ring vacuum pump is transferred to the seal water. For a closed mill, this means the water must be cooled before reuse. Use of multi-stage	

Area	Equipment	Energy
	centrifugal blowers in place of liquid ring vacuum pumps can reduce energy use and eliminate the need for seal water.	
	Water consumption for modern machines is about 530-5,300 gallons/ton vs. historical water consumption in excess of 10,000 gallons/ton. Mills generally heat incoming fresh water, using low-pressure steam, to temperatures about 140°F for process applications: showers, etc. It is estimated that every 1000 gallons of water used is equivalent to 1700 Btus, combining electric and steam energy requirements.	
	Modern machines use heat recovery systems to minimize energy use. An example of the potential is shown in Figure 7.1. Systems such as circulating glycol systems can move "waste heat" from one area of the mill to another area for reuse.	
HD Stock Storage	Conventional high-density (HD) storage towers (tanks) consume significantly more horsepower than San-Ei towers. A traditional 500 ton storage tower typically utilizes a 200 Hp agitator vs. 10 Hp for a San-Ei Regulator tower ⁵⁰ .	

Figure 7.1 shows Metso's Sankey diagram for a modern paper machine dryer hood. It shows the potential for heat recovery.

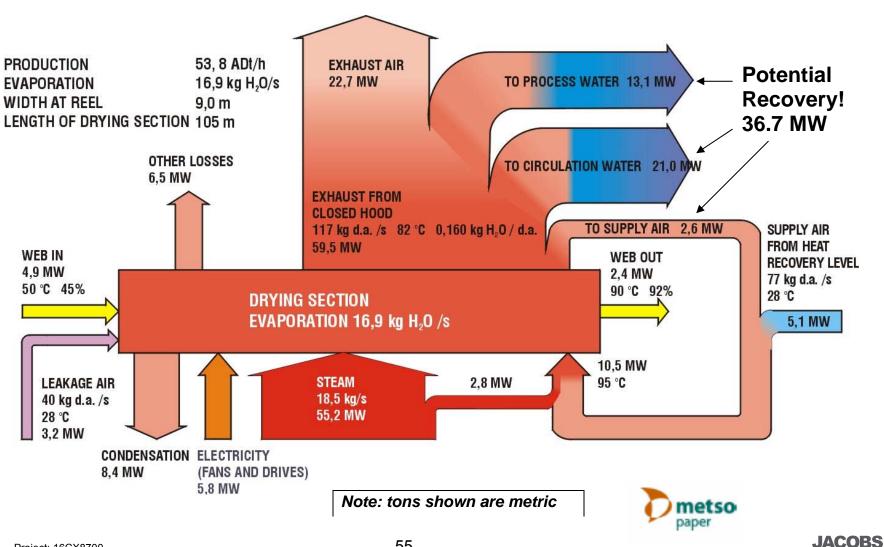
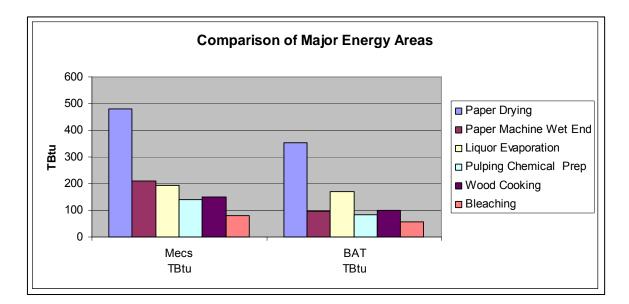


Figure 7.1 Metso's Energy Sankey Diagram for a Conventional (SymRun) Drying Section⁵¹


8. PRACTICAL MINIMUM ENERGY CONSUMPTION

Areas of Opportunity

The six major energy users within the U.S. pulp and paper industry are shown in the Table 8.1 and Figure 8.1.

Table 8.1											
Major Energy Consumption Areas											
AreaMECS Energy Consumption TBtuMECS Percent of Total %BAT Energy Consumption of Total %											
Paper Drying	481	32.4	354	34.2							
Paper Machine Wet End	211	14.2	95	9.2							
Liquor Evaporation	195	13.1	171	16.5							
Chem. Prep including Lime Kiln	140	9.4	84	8.1							
Pulp Digesting	149	10.0	101	9.8							
Bleaching	80	5.4	55	5.3							
Other Processes	228	15.4	175	16.9							
Process Total	1,484	100.0	1,035	100.0							

Figure 8.1

Energy Consumption – Practical Minimum Requirements

Paper Drying

Modern press sections, using a shoe press, have exiting moistures that typically range from 45 to 50%. Based on the analyses reported earlier in this report and summarized in the Appendix, Tab H, the production weighted average drying requirements were estimated at 4.2 MMBtu/fst and BAT at 3.0 MMBtu/fst.

Calculation of Practical Minimum energy consumption in drying was based on press section dewatering to 65% solids⁵² followed by drying of the remaining water at a steam usage of 1.3 lbs steam per lb water evaporated. Result is an estimated steam usage of 1.3 MMBtu/fst. The 65% exiting press solids is based on previous laboratory work indicating achievement of exiting solids around that level under certain optimized pressing conditions⁵³.

Water removal by pressing is ultimately limited to about 70%, due to the amount of water contained within the fiber cell itself. Based on exiting solids of 70%, the theoretical dryer energy required was calculated to be 0.88 MMBtu/fst⁵⁴. (This calculation is based on energy required to heat the water and fiber, to evaporate the water, and to desorb the water; calculations are included in the APPENDIX. If the solids were raised to 70%, then the potential energy required at various exiting press solids. The summary chart showing average, BAT, Practical Minimum, and Theoretical Minimum drying energy required is shown in the Summary section below.

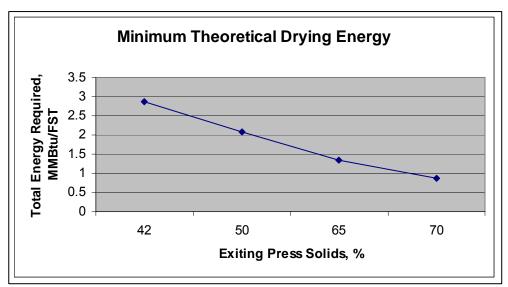


Figure 8.2

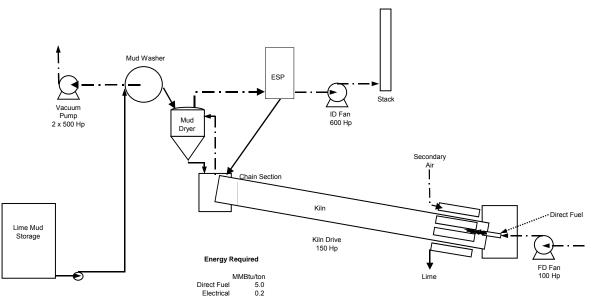


Figure 8.3 Example of a Modern Lime Kiln System

<u>Lime Kiln</u>

Theoretical energy, based on endothermic reaction, requires 2.48 MMBtu/t⁵⁵ lime while a modern kiln, BAT based on lime kiln manufactures design data, requires about 5.0 MMBtu/st lime (approximately 1.34 MMBtu/adst of pulp assuming 480 lbs of active CaO used per ton pulp in the causticizer⁵⁶). Jaakko Pöyry reported⁵⁷ that some mills are using about 1.15 GJ/Adt (1.0 MMBtu/adst) fuel in their kilns. Mills producing tropical hardwoods, with oxygen delignification, higher yields and lower alkali charges can achieve low kiln fuel use on a pulp ton basis. Based on the theoretical energy requirements, the opportunity to reduce direct fuel from design BAT is about 35%. Above and beyond the direct fuel in a kiln there is a requirement for electricity for forced draft (FD) and induced draft (ID) fans, electrostatic precipitators (ESP), vacuum pumps and the kiln drive plus a host of smaller requirements for pumps and conveyors. Electrical energy adds an estimated 0.04 MMBtu/adst. Current commercial designs generally use either an external mud dryer or an efficient chain section to utilize the waste (flue gas) heat to dry the mud Generally both systems are not used due to dusting and entering the kiln. installation costs. Figure 8.3 illustrates a typical modern kiln system. Comparison of the two approaches is shown Table 8.2.

Energy consumption saving in new kilns vs. an older kiln with modern internals is about 8% to 17%. Energy savings for new kiln design vs. conventional kilns is about 25%. Going with auto causticizing eliminates the kiln and auxiliary equipment, including the direct fuel and electrical load. Partial auto causticizing is being done at several mills in the U.S. and Europe.

Figure 8.9 compares the energy requirements using different technologies. Practical Minimum Technology is the energy consumption at 35% of today's new kilns (design BAT), however the potential saving using the Jaakko Pöyry numbers is only 14%.

Table 8.2 Lime Kiln Design Comparison ⁵⁸										
System Type	Production Factor Ft ³ /st/day	Relative Heat Rate [*] MMBtu/st lime (MMBtu/adst pulp)	Relative Power Consumed [*] KWh/st lime (MMBtu/adst pulp)							
Conventional Long Kiln	100	7.0 (1.87)	67 (0.061)							
Long Kiln retrofitted with modern internals	73-78	6.0 (1.60)	63 (0.056)							
New Long Kiln with modern internals, product cooler and ESP	70-75	5.0 (1.34)	45 (0.040)							
Kiln with external dryer system and with modern internals, product cooler and ESP	55-60	5.5 (1.47)	50 (0.045)							
* Mud feed at 75% solids										

Evaporators

Liquor evaporation accounts for almost 12% of the energy consumed during pulp and paper manufacture. Based on the analyses reported earlier in this report, average black liquor evaporation steam requirement was estimated at 3.5 MMBtu/adst and BAT at 3.0 (Figures 4.6 and 6.7, respectively).

Calculation of Practical Minimum energy consumption in evaporation was based on use of membrane technology to dewater from 22 to 30% black liquor solids (recent work having demonstrated use of ultrafiltration to concentrate black liquor to over 30% solids), followed by multiple effect evaporation to 80% solids⁵⁹. Result is an estimated steam usage of 2.2 MMBtu/bdst (Table 8.5). Assumptions for the calculation include:

- Sensible heat increase taken into account
- Latent heat of vaporization is obtained by dividing by number of effects to take into account use of vapor to heat subsequent effects.
- Heat Transferred = Heat usage (heat sink) = Sensible Heat to Bring Liquor to Boiling Temp + Latent Heat of Vapor Produced (Water Evaporated)/(number of effects)

Electrical power requirement in the membrane separation step was estimated at 16 kWh/adt⁶⁰, which compares favorable with the overall average case power requirement of 40 kWh/adt (Figure 4.6). The summary chart, Figure 8.8, shows average, BAT, Practical Minimum and Theoretical Minimum cases which are described in Tables 8.3 thru 8.6.

Table 8.3 Average Evaporation Energy - Estimate										
Average	e Evaporat	ion Energy	- Estimate							
Weak black liquor (WBL) solids, WBLS	14	%	13-15% is "average"; 17% is Bat with drum washers considering soda loss / energy balance							
Solids out	65	%	70% "good"; range 62-80%, BAT is 80%							
Number of effects	5.5		Industry average is somewhere between 5-6 effects. Also, assume that evaporation in each effect is the same. Note we are not taking steam economy into account directly (steam economy = $(0.8)N$ where N=5.5. This would give Steam Economy =4.4, which is close to design; actual can be only 70% of that.)							
Amount BL solids/unit amount pulp, Wli	3,200	lb BLS/BDmt	Reference ⁶¹ , ⁶²							
Specific Heat of WBL, Cpl	0.8	Btu/lb °F	Reference ⁶³							
Product liquor from first effect, Tb	250	°F								
Liquor feed temp, Ti	200	°F								
Average latent heat of steam for entire evaporator set, λb	980	Btu/lb								
Sensible heat to bring liquor to boiling temperature.	914,286	Btu/BDmt	Mass of BL entering evaporator X BL specific heat X (liquor boiling T entering vapor head - liquor inlet T)							
Latent heat of vapor produced (water evaporated)/(no. effects)	3,195,524	Btu/BDmt	Vapor produced (water evaporated) X latent heat of steam at boiling conditions							
Total energy required	4,109,810	Btu/BDmt								
	3.4	MMBtu/adst								

Practical Minimu		ble 8.4 ation Energy	(with Membrane)
Weak black liquor (WBL) solids, WBLS	30	%	13-15% is "average"; 17% is Bat with drum washers considering soda loss / energy balance
Solids out	80	%	70% "good"; range 62-80%, BAT is 80%
Number of effects	3.2		Also, assume that evaporation in each effect is the same. Note we are not taking steam economy into account directly (steam economy = (0.8)N where N=7. This would give Steam Economy =5.6, which is close to design; actual can be only 70% of that.)
Amount BL solids/unit amount pulp, Wli	3,200	lb BLS/BDmt	Reference ^{64 65}
Specific Heat of WBL, Cpl	0.8	Btu/lb °F	Reference ⁶⁶
Product liquor from first effect, Tb	275	°F	
Liquor feed temp, Ti	200	°F	
Average latent heat of steam for entire evaporator set, λb	980	Btu/lb	
Sensible heat to bring liquor to boiling temperature	640,000	Btu/BDmt	Mass of BL entering evaporator X BL specific heat X (liquor boiling T entering vapor head - liquor inlet T)
Latent heat of vapor produced (water evaporated)/(no. effects)	2,041,667	Btu/BDmt	Vapor produced (water evaporated) X latent heat of steam at boiling conditions
Total energy required	2,681,667	Btu/BDmt	
	2.2	MMBtu/adst	

Theoretical Minimu		ble 8.5 ation Energy	(without Membrane)
Weak black liquor (WBL) solids, WBLS	17	%	13-15% is "average"; 17% is Bat with drum washers considering soda loss / energy balance; belt washer could be higher than 17%
Solids out	80	%	70% "good"; range 62-80%, BAT is 80%
Number of effects	7		Also, assume that evaporation in each effect is the same. Note we are not taking steam economy into account directly (steam economy = (0.8)N where N=7. This would give Steam Economy =5.6, which is close to design; actual can be only 70% of that.)
Amount BL solids/unit amount pulp, Wli	3,200	lb BLS/BDmt	Reference ^{67 68}
Specific Heat of WBL, Cpl	0.8	Btu/lb °F	Reference ⁶⁹
Product liquor from first effect, Tb	275	°F	
Liquor feed temp, Ti	200	°F	
Average latent heat of steam for entire evaporator set, λb	980	Btu/lb	
Sensible heat to bring liquor to boiling temperature	1,129,412	Btu/BDmt	Mass of BL entering evaporator X BL specific heat X (liquor boiling T entering vapor head - liquor inlet T)
Latent heat of vapor produced (water evaporated)/(no. effects)	2,075,294	Btu/BDmt	Vapor produced (water evaporated) X latent heat of steam at boiling conditions
Total energy required	3,204,706	Btu/BDmt	
	2.6	MMBtu/adst	

Theoretical Minim		ble 8.6 pration Energ	gy (with Membrane)
Weak black liquor (WBL) solids, WBLS	30	%	13-15% is "average"; 17% is Bat with drum washers considering soda loss / energy balance
Solids out	80	%	70% "good"; range 62-80%, BAT is 80%
Number of effects	4		Also, assume that evaporation in each effect is the same. Note we are not taking steam economy into account directly (steam economy = (0.8)N where N=7. This would give Steam Economy =5.6, which is close to design; actual can be only 70% of that.)
Amount BL solids/unit amount pulp, Wli	3,200	lb BLS/BDmt	Reference ⁷⁰⁷¹
Specific Heat of WBL, Cpl	0.8	Btu/lb °F	Reference ⁷²
Product liquor from first effect, Tb	275	°F	
Liquor feed temp, Ti	200	°F	
Average latent heat of steam for entire evaporator set, λb	980	Btu/lb	
Sensible heat to bring liquor to boiling temperature	640,000	Btu/BDmt	Mass of BL entering evaporator X BL specific heat X (liquor boiling T entering vapor head - liquor inlet T)
Latent heat of vapor produced (water evaporated)/(no. effects)	1,633,333	Btu/BDmt	Vapor produced (water evaporated) X latent heat of steam at boiling conditions
Total energy required	2,273,333	Btu/BDmt	
	1.9	MMBtu/adst	

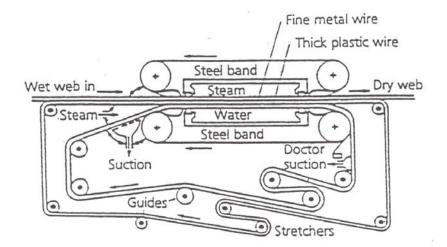
Technologies that Can Help Achieve Practical Minimum Energy Consumption

Energy savings technologies that have been evaluated in the laboratory and/or have been commercially applied in a very limitedly fashion are:

• <u>High consistency forming</u>

High consistency forming was first introduced in the late 1960s when the industry was concerned about the cost of wastewater treatment. Development activities occurred in both the United States and Finland. There

was at least one application in the US that was designed to operate over 10% but did operate at about 8%.


Currently there are a couple of machines producing milk carton that are forming the sheets with consistencies about 4%. Traditional paper machines generally form sheets between 0.5% and 1%, while tissue / towel machines operate with consistencies under 0.2%.

Potential is the reduction in water use and thus energy consumption to a small extent.

<u>CondeBelt[™] drying</u>

Metso developed the CondeBeltTM drying system in the early 1990's, but it has seen limited commercial application. (It has been operating in mills in Europe and Korea.) The system was originally designed as an alternative to a Yankee Dryer for high speed coated board machines. The system utilized two continuous rotating steel belts. One is heated and the other is cooled, creating a high delta T between them and thus a high drying rate. Figure 8.4 is a schematic⁷³ of the CondeBeltTM.

Figure 8.4 CondeBelt[™]

• Hot impulse pressing

R&D work has shown the potential to improve the consistency of a sheet exiting the press section by the use of a hot impulse press. However, work has also shown the press is capable of generating sufficient steam pressure

within the sheet while in the press nip that upon exiting the nip the steam, now not confined, tends to explode the sheet. This is a significant problem with heavy weight sheets, such as linerboard.

• Black Liquor and Hog Fuel Gasification

There have been several demonstration and commercial units built for both liquor and hog fuel gasification. All existing units in the United States have been atmospheric units. Initial work has identified significant improvement in energy efficiency if a pressurized gasifier were connected to a combined cycle gas turbine. Electrical generating efficiency of a Tomlinson HERB is 16.3% vs. 21.1% for a mill scale high-temperature gasifier⁷⁴. Black Liquor provides 20-25 GJ/admt⁷⁵ (17.2-21.5 MMBtu/adst) of energy. Figure 8.5 is a sketch of a Kvaerner (Chemrec) Type pressurized black liquor gasifier system⁷⁶. A pressurize pilot gasifier unit is located in Sweden⁷⁷.

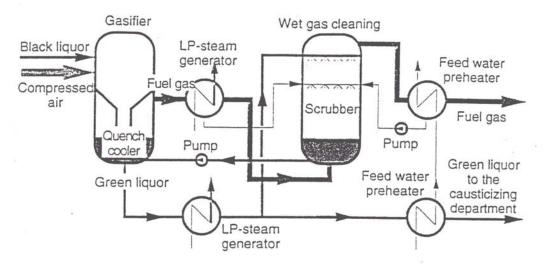


Figure 8.6⁷⁸ shows the potential production of steam and electrical (net of cogeneration plant) at a kraft mill from bark (4 MJ/admt) (3.4 Btu/lb) and black liquor (21 MJ/admt) (18.1 Btu/lb) fuels using alternative cogeneration technologies. The cogeneration technologies are the condensing extraction steam turbine (CEST) and the black liquor/bark integrated gasification/gas turbine combined cycle (liquor and bark are burned separately). For the later technology two lines are shown. The upper line assumes the use of 8 MJ/admt (6.9 Btu/lb) of forest or other biomass residues in addition to the 25 MJ/admt (21.5 Btu/lb) of fuels assumed for the lower line⁷⁹.

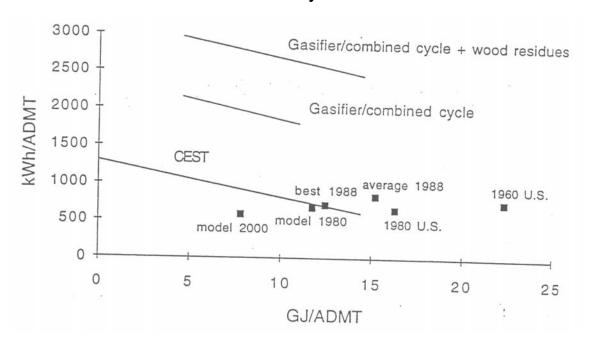


Figure 8.6 Steam and Electricity Production Potential

<u>Auto causticizing</u>

Auto causticizing is theoretically viable and has been demonstrated in the lab. Elimination of the lime kiln and all the associated causticizing equipment would save significant energy. The lime kiln in many kraft mills is the major consumer of direct (fossil) fuels. Commercialization has been hindered by the cost of the required catalysts, however there are several mills in the U.S. and Europe running partial auto causticizing. Auto causticizing can be coupled with black liquor gasification. Current research⁸⁰ indicates Titanates work at high temperature and pressure while Borates work at low temperature and pressure. The Borate systems can be used for partial conversions (booster systems to augment existing capacity) while Titanates can be used for 100% conversion, i.e. eliminate the lime kiln.

Biorefinery

Much has been discussed about biorefinery concept in recent years^{81,82}. It was a subject mentioned in President Bush's 2006 State of the Union Address. It is a component of AF&PA's Agenda 2020. Extracting hydrogen, and other chemical feed stock, from wood chips prior to pulping has the potential for a significant change in the way pulp mills utilize / produce energy. Net energy efficiency impact of a biorefinery is currently being investigated⁸³.

Summary

Figures 8.7, 8.8 and 8.9 graphically show the comparison of current energy consumption vs. BAT, Practical Minimum and Theoretical Minimum energy consumption of the paper drying, liquor evaporation and lime kiln respectively. The potential energy savings, i.e. bandwidth, between BAT and Practical Minimum are: Paper Drying – 57%, Liquor Evaporation – 27% and Lime Kiln – 35%.

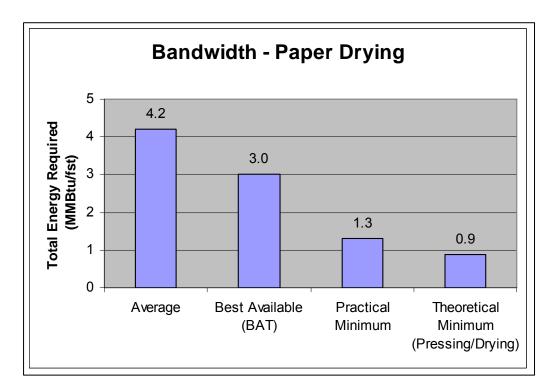


Figure 8.7

Figure 8.8

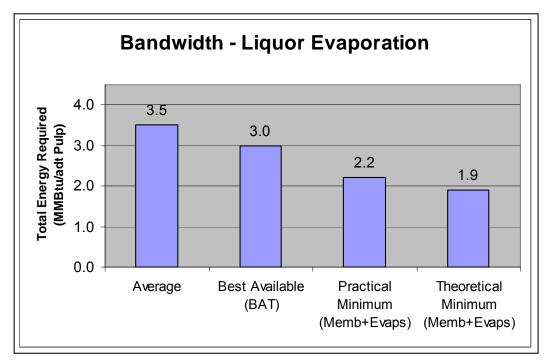
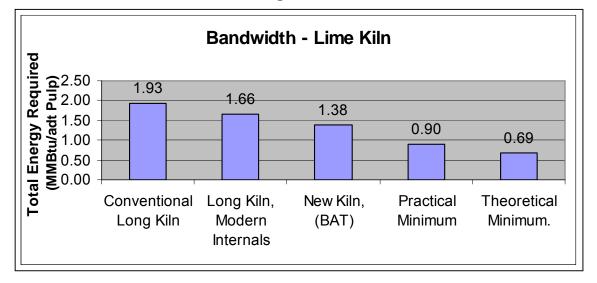



Figure 8.9

The impact on the powerhouse and purchased fuels, reduced to 273 TBtu and 208 TBtu, including electricity, by applying these three practical minimum and theoretical minimum technologies are shown in Figure 8.10 and Tables 8.7 and 8.8 respectively. Corresponding reduction in purchased energy from MECS is 75% and 81% for practical minimum and theoretical minimum. Reductions in process

demands for paper drying, evaporators and lime kilns of this order will make a pulp and paper mill much more energy self-sufficient.

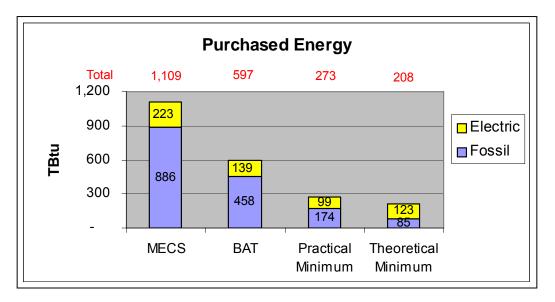


Figure 8.10

Percent of Used for Energy Electrical Estimate Soot Used for Used to Generation System & Total % of Feed Based on Fuel Utilized Available Direct Available for Boiler Net Blowing Boiler Net Generate Conversion Mechanical PM In Boilers Efficiency Energy Steam Energy Electricity Loss for Process Electricity Electricity Fuel Process Aux. Loss Steam TBtu TBtu TBtu TBtu TBtu BkWh TBtu TBtu % % % % % % % % Purchased Electricity 98 0% 98% 0% 0% 98 0% 9% 2% 96.3 96.3 28.2 98% 98 2.0% 67 100% 6.0% 54 19% 50.2 12.3 75% Coal 88% 59 9% 6% 3.6 37.8 -Residual Fuel Oil 16 100% 88% 14 0% 4.0% 13 19% 9% 6% 12.1 3.0 0.9 -9.1 78% Distillate Fuel Oil 2 70% 88% 2 0% 3.0% 2 0% 9% 6% 1.9 1.9 83% ---6% 71.3 Natural Gas 85 70% 89% 79 0% 3.0% 76 5% 9% 71.3 84% ---LPG 4 0% 88% 4 0% 0.0% 4 0% 9% 0% 3.6 -3.6 -100% -5.5% 9% 6% 465.5 Waste Pulping Liquors 820 100% 68% 557 4.0% 504 19% 114.4 33.5 351.0 57% -Wood / Bark 316 100% 70% 221 1.0% 5.0% 19% 9% 6% 191.6 47.1 13.8 144.5 61% 208 -Other By Products 39 80% 70% 29 0% 4.0% 28 0% 9% 6% 26.1 23.8 7.0 1.8 0.5 67% Other 0 100% 70% 0 0% 0 3% 9% 6% 63% 4.0% 0.3 0.3 0.1 Subtotal - Fuels 1,349 965 890 823 132.1 543.1 58.9 78.6 61% Total 1,447 1,063 988 918.9 297.3 87.1 78.6 543.1 64% 2000 MECS 2,361 1,830 1,717 1,606 393.3 115.3 131.43 1081.4 Difference, % -38.7% -41.9% -42.5% -42.8% -24.4% -24.4% -40.2% -49.8%

Table 8.7Powerhouse Energy Consumption after Applying Practical Minimum

Table 8.8Powerhouse Energy Consumption after Applying Theoretical Minimum

	Estimate Based on TM	Fuel Utilized In Boilers	Boiler Efficiency	Net Energy	Used for Soot Blowing Steam	Used for Boiler Aux.	Net Energy	Percent of Energy Used to Generate Electricity	Electrical Generation Conversion Loss	System & Mechanical Loss	Total Available for Process	Electricity	Electricity	Direct Fuel	Steam	% of Feed Available fo Process
Purchased Electricity	TBtu 123	% 0%	% 98%	TBtu 123	% 0%	% 0%	TBtu 123	% 0%	% 9%	% 2%	120.1	TBtu 120.1	BkWh 35.2	TBtu	TBtu -	% 98%
Coal	6	100%	98 % 88%	5	2.0%	6.0%	5	0 % 19%	9%	2 % 6%	4.3	120.1	0.3	-	- 3.2	98 % 0%
Residual Fuel Oil	-	100%	88%	5	0%	4.0%	-	19%	9%	6%	4.5	-	-	_	- 5.2	0%
Distillate Fuel Oil	2	70%	88%	2	0%	3.0%	2	0%	9%	6%	1.7	_	-	1.7	_	83%
Natural Gas	74	70%	89%	68	0%	3.0%	66	5%	9%	6%	61.6	-	-	61.6	-	84%
LPG	3	0%	88%	3	0%	0.0%	3	0%	9%	0%	3.1	-	-	3.1	-	100%
Waste Pulping Liquors	820	100%	68%	558	5.5%	4.0%	505	19%	9%	6%	465.8	124.5	36.5	-	341.2	57%
Wood / Bark	316	100%	70%	221	1.0%	5.0%	208	19%	9%	6%	191.8	51.3	15.0	-	140.5	61%
Other By Products	3	80%	70%	2	0%	4.0%	2	0%	9%	6%	2.0	-	-	1.5	0.5	67%
Other	0	100%	70%	0	0%	4.0%	0	3%	9%	6%	0.3	0.3	0.1	-	-	63%
Subtotal - Fuels	1,224			859			790				730	132.1	52.0	67.8	485.1	60%
Total	1,347			982			913				850.6	297.3	87.2	67.8	485.1	63%
2000 MECS	2,361			1,830			1,717				1,606	393.3	115.3	131.4	1081.4	
Difference, %	-43.0%			-46.3%			-46.8%				-47.0%	-24.4%	-24.4%	-48.4%	-55.1%	

9. ACKNOWLEDGEMENTS

The authors would like to thank the following people who help this report by reviewing the document and commenting of format and content.

Drew Ronneberg, Ph.D. Forest Products Technology Manager United States Department of Energy Energy Efficiency and Renewable Energy Industrial Technologies Program (ITP) Room 5F-065, MS EE-2F 1000 Independence Ave. SW Washington DC 20585 Phone: 202 586-0205 E-mail: <u>drew.ronneberg@ee.doe.gov</u> Study Manager

Elmer H. Fleischman, Ph.D. Idaho National Laboratory Reviewer

Jo Rogers American Institute of Chemical Engineers (AIChE) Contract Manager and Reviewer

Paul M. Tucker, P.E. Manager Energy & Chemical Recovery Solutions International Paper Company Reviewer

Ben Thorp Benjamin A. Thorp. Inc Reviewer

10. APPENDIX

Appendix information is included in Tabs A thru I

- Tab A Production Figures
- Tab B Energy Consumption Reference Data
- Tab C MECS Energy Distribution
- Tab D BAT Energy Distribution
- Tab E Practical Minimum Energy Distribution
- Tab F Theoretical Minimum Energy Distribution
- Tab G Drying Calculations
- Tab H Energy Consumption Summaries
- Tab I Abbreviations

AF&PA AF&PA AF&PA AF&PA

Tab A – Production

Excel Workbook: Production

							2002	2002	2002	2004
							Statistics	Statistics	Statistics	Statistics
							Production:		Production:	
			Fisher 2005	Fisher Logic			2000	2000r*	2001	2002
			Annual Tons	Annual Tons	difference			(1000 tons)		
Chemical Pulp	Sulfite	SW	581,446	578,104	3,342	all	1,169	1,169	774	532
onennearr aip	ounte	HW	444,034	292,152	151,882	un	1,100	1,100		002
		total sulfite	1,025,480	870,256	131,002					
	Kraft, Unbleached	SW	18,211,369	17,506,841	704 500	all & soda	21,200	21,100	19,570	19,917
	Rian, Onbicached	HW	2,162,655	2,055,162	107,493	all & Soua	21,200	21,100	13,570	15,517
		total kraft, unbl	20,374,024	19,562,003	107,493					
	Kraft, Bleached	SW	15,257,108	12,562,114	2,694,994		14,196	14,196	13,758	13,848
	Rian, Dicached	HW	16,600,123	14,237,997	2,362,126		16,565	16,565	15,604	15,404
		total kraft, bl	31,857,231	26,800,111	2,302,120		30,761	30,761	29,362	29,251
	NSSC. Unbleached	SW	388,630	399,969	(11,339)	all	3,955	3,955	3,527	3,547
	NSSC. Unbleached	HW	2,369,991	2,224,149		aii	3,855	5,955	5,527	3,347
	Carbonate, Unbleached	SW	2,309,991	2,224,145	145,842					
	Carbonate, Onbieached	HW	1,236,700	1,095,686	-					
		total, Semi Chem		3,719,804	141,014					
	Defibrated	SW		3,719,004			nic 292	nic 292	nic 252	
	Delibrated	HW	nic 229,540 nic 401,130				MC 292	nic 292	nic 252	
	Cada Uphlagahad									
	Soda, Unbleached	Bagass	64,000	4 697	64,000					
	Orde Diserbad	Rags	4,620	4,687	(67)					
	Soda, Bleached	SW	000 740	004.040	-					
		HW Oothers Lintere	329,718	284,946	44,772					
		Cotton Linters	229,500	223,464	6,036					
		Rags	23,020	22,422	598					
		other	28,300	24,331	3,969					
		total soda	679,158	559,850						
Mechanical Pulp	PGW, Bleached	SW	201,615	055 540			4 00 4		4 007	
	SGW, Bleached	SW	682,490	855,542	28,563	all	1,924	1,924	1,627	1,416
		HW	290,405	196,443	93,962					
	SGW, Unbleached	SW	92,750	77,833	14,917					
		HW			-					
		total GW	1,267,260	1,129,818						
	TMP / RMP, Bleached	SW	3,663,844	3,179,873	483,971	all	3,749	3,749	3,337	3,264
		HW	200,403	151,945	48,458					
		SW, Unbleached	161,900		161,900					
	BCTMP	SW			-					
		HW			-					
		total TMP	4,026,147	3,331,818						
Recycled Pulp	Non-deinked			22,369,410	1,737,382		62,758	62,658	58,197	57,928
		OCC	19,500,502				16,973	16,973	16,446	16,683
		ONP/OMG	1,870,361							
		MOW	2,299,707				3,711	3,711	3,600	3,658
		Pulp Sub	436,222							
	Deinked			7,294,403	(246,002)					
		OCC	60,835							
		ONP/OMG	3,056,337				4,410	4,410	4,442	4,442
		MOW	3,854,245				2,347	2,347	2,063	2,021
		Pulp Sub	256,431	179,447			1,890	1,890	1,845	1,705
	Total		94,559,261	85,816,920	8,742,341		92,088	92,088	87,085	86,437
			- ,,				. ,	- ,	- ,	

					AF&PA	AF&PA	AF&PA	AF&PA
					2002	2002	2002	2004
					Statistics	Statistics	Statistics	Statistics
					Production:	Production:	Production:	Production:
		Fisher 2005	Fisher Logic		2000	2000r*	2001	2002
		Annual Tons	Annual Tons	difference	(1000 tons)	(1000 tons)	(1000 tons)	(1000 tons)
Paper	Corrugating Medium	12,719,160	9,875,352	2,843,808	9,651	9,789	9,317	9,806
	Linerboard	25,885,800	23,211,122	2,674,678	20,920	23,484	19,954	23,509
	Kraft Board	8,594,640	7,713,260	881,380				
	Recycled Board / Tube	7,642,080	6,701,791	940,289 tube/can	3,130	2,042	1,446	2,061
	Gypsum Board				1,416	1,416	1,448	1,429
	UnBL Folding Boxboard				4,447	5,254	6,437	4,729
	BI. Paperboard & Milk				5,437	6,484	5,297	6,346
	Coated Board							
	Other Board, unbleached				1,857	504	1,708	247
	Kraft Paper	2,272,680	1,604,957	667,723	1,707	1,707	1,601	1,545
	Bleached Pkg				329	329	290	291
	Bleached Bristols				1,487	1,487	1,297	1,350
	Uncoated Freesheet	14,809,680	13,251,789	1,557,891	13,898	13,898	12,649	12,428
	Coated Freesheet	7,121,160	5,526,991	1,594,169	4,993	4,993	4,486	4,481
	Newsprint	5,869,440	5,524,192	345,248	7,241	7,241	6,360	5,784
	Gwd Specialties	1,708,920	1,611,443	97,477	1,832	1,832	1,525	1,668
	Coated Groundwood	4,882,320	3,067,704	1,814,616	4,622	4,622	4,390	4,481
	Specialities	2,906,640	2,361,604	545,036	104	104	86	83
	Packaging & Special Industrial				2,396	2,396		2,323
	Tissue / Towel	8,172,720	7,470,609	702,111	6,911	6,911	7,024	7,127
	Tissue, TAD							
	Non-woven	nic 43920						
	Subtotal	102,585,240	87,920,814	14,664,426	92,376	94,491	85,314	89,687
				tot rep	94,491	94,491	88,913	89,687
	Kraft Pulp	11,666,520	9,588,178	2,078,342	8,013	8,013	7,916	8,153
	Kraft Pulp, unbl				292	292	247	
	Sulfite Pulp	385,920	378,770	7,150	108	108	105	
	Recycled Pulp	995,400	945,975	49,425	1,677	1,677		
	Other Pulp / dissolving	236,880	230,500	6,380	1,006	1,006	1,026	1,705
	Subtotal	13,284,720	11,143,423	2,141,297	11,096	11,096	9,294	9,858
	Total	115,869,960	99,064,237	16,805,723	103,472	105,587	94,608	99,545

2002 Statistics, Paper, Paperboard & Wood Pulp; AF&PA Data for 2000 from 2002 Statistics Paper shipments, p 11; capacity p 33 Pulp Production, p 58; capacity p 35 2004 Statistics, Paper, Paperboard & Wood Pulp; AF&PA Data for 2002 from 2004 Statistics Paper shipments, p 11; capacity p 36 Pulp Production, p 52; capacity p 38

Board Production by end use, p 12-13, p 22 Energy p 54

Board Production by end use, p 12-18 Energy - none

AF&PA 2002 Statistics, p 11	hout Imports Pulp Manu 1 and 2004, p 11						Furnish Co	mponents	·							
Pulp Type	Paper Product	2002 Shipments (1000 tons)	%	% of Total	Filler %	Pulp Required	NSSC	BI Sulfite	BI SW Kraft	BI HW Kraft	UnBl Kraft	SGW	ТМР	осс	Non Deinked MOW	Deinked ONP
OCC, NSSC	Corrugating Medium	9,806	10.9%	9.9%	0.0%	9,806	3,547							6,259		
OCC, Unbl Kraft	Linerboard	23,509	26.2%	23.6%	0.0%	23,509					16,326			5,600	1,175	
	Recycled Board	2,061	2.3%	2.1%	0.0%	2,061								2,061		
	Gypsum Board	1,429	1.6%	1.4%	5.0%	1,357								857	500	
	Folding Boxboard	4,729	5.3%	4.8%	20.0%	3,783					2,162			1,156	411	
	BI. Folding Boxboard / Milk	6,346	7.1%	6.4%	10.0%	5,711			3,452	811						
	Other Board, unbl	247	0.3%	0.2%	0.0%	247					98			147		
OCC, Unbl Kraft	Kraft Paper	1,545	1.7%	1.6%	0.0%	1,545			368		551				480	
OCC, Unbl Kraft	Special Industrial	2,323	2.6%	2.3%	0.0%	2,323			699		780			224	350	
000	Newsprint	5,784	6.4%	5.8%	0.0%	5,784			62			289	1,738			3,60
OCC, OWP	Gwd Specialties	1,668	1.9%	1.7%	10.3%	1,497			187			96	290			84
OCC, OWP	Coated Groundwood	4,481	5.0%	4.5%	30.0%	3,137			571			1,031	1,237			
BI Kraft	Bleached Pkg	291	0.3%	0.3%	0.0%	291			214							
BI Kraft	Bleached Bristols	1,350	1.5%	1.4%	14.0%	1,161			192	712						
BI Kraft, BI Sulfite	Uncoated Freesheet	12,428	13.9%	12.5%	14.0%	10,688		46	772	5,063						
BI Kraft, BI Sulfite	Coated Freesheet	4,481	5.0%	4.5%	23.3%	3,437		55	525	1,998						
	Other Specialties	83	0.1%	0.1%	0.0%	83			43							
OCC, Unbl Kraft, Bl Kraft	Tissue / Towel	7,127	7.9%	7.2%	0.0%	7,127			1,336	2,821				378	741	
OCC, Unbl Kraft, Bl Kraft	Tissue, TAD		0.0%	0.0%	0.0%	-										
OCC, Unbl Kraft	Kraft Board		0.0%	0.0%	0.0%											
	Coated Board		0.0%	0.0%	20.0%	-										
	Non-woven		0.0%	0.0%	0.0%	-										
	Subtotal	89,687		90.1%		83,547	3,547	101	8,421	11,404	19,917	1,416	3,264	16,683	3,658	4,44
	Kraft Pulp	8,153	82.7%	8.2%	0.0%	8,153			4,153	4,000						
	Kraft Pulp, unbl	-	0.0%	0.0%	0.0%	-			-	-	-					
	Sulfite Pulp	-	0.0%	0.0%	0.0%	-		-								
	Recycled Pulp	-	0.0%	0.0%	0.0%	-										
	Other Pulp / dissolving	1,705	17.3%	1.7%	0.0%	1,705		431	1,274							
	Subtotal	9,858		9.9%		9,858		431	5,427	4,000	-	-	-	-	-	-
	Total	99,545				93,405	3,547	532	13,848	15,404	19,917	1,416	3,264	16,683	3,658	4,44
		89,687			difference		0.0	0.0	0.0	(0.0)	0.0	0.0	0.0	(0.0)	(0.0)	0.
							Total Blea		29,251	33.8%						
							Virgin Pulp I	Production	57,745	66.8%	Vir	gin Market	9,858			
	Pulp Manufactured in USA	A, 1000 tons									Board	48,126	53.7%			
											Mechanical	11,933	13.3%			
	Туре	2002	%		US + Imp	US + Imp - M	P				Wechanica					
	Bleached Sulfite	2002 532	% 0.6%		US + Imp 801	US + Imp - M 370	P				P&W	18,259	20.4%	000		
		532 19,917			801 20,414	370 20,414	P				P&W Recycle	18,259 28,509	20.4% 33.0%	OCC 58.5%		
	Bleached Sulfite	532	0.6%		801 20,414 16,858	370	P				P&W					
	Bleached Sulfite Unbleached Kraft Bleached Kraft Softwood Bleached Kraft Hardwood	532 19,917 13,848 15,404	0.6% 23.0% 16.0% 17.8%		801 20,414 16,858 18,414	370 20,414 11,431 14,414	P				P&W Recycle	28,509	33.0% 56.9%			
	Bleached Sulfite Unbleached Kraft Bleached Kraft Softwood Bleached Kraft Hardwood NSSC	532 19,917 13,848 15,404 3,547	0.6% 23.0% 16.0% 17.8% 4.1%		801 20,414 16,858 18,414 3,547	370 20,414 11,431 14,414 3,547	P		Imported Pulp		P&W Recycle	28,509 SW	33.0%			
	Bleached Sulfite Unbleached Kraft Bleached Kraft Softwood Bleached Kraft Hardwood NSSC SGW	532 19,917 13,848 15,404 3,547 1,416	0.6% 23.0% 16.0% 17.8% 4.1% 1.6%		801 20,414 16,858 18,414 3,547 1,477	370 20,414 11,431 14,414 3,547 1,477	P	Ble	eached Sulfite	269	P&W Recycle	28,509 SW 72.7%	33.0% 56.9% HW			
	Bleached Sulfite Unbleached Kraft Bleached Kraft Softwood Bleached Kraft Hardwood NSSC SGW TMP	532 19,917 13,848 15,404 3,547 1,416 3,264	0.6% 23.0% 16.0% 17.8% 4.1% 1.6% 3.8%		801 20,414 16,858 18,414 3,547 1,477 3,386	370 20,414 11,431 14,414 3,547 1,477 3,386		Ble	eached Sulfite Bleached Kraft	269 6,020	P&W Recycle	28,509 SW 72.7% 26.3%	33.0% 56.9%			
	Bleached Sulfite Unbleached Kraft Bleached Kraft Softwood Bleached Kraft Hardwood NSSC SGW TMP OCC	532 19,917 13,848 15,404 3,547 1,416 3,264 16,683	0.6% 23.0% 16.0% 17.8% 4.1% 1.6% 3.8% 19.3%		801 20,414 16,858 18,414 3,547 1,477 3,386 16,683	370 20,414 11,431 14,414 3,547 1,477 3,386 16,683		Ble	eached Sulfite Bleached Kraft bleached Kraft	269 6,020 497	P&W Recycle	28,509 SW 72.7% 26.3% 2.4%	33.0% 56.9% HW			
	Bleached Sulfite Unbleached Kraft Bleached Kraft Softwood Bleached Kraft Hardwood NSSC SGW TMP OCC Non deinked MOW	532 19,917 13,848 15,404 3,547 1,416 3,264 16,683 3,658	0.6% 23.0% 16.0% 17.8% 4.1% 1.6% 3.8% 19.3% 4.2%		801 20,414 16,858 18,414 3,547 1,477 3,386 16,683 3,658	370 20,414 11,431 14,414 3,547 1,477 3,386 16,683 3,658		Ble	eached Sulfite Bleached Kraft bleached Kraft Groundwood	269 6,020 497 183	P&W Recycle	28,509 SW 72.7% 26.3%	33.0% 56.9% HW			
	Bleached Sulfite Unbleached Kraft Bleached Kraft Softwood Bleached Kraft Hardwood NSSC SGW TMP OCC Non deinked MOW Deinked MOW	532 19,917 13,848 15,404 3,547 1,416 3,264 16,683 3,658 2,021	0.6% 23.0% 16.0% 17.8% 4.1% 1.6% 3.8% 19.3% 4.2% 2.3%		801 20,414 16,858 18,414 3,547 1,477 3,386 16,683 3,658 2,021	370 20,414 11,431 14,414 3,547 1,477 3,386 16,683 3,658 2,021		Ble	eached Sulfite Bleached Kraft bleached Kraft Groundwood Subtotal	269 6,020 497 183 6,968	P&W Recycle	28,509 SW 72.7% 26.3% 2.4%	33.0% 56.9% HW			
	Bleached Sulfite Unbleached Kraft Bleached Kraft Softwood Bleached Kraft Hardwood NSSC SGW TMP OCC Non deinked MOW	532 19,917 13,848 15,404 3,547 1,416 3,264 16,683 3,658 2,021 4,442	0.6% 23.0% 16.0% 17.8% 4.1% 1.6% 3.8% 19.3% 4.2% 2.3% 5.1%		801 20,414 16,858 18,414 3,547 1,477 3,386 16,683 3,658 2,021 4,442	370 20,414 11,431 14,414 3,547 1,477 3,386 16,683 3,658 2,021 4,442		Ble	eached Sulfite Bleached Kraft bleached Kraft Groundwood	269 6,020 497 183	P&W Recycle	28,509 SW 72.7% 26.3% 2.4%	33.0% 56.9% HW			
	Bleached Sulfite Unbleached Kraft Bleached Kraft Softwood Bleached Kraft Hardwood NSSC SGW TMP OCC Non deinked MOW Deinked MOW Deinked ONP Pulp Sub	532 19,917 13,848 15,404 3,547 1,416 3,264 16,683 3,658 2,021 4,442 1,705	0.6% 23.0% 16.0% 17.8% 4.1% 1.6% 3.8% 19.3% 4.2% 2.3%		801 20,414 16,858 18,414 3,547 1,477 3,386 16,683 3,658 2,021 4,442 1,705	370 20,414 11,431 14,414 3,547 1,477 3,386 16,683 3,658 2,021 4,442 1,705		Ble	eached Sulfite Bleached Kraft bleached Kraft Groundwood Subtotal	269 6,020 497 183 6,968	P&W Recycle	28,509 SW 72.7% 26.3% 2.4%	33.0% 56.9% HW			
	Bleached Sulfite Unbleached Kraft Bleached Kraft Softwood Bleached Kraft Hardwood NSSC SGW TMP OCC Non deinked MOW Deinked MOW Deinked MOW	532 19,917 13,848 15,404 3,547 1,416 3,264 16,683 3,658 2,021 4,442	0.6% 23.0% 16.0% 17.8% 4.1% 1.6% 3.8% 19.3% 4.2% 2.3% 5.1%		801 20,414 16,858 18,414 3,547 1,477 3,386 16,683 3,658 2,021 4,442	370 20,414 11,431 14,414 3,547 1,477 3,386 16,683 3,658 2,021 4,442		Ble	eached Sulfite Bleached Kraft bleached Kraft Groundwood Subtotal	269 6,020 497 183 6,968	P&W Recycle	28,509 SW 72.7% 26.3% 2.4%	33.0% 56.9% HW			

Tab B – Energy Consumption

Excel Workbook: Energy Consumption Data

Energy Consumed: shown as Trillion Btus

Source	Paperloop	2004	DOE 2002	MECS	AF&PA	2000
	TBtu	%	TBtu	%	TBtu	%
Pur Electricity	133	15.0%	223	9.4%	155	7.1%
Pur Steam	49	5.6%		0.0%	34	1.6%
Coal	187	21.1%	236	10.0%	266	12.2%
No 2 Oil	49	5.6%		0.0%	93	4.3%
No 6 Oil	58	6.6%		0.0%	9	0.4%
Nat Gas	407	46.1%	504	21.3%	396	18.2%
LPG		0.0%	6	0.3%	1	0.1%
Other Purchased		0.0%	1,280	54.2%	23	1.0%
Energy Sold		0.0%		0.0%	(45)	-2.1%
Total Purchased	883	100.0%	2,249	95.3%	932	42.8%
Hog		0.0%		0.0%	327	15.0%
BI Liq		0.0%		0.0%	895	41.1%
Hydro Power		0.0%		0.0%	5	0.2%
Other		0.0%		0.0%	20	0.9%
Self Generated		0.0%		0.0%	1,247	57.2%
Total Energy	883	100%	2,361	95%	2,179	100%

Production, Mtons	79,180.4
Consumption MBtu/ton	27.5

Sources:

DOE 2002 - "Table 3.2, Fuel Consumption, 2002, NAICS Code 322: Paper AF&PA 2000 - 2002 Statistics, Estimated Fuel and Energy Used, year 2000, page 55 Paperloop 2004 - Cornerstone Database

Conversions to Btu

Oil, bbl	6,200,000
Gas, mcf	1,030,000
Hog, BDst	16,000,000
Coal, st	24,000,000
Steam, 1000 lbs	1,100,000
Electricity, kWh	3,413
TDF, st	31,000,000

Energ	y Best of	Class	
Area	Electric kWH/T	Steam lbs/T	Water gal/T
Woodyard	12.3		nil
TMP, Southern News	3000	(4500)	
Kraft Mill, Bleached	115	1980	475
Kraft Mill, Unbleached			
Bleach Plant, Kraft	130	710	3170
Caustic Room	40	551	
Pulp Dryer	108	2155	608
Recycle	560	nil	
Paper Mach., LWC	500	4860	4060
Paper Mach., News	580	3700	3350
Paper Mach., Liner	360	4700	5400
Paper Mach., P&W	590	6200	
Waste Water Treatment	320	na	nil

Published Data - Paperloop / AMEC / Jacobs Reference # 6

Europe SIS Ecolabling Data, 26 Oct 2000

Area	Electric	Fossil	Water
	kWH/mt	GJ/mt	gal/mt
Kraft, market pulp	883	2.63	
Sulfite, market pulp	1465	1.62	
CTMP, market pulp	2000	1.12	
Recycled, market pulp	290	0.90	
Tissue	2165	4.93	

Elect	ric	Assumed	Steam Enthalpy		Total
Btu/kWh	MBtu/t	psi	Btu/lb	MBtu/t	MBtu/t
3412	0.04				0.04
3412	10.24	30	1164	(5.24)	5.00
3412	0.39	30	1164	2.30	2.70
3412	0.00			0.00	0.00
3412	0.44	75	1182	0.84	1.28
3412	0.14	75	1182	0.65	0.79
3412	0.37	150	1194	2.57	2.94
3412	1.91				1.91
3412	1.71	30	1164	5.66	7.36
3412	1.98	30	1164	4.31	6.29
3412	1.23	150	1194	5.61	6.84
3412	2.01	75	1182	7.33	9.34
3412	1.09				1.09

Kraft Market Pulp 5.90

Elec	tric	Fossil	Total
kWh/t	MBtu/t	MBtu/t	MBtu/t
801	2.73	2.26	4.99
1329	4.53	1.39	5.93
1814	6.19	0.96	7.15
263	0.90	0.77	1.67
1964	6.70	4.24	10.94

Table 1, page 6 - Pulp & Paper Industry Energy Best Practices, Guidebook- Wisconsin Paper Council, TAPPI, AF&PA Report by "focus on energy" Reference # 1 & 2Gross energy per ton of saleable paper

	Market I	^D ulp Mill	Recy Linert		Fine P (purchase		Coate (purchas			Kraft 1/3; self nd wood 1/3 &	Recy Tise	
Units	MMBtu	kWh	MMBtu	kWh	MMBtu	kWh	MMBtu	kWh	MMBtu	kWh	MMBtu	kWh
Wood/Chip Conveying	0.0	18							0.0	15		
Pulping, repulping or recycling	1.5	63	0.8	110	0.6	90	0.6	100	0.2	30	1.8	300
Mechanical Pulping (TMP)									1.3	575		
Oxygen Delignification	0.4	68										
Bleaching	2.0	91							0.1	10	0.5	50
Pulp Making	2.0	128										
Paper Making			4.0	310	3.9	410	4.5	590	4.7	600	6	581
Black Liquor Evaporation	2.7	27										
Utilities (incl wastewater)	2.0	138	0.3	30	0.3	30	0.3	30	0.4	30	0.6	30
Kiln & Recausticizing	1.0	46										
Total	11.6	579	5.1	450	4.8	530	5.4	720	6.7	1260	8.9	961

	Market F	⁹ ulp Mill	Recy Linert		Fine P (purchase			ed 1-3 ed Kraft)	(Purchased P produced grou	Coated 4-5 (Purchased Kraft 1/3; self produced ground wood 1/3 & filler 1/3)		/cled sue
Units	Thermal MMBtu	Electric MMBtu	Thermal MMBtu	Electric MMBtu	Thermal MMBtu	Electric MMBtu	Thermal MMBtu	Electric MMBtu	Thermal MMBtu	Electric MMBtu	Thermal MMBtu	Electric MMBtu
Wood/Chip Conveying	0.00	0.06							0.00	0.05		
Pulping, repulping or recycling	1.50	0.21	0.80	0.38	0.60	0.31	0.60	0.34	0.20	0.10	1.80	1.02
Mechanical Pulping (TMP)									1.30	1.96		
Oxygen Delignification	0.40	0.23										
Bleaching	2.00	0.31							0.10	0.03	0.50	0.17
Pulp Making	2.00	0.44										
Paper Making			4.00	1.06	3.90	1.40	4.50	2.01	4.70	2.05	6.00	1.98
Black Liquor Evaporation	2.70	0.09										
Utilities (incl wastewater)	2.00	0.47	0.30	0.10	0.30	0.10	0.30	0.10	0.40	0.10	0.60	0.10
Kiln & Recausticizing	1.00	0.16										
Total	11.60	1.98	5.10	1.54	4.80	1.81	5.40	2.46	6.70	4.30	8.90	3.28
Grand Total (MMBtu)	13.58		6.64		6.61		7.86		11.00		12.18	

CIPEC / Paprican - Energy Cost Reduction in Pulp & Paper Industry An Energy Benchmarking Perspective Table p7, Gross energy per ton of saleable paper

	Market	Market Pulp Mill GJ/admt kWh/admt		Newsprint		Recycled ONP		Market Pulp Mill		print	Recycled ONP	
Units	GJ/admt	kWh/admt	MMBtu/admt	kWh/admt	MMBtu/admt	kWh/admt	MMBtu/adt	kWh/adt	MMBtu/adt	kWh/adt	MMBtu/adt	kWh/adt
Wood/Chip Conveying		20.0		40.0				18.1		36.3		
Pulping, Repulping, recycling	1.7	40.0			0.8	400.0	1.46	36.3			0.69	362.8
Washing Screening	0.0	30.0		240.0				27.2		217.7		
Mechanical Pulping (TMP)				2,160.0				0.0		1,959.1		
Oxygen Delignification	0.5	75.0					0.45	68.0				
Bleaching	2.3	100.0					2.09	90.7				
Pulp Machine	2.3	141.0					2.09	127.9				
Stock Prep			0.7	100.0				0.0	0.60	90.7		
Paper Machine Forming			0.3	140.0				0.0	0.26	127.0		
Paper Drying & Finishing			3.2	90.0				0.0	2.92	81.6		
Black Liquor Evaporation	3.1	30.0					2.81	27.2				
Power Plant	2.3	60.0	0.5				2.09	54.4	0.43			
Hot Water Supply		32.0	(5.2)	10.0				29.0	(4.73)	9.1		
Wastewater Treatment		30.0						27.2				
Misc		30.0						27.2				
Kiln & Recausticizing NG	1.2	50.0					1.09	45.4				
Total	13.4	638.0	(0.6)	2,780.0	0.8	400.0	12.07	578.7	(0.52)	2,521.5	0.7	362.8
Recovery Boiler	(15.0)	(655.0)					(13.59)	(594.1)				
Net	(1.6)	(17.0)	(0.6)	2,780.0	0.8	400.0	(1.51)	(15.4)	(0.5)	2,521.5	0.7	362.8

	Market Pulp Mill		Newsprint		Recycled ONP		Market Pulp Mill		Newsprint		Recycled ONP	
Units	Thermal MMBtu	Electric MMBtu	Thermal MMBtu	Electric MMBtu	Thermal MMBtu	Electric MMBtu	Thermal MMBtu/adt	Electric MMBtu/adt	Thermal MMBtu/adt	Electric MMBtu/adt	Thermal MMBtu/adt	Electric MMBtu/adt
Wood/Chip Conveying Pulping, repulping or recycling							0.0 1.5	0.1 0.1	0.0 0.0	0.1 0.0	0.0 0.8	0.0 1.4
Mechanical Pulping (TMP)							0.0	0.1	0.0	0.7	0.0	0.0
Oxygen Delignification Bleaching Pulp Making Stock Prep Paper Machine Forming Paper Drying & Finishing Black Liquor Evaporation Utilities (incl wastewater) Kiln & Recausticizing							0.0 0.5 2.1 2.1 0.0 0.0 0.0 2.8 2.1	0.0 0.2 0.3 0.4 0.0 0.0 0.0 0.1 0.2	0.0 0.0 0.0 0.6 0.3 2.9 0.0 0.4	6.7 0.0 0.0 0.3 0.4 0.3 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total							11.0	1.5	4.2	8.6	0.8	1.4
Grand Total (MMBtu)							12.5		12.8		2.1	

		на гарст п	iuusu y,	IE 90Z	Reference	e #8						
Table 3.2, Bleached Kraft Mill,												
Steam Consumption (GJ/admt)							Steam. MN	Divio di				
Steam Consumption (GJ/admt))	Bleached K	- off				Steam, will		eached Kra	4		
	US60	US80	M80	M00	Avg		US60	US80	M80	M00	Avg	
Woodroom	0300	0380	0.30	0.10	0.1		0.0	0.0	0.3	0.09	0.09	
Digester	4.57	2.89	2.50	1.50	2.9		3.9	2.5	2.1	1.3	2.46	
Washing	0	0	0.00	0.00	0.0		0.0	0.0	0.0	0.0	0.00	
Screening	0	0	0.00	0.00	0.0		0.0	0.0	0.0	0.0	0.00	
O ₂ Delignification	0.43	0	0.35	0.70	0.4		0.4	0.0	0.3	0.6	0.32	
Bleaching	1.15	0.51	1.35	0.15	0.4		1.0	0.4	1.2	0.0	0.68	
Screening & Storage	0	1.08	0.00	0.13	0.8		0.0	0.4	0.0	0.1	0.08	
Recasuticizing & Kiln (ex fuel)	0.31	0	0.00	0.00	0.3		0.3	0.0	0.0	0.0	0.20	
BI Evaporation	5.26	4.33	3.75	2.95	4.1		4.5	3.7	3.2	2.5	3.50	
Sub Total	11.72	8.81	8.40	5.60	8.6		10.08	7.58	7.22	4.82	7.42	
UnBleached	10.14	8.30	6.70	4.75	7.5		8.72	7.14	5.76	4.02	6.43	
		0.00	0.1.0				0		0.1.0		0.10	
Powerhouse	2.50	3.91	0.50	0.00	1.7		2.1	3.4	0.4	0.0	1.49	
Wastewater Treatment	0	0	0.00	0.00	0.0		0.0	0.0	0.0	0.0	0.00	
Other	4.41	3.51	0.00	0.00	2.0		3.8	3.0	0.0	0.0	1.70	
Pulp Drying & baling	5.92	3.94	3.25	2.15	3.8		5.1	3.4	2.8	1.8	3.28	
Total	24.55	20.17	12.15	7.75	16.2		21.11	17.34	10.45	6.66	13.89	
Other					-							
US60 Utilities & sootblowing	2.50						2.1					
US60 Deareation, water hating,	4.41						3.8					
US80 Deareation, water hating, c	chiller	3.51						3.0				
Electric Power Consumption ((Wh/admt)							Electric, M				
		Bleached K			-	kWh/adt		Bleached				-
	US60	US80	M80	M00	Avg	Avg	M00	US60	US80	M80	M00	Avg
Woodroom	0	25	75	75	43.8	39.7	68	0.00	0.08	0.23	0.23	0.14
Digester	0	43	50	40	33.3	30.2	36	0.00	0.13	0.15	0.12	0.10
Washing	212	0 103	40 45	10 20	12.5 95.0	11.3 86.2	-	0.00	0.00	0.12	0.03	0.04
Screening			-				18			-		
O ₂ Delignification	0	47	60	85	48.0	43.5	77	0.00	0.15	0.19	0.26	0.15
Bleaching	185	42	120	60	101.8	92.3	54	0.57	0.13	0.37	0.19	0.31
Screening & Storage	0 141	74 42	50 35	40 45	41.0 65.8	37.2 59.6	36 41	0.00	0.23	0.15 0.11	0.12	0.13
Recasuticizing & Kiln (ex fuel) BI Evaporation	0	42	35 25	45 30	65.8 30.3	27.4	27	0.44	0.13	0.11	0.14	0.20
Sub Total	538	442	20 500	30 405	30.3 471.3	427.4	367	0.00 1.66	0.20 1.37	1.55	1.25	1.46
UnBleached	353	442	380	345	369.5	335.1	307	1.00	1.37	1.55	1.25	1.40
Olibleached		400	300	343	471.3	427.4	313	1.05	1.24	1.10	1.07	1.14
Powerhouse	0	125	60	60	61.3	55.6	54	0.00	0.39	0.19	0.19	0.19
Wastewater Treatment	0	0	35	30	16.3	14.7	27	0.00	0.00	0.13	0.09	0.15
Other	208	61	15	35	79.8	72.3	32	0.64	0.00	0.05	0.00	0.05
Pulp Drying & baling	174	153	130	110	141.8	128.6	100	0.54	0.10	0.40	0.34	0.44
Total	920	781	740	640	770.3	699	580	2.85	2.42	2.29	1.98	2.38
	520											
Other	1											
Other US60 utilities & water plant	208				208.0	188.7	0	0.64				0.64

15 Wh/t-m vertica O2 Delignif 0.5 G.J/admt (0.5MMb Digester, conventional 3.5.4.0 G.J/admt Digester, conventional 3.5.4.0 G.J/admt Evap steam ic batch displacement 0.5 G.J/admt 5.G.J/admt Bleaching 20.30 kWh/admt Pulp (Drying) Machine 130-150 kWh/admt Rebuilding Pulp Drying machine 171 kWh/admt to 141 Canadian & Swedish 2.7 G.J/admt Canadian & Swedish 2.7 G.J/admt - 1.8 G.J/a TMP <0.5 G.J/admt Canadian & Swedish 2.7 G.J/admt - 1.8 G.J/a TMP - heat recovery - Possible 65% (4 G.J/a Single disk 2200 kWh/admt double disk 1800 kWh/admt double disk 1800 kWh/admt double disk 1800 kWh/admt concept greenfield newsprint mill 1495 kWh/admt TMP 1475 kWh/admt Concept greenfield newsprint mill 1495 kWh/admt Concept greenfield newsprint mill 1495 kWh/admt Energy Savings - vS drivews over 50kW motors 30% Energy Savings, natural ventilaton machine rooeleiminate	nveyor al blower blower i/admt) i/admt) kWh/adr	pag p20 p2 p2 p2 r p2 p2 p2 p2 p2 p2 p2 p2 p2 p2	0 20 21 21 21 21 22 22	date 1990 1989 86 92		0.43 3.01-3.44	181-272	Conversior GJ/admt 1 kWh/admt 1	MMBtu/adt 0.86
Stock Prep and Ppaper Machine 200-300 kWh/ADMT Chip transport: blower vs conveyors 5 Wh/t-m horizontal to 10 Wh/t-m 5 Wh/t-m horizontal 20-300 kWh/ADMT 5 Wh/t-m horizontal 11 Wh/t-m horizontal 20 Delignif 0.5 GJ/admt (0.5MMb Digester, conventional 3.5-4.0 GJ/admt continuous / modern batch 1.7-2.5 GJ/admt Evap steam inc batch displacement 0.5 GJ/admt (0.5MMb) Bleaching 20-30 kWh/admt Pulp (Drying) Machine 3.3 - 15 GJ/m/admt Rebuilding Pulp Drying machine 17 KWh/admt to 2.40 Canadian & Swedish 2.7 GJ/admt - 1.8 GJ/ TMP < 0.5 GJ/admt 2.60 Canadian & Swedish 2.7 GJ/admt - 1.8 GJ/ TMP - heat recovery - Possible 65% (4 GJ/z Sweden 32% (2.7 G. Mechanical pulping calculated minimum 300-400 KWh/admt dditional - reject refining 2000-300 KWh/admt Concept greenfield newsprint mill 1475 kWh/admt mechanical pulping calculated minimum 30% Energy Savings, natural ventilation machine roceliminate	al blower blower u/admt) u/admt) kWh/adm J/admt	p2(p 2 p2' p2' p2' p22 p22 p22 p22 p22	0 20 21 21 21 21 22 22	1990 1989 86		0.43	181-272	GJ/admt 1	MMBtu/adt 0.86
Stock Prep and Ppaper Machine 200-300 kWh/ADMT Chip transport: blower vs conveyors 5 Wh/t-m horizontal c 10 Wh/t-m 5 Wh/t-m horizontal c 20 - 300 kWh/ADMT 5 Wh/t-m horizontal c 10 Wh/t-m horizontal c 20 - 20 elignif 0.5 GJ/admt (0.5 MMb Digester, conventional 3.5 - 4.0 GJ/admt continuous / modern batch 1.7-2.5 GJ/admt Evap steam inc batch displacement 0.5 GJ/admt (0.5MMb) Bleaching 20-30 kWh/admt Pulp (Drying) Machine 13.3 - 3.5 GJ/admt to 141 Canadian & Swedish 2.7 GJ/admt to 12.6 GJ/admt to 2.26 (2.1 GK) Lime Kiln fuel,(m00) 1.3 GJ/admt TMP - heat recovery - Possible 65% (4 GJ/z Sweden 32% (2.7 G. Mechanical pulping calculated minimum 300-400 KWh/admt dditional - reject refining 200-300 KWh/admt Concept greenfield newsprint mill 1495 kWh/admt medusperint 1475 kWh/admt genergy Savings, natural ventilation machine roo eliminate 160 Kw fan Anaerobic Treatment papermill sludges 85 kWh/admt ESP on recovery boiler <th>al blower blower u/admt) u/admt) kWh/adm J/admt</th> <th>p 2 p21 r p21 p22 p22 p22 p22 p23</th> <th>20 21 21 22 22 22 22 22 22 22 22 22 22 22</th> <th>1989 86</th> <th></th> <th></th> <th></th> <th>GJ/admt 1</th> <th>MMBtu/adt 0.86</th>	al blower blower u/admt) u/admt) kWh/adm J/admt	p 2 p21 r p21 p22 p22 p22 p22 p23	20 21 21 22 22 22 22 22 22 22 22 22 22 22	1989 86				GJ/admt 1	MMBtu/adt 0.86
Chip transport: blower vs conveyors 5 Wh/t-m horizontal c 10 Wh/t-m horizon 10 Wh/t-m horizon 22 Delignif 0.5 G.J.admt (0.5MMb Digester, conventional 3.5-4.0 G.J/admt Evap steam inc batch displacement 0.5 G.J.admt 0.5 G.J.admt Evap steam inc batch displacement 0.5 G.J.admt 0.5 G.J.admt Bleaching 20-30 kWh/admt Pulp (Drying) Machine 171 kWh/admt to 141 Chime Kiln fuel,(m00) 1.3 G.J/admt TMP <0.5 G.J.admt to 2.26 i	al blower blower u/admt) u/admt) kWh/adm J/admt	p21 r p21 p22 p22 p22 p23	21	86				GJ/admt 1	MMBtu/adt 0.86
5 Wh/t-m vertical com 10 Wh/t-m Ihorizor 10 Wh/t-m Vertica 02 Delignif 0.5 GJ admt 0.5 02 Delignif 0.5 GJ admt 0.5 Digester, conventional 3.5-4.0 GJ admt 0.5 GJ admt Evap steam inc batch displacement 0.5 GJ admt 0.5 MM/t-m Pulp (Drying) Machine 130-150 KWh/admt 0.4 0.4 Pulp (Drying) Machine 13.3 3.5 GJ admt 1.8 GJ admt Canadian & Swedish 2.7 GJ admt 1.4 GJ admt 1.4 Canadian & Swedish 2.7 GJ admt 1.4 GJ admt 1.4 Canadian & Swedish 2.7 GJ admt 1.4 GJ admt 1.4 GJ admt TMP 6.5% [4 GJ admt 1.4 GJ admt 1.4 GJ admt GJ admt GJ admt GJ admt GJ admt GJ admt <td< td=""><td>al blower blower u/admt) u/admt) kWh/adm J/admt</td><td>r p21</td><td>21</td><td></td><td></td><td></td><td></td><td>1</td><td>0.86</td></td<>	al blower blower u/admt) u/admt) kWh/adm J/admt	r p21	21					1	0.86
10 Wh/t-m horizor 02 Delignif 0.5 GJ/adm (0.5 MMb) Digester, conventional 3.5-4.0 GJ/admt (0.5MMb) Digester, conventional 3.5-4.0 GJ/admt (0.5MMb) Evap steam inc batch displacement 0.5 GJ/admt (0.5MMb) Bleaching 20-30 kWh/admt Pulp (Drying) Machine 13.0-150 KWh/admt Rebuilding Pulp Drying machine 17.1 KWh/admt to 2.40 Lime Kiln fuel,(m00) 1.3 GJ/admt Canadian & Swedish 2.7 GJ/admt 1.8 GJ/ TMP < 0.5 GJ/admt	blower i/admt) i/admt) kWh/admt J/admt	p21 p22 p22 p22 p23	22	92				1 kWh/admt 1	
15 Wh/t-m vertica 02 Delignif 0.5 G.J/admt (0.5MMb Digester, conventional 3.5-4.0 G.J/admt Evap steam inc batch 1.7-2.5 G.J/admt Evap steam inc batch displacement 0.5 G.J/admt 0.5 G.J/admt Bleaching 20-30 kWh/admt Pulp (Drying) Machine 130-150 kWh/admt Rebuilding Pulp Drying machine 171 kWh/admt to 141 Canadian & Swedish 2.7 G.J/admt Canadian & Swedish 2.7 G.J/admt to 2.26 TMP < 0.5 G.J/admt	blower i/admt) i/admt) kWh/admt J/admt	p21 p22 p22 p22 p23	22	92				kWh/admt 1	
O2 Delignif 0.5 G.J/admt (0.5MMb) Digester, conventional 3.5.4.0 G.J/admt continuous / modern batch 1.7.2.5 G.J/admt Evap steam inc batch displacement (0.5 G.J/admt 0.5 G.J/admt Pulp (Drying) Machine 130-150 kWh/admt Pulp (Drying) Machine 130-150 kWh/admt Rebuilding Pulp Drying machine 171 kWh/admt to 141 Canadian & Swedish 2.7 G.J/admt Canadian & Swedish 2.7 G.J/admt TMP < 0.5 G.J/admt	i/admt) i/admt) kWh/adit J/admt	p22 p22 p23	22	92				kvvn/admt	
75 kWh/admt Digester, conventional 3.5-4.0 G//admt continuous / modern batch 1.7-2.5 G//admt Evap steam inc batch displacement 0.5 G//admt Evap steam inc batch displacement 0.5 G//admt Pulp (Drying) Machine 130-150 KWh/admt Pulp (Drying) Machine 3.3 - 3.5 G//admt to 141 Rebuilding Pulp Drying machine 171 KWh/admt to 2.26 Lime Kiln fuel,(m00) 1.3 G//admt to 2.26 Lime Kiln fuel,(m00) 1.3 G//admt to 2.26 Lime Kiln fuel,(m00) 1.3 G//admt TMP < 0.5 G//admt	i/admt) kWh/adr J/admt	p22 p22 p23	22	92				1	
Digester, conventional 3.5-4.0 GJ/admt continuous / modern batch 1.7-2.5 GJ/admt Evap steam inc batch displacement 0.5 GJ/admt 0.5 GJ/admt Bleaching 20-30 kWh/admt Pulp (Drying) Machine 130-150 kWh/admt Rebuilding Pulp Drying machine 171 kWh/admt to 121 Canadian & Swedish 2.7 GJ/admt Canadian & Swedish 2.7 GJ/admt - 1.8 GJ/a TMP Canadian & Swedish 2.7 GJ/admt - 1.8 GJ/a 5K/g/admt to 226 TMP - heat recovery - Possible 65% (4 GJ/a Single disk 2200 kWh/admt Guite disk 1800 kWh/admt double disk 1800 kWh/admt concet greenfield newsprint mill 1495 kWh/admt Concet greenfield newsprint mill 1495 kWh/admt TMP 1475 kWh/admt TMP 1475 kWh/admt Energy Savings - vS drivews over 50kW motors 30% SGW / PGW newsprint 1790-2300 kWh/admt ESP on recovery boiler 6 KWh/admt ESP on recovery boiler 6 KWh/admt SGW / PGW newsprint 1790-2300 kWh/admt Catalog	kWh/adr J/admt	p22 p23	22	92		201244			0.9
continuous / modern batch 1.7-2.5 G.J/admt Evap steam inc batch displacement 0.5 G.J/admt Pulp (Drying) Machine 130-150 kWh/admt Pulp (Drying) Machine 130-150 kWh/admt Rebuilding Pulp Drying machine 171 kWh/admt to 141 Lime Kiin fuel.(m00) 1.3 G.J/admt to 141 Canadian & Swedish 2.7 G.J/admt to 141 TMP < 0.5 G.J/admt	kWh/adr J/admt	p22 p23	22	92			68		
Evap steam inc batch displacement 0.5 GJ/admt (0.5MMb) Bleaching 20-30 kWh/admt Pulp (Drying) Machine 130-150 kWh/admt Rebuilding Pulp Drying machine 171 kWh/admt to 141 Rebuilding Pulp Drying machine 171 kWh/admt to 2.26 Lime Kiln fuel.(m00) 1.3 GJ/admt Canadian & Swedish 2.7 GJ/admt - 1.8 GJ/ TMP < 0.5 GJ/admt	kWh/adr J/admt	p23							ļ
Bleaching 20-30 kWh/admt Pulp (Drying) Machine 130-150 kWh/admt Rebuilding Pulp Drying machine 171 kWh/admt to 141 Lime Kiln fuel.(m00) 1.3 GJ/admt Canadian & Swedish 2.7 GJ/admt 1 a GJ/a TMP <0.5 GJ/admt	kWh/adr J/admt	p23				1.46-2.15			ļ
Pulp (Drying) Machine 130-150 kWh/admt Rebuilding Pulp Drying machine 171 kWh/admt to 141 Lime Kiin fuel.(m00) 1.3 GJ/admt Canadian & Swedish 2.7 GJ/admt TMP < 0.5 GJ/admt	J/admt	p23							
3.3 - 3.5 GJ/admt Rebuilding Pulp Drying machine 171 kWh/admt to 141 3.3 - 3.5 GJ/admt 171 kWh/admt to 2.26 Lime Kiln fuel.(m00) 1.3 GJ/admt Canadian & Swedish 2.7 GJ/admt - 1.8 GJ/ TMP < 0.5 GJ/admt	J/admt		3	93			18-27		ļ
Rebuilding Pulp Drying machine 171 kWh/admt to 1210 Lime Kiln fuel.(m00) 1.3 GJ/admt to 2.261 Canadian & Swedish 2.7 GJ/admt - 1.8 GJ/a TMP < 0.5 GJ/admt	J/admt	mt p23		77			118-136		1
3.39 G.J/admt to 2.26 + Lime Kiln fuel.(m00) 1.3 G.J/admt Canadian & Swedish 2.7 G.J/admt TMP < 0.5 G.J/admt	J/admt	mt nº?				2.84-3.01			ı
Lime Kiln fuel,(m00) 1.3 G.J/admt Canadian & Swedish 2.7 G.J/admt - 1.8 G.J/. TMP < 0.5 G.J/admt		nn pze	3	1994			171 to 128		1
Canadian & Swedish 2.7 G.J/admt - 1.8 G.J/a TMP < 0.5 G.J/admt	imt					2.91 to 1.94			. <u> </u>
TMP < 0.5 GJ/admtl	1mt	p25	25			1.16			
TMP - heat recovery - Possible 65% [4 GJ/z Sweden 32% [2.7 G. Mechanical pulping calculated minimum 300-400 KWh/admt 300-400 KWh/admt double disk 1800 kWh/admt additional - reject refining 200-300 KWh/admt Concept greenfield newsprint mill 1495 kWh/admt TMP 1475 kWh/admt Recycle 475 kWh/admt Drying, newsprint, (Canadian) 2.284 GJ/admt of pap Energy Savings, natural ventilation machine roo eliminate 160 Kw fan Anaerobic Treatment papermill sludges 85 kWh/admt ESP on recovery boiler 6 kWh/admt SGW / PGW newsprint TMP newsprint 1260-1450 kWh/admt board 800-1290 kWh/admt ESP on recovery boiler 6 kWh/admt ESP on recovery boiler 6 kWh/admt Catalog 2100-2350 kWh/admt Doard 800-1290 kWh/admt TMP newsprint 1260-1450 kWh/admt 200-2450 kWh/admt Esp on recovery boiler 6 kWh/admt SGW / PGW newsprint 1260-1450 kWh/admt 200-2450 kWh/admt Esp on recovery boiler 1850-210 kWh/admt Catalog 200-2450 kWh/admt IMP </td <td></td> <td></td> <td></td> <td>1989</td> <td></td> <td>2.32-1.55</td> <td></td> <td></td> <td></td>				1989		2.32-1.55			
Sweden 32% [2.7 G, Mechanical pulping Mechanical pulping calculated minimum 300-400 kWh/admt Single disk 2200 kWh/admt double disk 1800 kWh/admt additional - reject refining 200-300 kWh/admt Concept greenfield newsprint mill 1495 kWh/admt TMP 1475 kWh/admt TMP 1475 kWh/admt Drying, newsprint, (Canadian) 2.264 GJ/admt of pap Energy Savings - VS driverso ver 50kW motors 30% Energy Savings, natural ventilation machine roo eliminate 160 Kw fan Anaerobic Treatment papermill sludges 85 kWh/admt ESP on recovery boller 6 kWh/admt SGW / PGW newsprint 1790-2300 kWh/atmt SGW / PGW newsprint 2200-2400 kWh/atmt TMP newsprint 2200-2400 kWh/atmt Catalog 2080 kWh/atmt 2200-2400 kWh/atmt MP newsprint 1280-1450 kWh/atmt Generation 200-2450 kWh/atmt 200-2450 kWh/atmt Generation 1670-2170 kWh/atmt 200-2400 kWh/atmt Catalog 2080 kWh/atm		p26	26	1989		0.43			
Mechanical pulping calculated minimum 300-400 kWh/admt Single disk 2200 kWh/admt double disk 1800 kWh/admt additional - reject refining 200-300 kWh/admt Concept greenfield newsprint mill 1495 kWh/admt of paj would have excess steam / bark / methane 1475 kWh/admt TMP 1475 kWh/admt Pring, newsprint, (Canadian) 2.264 GJ/admt of pap Energy Savings - VS drivews over 50kW motors 30% Energy Savings, atural ventilation machine roo eliminate 160 Kw fan Anaerobic Treatment papermill sludges 85 kWh/admt SGW / PGW newsprint 1790-2300 kWh/admt SGW / PGW newsprint 1790-2300 kWh/admt TMP catalog 2100-2350 kWh/admt Catalog 200-2350 kWh/admt 200-2400 kWh/admt TMP newsprint 1790-2300 kWh/admt Catalog 200-2350 kWh/admt 200-2450 kWh/admt TMP newsprint 1850-2500 kWh/admt Catalog 2080 kWh/admt 200-2450 kWh/admt Catalog 2080 kWh/admt 200-2400 kWh/admt Catalog 2080 kWh/admt 200-2400 kWh/admt Chemi-mechanical fluff pulp 900 kWh/admt Newsprint 370 kWh/admt 200-2400 kWh/	imt)	p26	26			3.44			
Mechanical pulping calculated minimum 300-400 kWh/admt Single disk 2200 kWh/admt double disk 1800 kWh/admt additional - reject refining 200-300 kWh/admt Concept greenfield newsprint mill 1495 kWh/admt of paj would have excess steam / bark / methane 1475 kWh/admt TMP 1475 kWh/admt Pring, newsprint, (Canadian) 2.264 GJ/admt of pap Energy Savings - VS drivews over 50kW motors 30% Energy Savings, atural ventilation machine roo eliminate 160 Kw fan Anaerobic Treatment papermill sludges 85 kWh/admt SGW / PGW newsprint 1790-2300 kWh/admt SGW / PGW newsprint 1790-2300 kWh/admt TMP catalog 2100-2350 kWh/admt Catalog 200-2350 kWh/admt 200-2400 kWh/admt TMP newsprint 1790-2300 kWh/admt Catalog 200-2350 kWh/admt 200-2450 kWh/admt TMP newsprint 1850-2500 kWh/admt Catalog 2080 kWh/admt 200-2450 kWh/admt Catalog 2080 kWh/admt 200-2400 kWh/admt Catalog 2080 kWh/admt 200-2400 kWh/admt Chemi-mechanical fluff pulp 900 kWh/admt Newsprint 370 kWh/admt 200-2400 kWh/		<u> </u>		1988		2.32			
Single disk 2200 kWh/admt double disk 1800 kWh/admt additional - reject refining 200-300 kWh/admt Concept greenfield newsprint mill 1495 kWh/admt of paj would have excess steam / bark / methane 1475 kWh/admt TMP 1475 kWh/admt of paj Energy Savings - VS drivews over 50kW motors 30% Energy Savings, natural ventilation machine roo eliminate 160 Kw fan Anaerobic Treatment papermill sludges SGW / PGW newsprint 1790-2300 Catalog 2100-2350 kWh/admt SGW / PGW newsprint 1790-2300 MP newsprint 1260-1450 KWh/admt 50x0 2200-2450 MP newsprint 2200-2450 MP newsprint 1850-2500 MP average 1800 KWh/admt 1850-2500 KWh/admt Chemi-mechanical fluff pulp 900 Newsprint 3700 kWh/admt Newsprint 3700 kWh/admt	T	p26	26	87			272-363		
double disk 1800 kWh/admt additional - reject refining 200-300 kWh/admt Concept greenfield newsprint mill 1495 kWh/admt of pay TMP 1475 kWh/admt TMP 1475 kWh/admt Drying, newsprint, (Canadian) 2.264 GJ/admt of pay Energy Savings - VS drivers over 50kW motors 30% Energy Savings, natural ventilation machine roo eliminate 160 Kw fan Anaerobic Treatment papermill sludges 85 kWh/admt ESP on recovery boiler 6 kWh/admt SGW / PGW newsprint 1790-2300 kWh/admt SGW / PGW newsprint 1220-4450 kWh/admt TMP newsprint 2100-2350 kWh/admt Catalog 2100-2350 kWh/admt 200-2450 kWh/admt Catalog 200-2450 kWh/admt 200-2450 kWh/admt MP newsprint 1280-1450 kWh/admt 200-2450 kWh/admt MP newsprint 1280-1450 kWh/admt 200-2450 kWh/admt Catalog 2080 kWh/admt 200-2450 kWh/admt 200-2450 kWh/admt MP newsprint 1850-2500 kWh/admt 200-240 kWh/admt			-	-			1996		
additional - reject refining 200-300 kWh/admt Concept greenfield newsprint mill 1495 kWh/admt of pay would have excess steam / bark / methane 1475 kWh/admt TMP 1475 kWh/admt Recycle 475 kWh/admt Drying, newsprint, (Canadian) 2.264 GJ/admt of pap Energy Savings - VS drivews over 50kW motors 30% Energy Savings, natural ventilation machine roo eliminate 160 Kw fan Anaerobic Treatment papermill sludges 85 kWh/admt SGW / PGW newsprint 1790-2300 kWh/admt 2100-2350 kWh/admt SGW / PGW newsprint 1260-1450 kWh/admt 2200-2400 kWh/admt Catalog 2080 kWh/admt TMP newsprint 1260-1450 kWh/admt 2200-2400 kWh/admt Catalog 2080 kWh/admt Catalog 2000 kWh/admt Catalog 2080 kWh/admt Recycle liner 260 Recycle <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1633</td> <td></td> <td>1</td>							1633		1
Concept greenfield newsprint mill 1495 kWh/admt of pay would have excess steam / bark / methane TMP 1475 kWh/admt Recycle 475 kWh/admt Drying, newsprint, (Canadian) 2.246 G.J/admt of pap Energy Savings, natural ventilation machine roo eliminate 160 Kw fan Anaerobic Treatment papermill sludges SGW / PGW newsprint SGW / PGW newsprint 1790-2300 kWh/admt SGW / PGW newsprint 1260-1450 kWh/admt Doard 800-1290 kWh/admt 2200-2450 KWh/admt 2200-2450 MP newsprint 1260-1450 kWh/admt typical 1260-1450 kWh/admt 2200-2450 kWh/admt 2200-2450 kWh/admt 1850-2500 kWh/admt 1850-2500 kWh/admt 1850-2500 kWh/admt 1850-2500 kWh/admt 1850-2500 kWh/admt 1400-1600 kWh/admt 1400-1600 kWh/admt 1400-1600 kWh/admt 1400-1600 kWh/admt 1400-1600 <td>-</td> <td>p26</td> <td>26</td> <td>94</td> <td></td> <td></td> <td>181-272</td> <td></td> <td>í .</td>	-	p26	26	94			181-272		í .
would have excess steam / bark / methane TMP 1475 kWh/admt Recycle 475 kWh/admt Drying, newsprint, (Canadian) 2.264 GJ/admt of pape Energy Savings - VS drivews over 50kW motors 30% Energy Savings, natural ventilation machine roo eliminate 160 Kw fan Anaerobic Treatment papermill sludges 85 kWh/admt ESP on recovery boiler 6 kWh/admt SGW / PGW newsprint 1790-2300 catalog 2100-2350 kWh/admt Doard 800-1290 kWh/admt TMP newsprint 2200-2450 kWh/a TMP newsprint 2200-2400 kWh/a average 1800 kWh/a itssue 1400-1600 kWh/a Recycle liner 260 kWh/a Newsprint 370 kWh/a KWh/a	ar	p26		• ·			1356		í .
TMP 1475 kWh/admt Recycle 475 kWh/admt Drying, newsprint, (Canadian) 2.264 GJ/admt of pap Energy Savings - VS drivews over 50kW motors 30% Energy Savings, natural ventilation machine rooeliminate 160 Kw fan Anaerobic Treatment papermill sludges 85 kWh/admt ESP on recovery boller 6 kWh/admt SGW / PGW newsprint tabel and table and tab									i
Recycle 475 kWh/admt Drying, newsprint, (Canadian) 2.284 G.J/admt of pap. Energy Savings, -VS drivews over 50kW motors 30% Energy Savings, natural ventilation machine roo eliminate 160 Kw fan 30% Anaerobic Treatment papermill sludges 85 kWh/admt ESP on recovery boiler 6 kWh/admt SGW / PGW newsprint 1790-2300 kWha catalog 2100-2350 kWha board 800-1290 kWha typical 1260-1450 TMP newsprint 2200-2450 catalog 2080 kWh/a average 1800 kWh/a newsprint 1260-1450 kWh/a catalog 200-2450 kWh/a daverage 1800 kWh/a average 1800 kWh/a newsprint 1850-2500 kWh/a kWh/a tissue 1400-1600 kWh/a Recycle liner 260 kWh/a Newsprint 370 kWh/a							1338		
Drying, newsprint, (Canadian) 2.264 GJ/admt of pape Energy Savings - VS drivers over 50kW motors 30% Energy Savings, natural ventilation machine roo eliminate 160 Kw fan Anaerobic Treatment papermill sludges 85 kWh/admt ESP on recovery boller 6 kWWr/admt SGW / PGW newsprint 1790-2300 catalog 2100-2350 kWh/admt board 800-1290 kWh/admt TMP newsprint 2200-2450 kWh/admt catalog 2080 kWh/admt kWh/admt catalog 200-2350 kWh/admt typical 1260-1450 kWh/admt catalog 2080 kWh/admt doard 1670-2170 kWh/admt average 1800 kWh/admt catalog 2200-2400 kWh/admt catalog 2200-2400 kWh/admt catalog 1850-2500 kWh/admt catalog 2200-2400 kWh/admt catalog 2200-2400 kWh/admt catalog 2200-2400 kWh/admt Recycle liner 260							431		1
Energy Savings - VS drivews over 50kW motors 30% Energy Savings, natural ventilation machine rooeliminate 160 Kw fan Anaerobic Treatment papermill sludges 85 kWh/admt ESP on recovery boller 6 kWh/admt SGW / PGW newsprint 1790-2300 kWh/admt Catalog 2100-2350 kWh/admt 1790-2300 typical 1260-1450 typical 1260-1450 typical 1260-1450 kWh/admt catalog Catalog 200-8450 KWh/a catalog typical 1260-1450 kWh/a catalog Chemi-mechanical fluff pulp 98W 2200-2400 kWh/a Recycle liner 260 kWh/a chewsprint 370 kWh/a Kewsprint 370 kWh/a chewsprint Kewsprint 370 kWh/a chewsprint Kewsprint 440	-	p27	7	1993		1.95	401		
Energy Savings, natural ventilation machine roo eliminate 160 Kw fan Anaerobic Treatment papermill sludges 85 KWh/admt ESP on recovery boiler 6 kWh/admt SGW / PGW newsprint 1790-2300 kWh/a board 2100-2350 kWh/a typical 1260-1450 kWh/a typical 1260-1450 kWh/a catalog 2100-2350 kWh/a catalog 2000 kWh/a catalog 2000 kWh/a catalog 2080 kWh/a sverage 1800 kWh/a tissue 1400-1600 kWh/a tissue 1400-1600 kWh/a kWh/a kWh/a catalog 2000 kWh/a tissue 1400-1600 kWh/a kWh/a kWh/a kWh/a besprint 370 kWh/a other 440 kWh/a k		p27		1989		1.35			
Anaerobic Treatment papermill sludges 85 kWh/admt ESP on recovery boiler 6 kWh/admt SGW / PGW newsprint 1790-2300 catalog 2100-2350 kWh/admt board 800-1290 kWh/admt TMP newsprint 1280-1450 kWh/admt catalog 2100-2350 kWh/admt TMP newsprint 2200-2450 kWh/admt catalog 2080 kWh/admt kWh/admt chemi-mechanical fluff pulp 900 kWh/admt tissue 1400-1600 kWh/admt Recycle liner 260 kWh/admt other 440 kWh/admt kWh/admt Newsprint 370 kWh/admt kWh/admt kWh/admt kWh/admt		p23		1990					(
ESP on recovery boiler 6 kWh/admt SGW / PGW newsprint 1790-2300 kWh/admt catalog 2100-2350 kWh/admt board 800-1290 kWh/admt typical 1260-1450 kWh/admt TMP newsprint 2200-2450 kWh/admt catalog 2080 kWh/admt chemi-mechanical fluff pulp 900 kWh/admt P&W 2200-2400 kWh/admt Wh/admt Recycle liner 260 kWh/admt Newsprint 370 kWh/admt Wh/admt where 440 kWh/admt Wh/admt		p23		1989			77		(
SGW / PGW newsprint 1790-2300 kWh/a catalog 2100-2350 kWh/a board 800-1290 kWh/a typical 1260-1450 kWh/a TMP newsprint 2200-2450 catalog 2800 kWh/a catalog 2800 kWh/a catalog 2800 kWh/a catalog 1870-2170 kWh/a average 1800 kWh/a catalog 2080 kWh/a catalog 2080 kWh/a catalog 1870-2170 kWh/a catalog 1850-2500 kWh/a chemi-mechanical fluff pulp 900 kWh/a tissue 1400-1600 kWh/a kWh/a P&W 2200-2400 kWh/a kWh/a Newsprint 370 kWh/a kWh/a other 440 kWh/a kWh/a kWh/a kWh/a kWh/a kWh/a		p30		1909			5		
catalog 2100-2350 kWh/ad board 800-1290 kWh/ad typical 1260-1450 kWh/ad TMP newsprint 2200-2450 kWh/ad catalog 2080 kWh/ad board 1670-2170 kWh/ad board 1670-2170 kWh/ad catalog 2080 kWh/ad chemi-mechanical fluff pulp 900 kWh/ad Chemi-mechanical fluff pulp 900 kWh/ad Recycle liner 260 kWh/ad Newsprint 370 kWh/ad whad Newsprint 370 kWh/ad whad kerycle liner 440 kWh/ad kerycle keryprint 370 kWh/ad keryprint 370 kWh/ad keryprint	-	psu	0	1977			5		
catalog 2100-2350 kWh/ad board 800-1290 kWh/ad typical 1260-1450 kWh/ad TMP newsprint 2200-2450 kWh/ad catalog 2080 kWh/ad board 1670-2170 kWh/ad board 1670-2170 kWh/ad catalog 2080 kWh/ad chemi-mechanical fluff pulp 900 kWh/ad Chemi-mechanical fluff pulp 900 kWh/ad Recycle liner 260 kWh/ad Newsprint 370 kWh/ad whad Newsprint 370 kWh/ad whad kerycle liner 440 kWh/ad kerycle keryprint 370 kWh/ad keryprint 370 kWh/ad keryprint	mt	p34	4				1736-2086		
board 800-1290 kWh/au typical 1260-1450 kWh/au TMP newsprint 2200-2450 kWh/au catalog 2080 kWh/au board 1670-2170 kWh/au average 1800 kWh/au catalog 2080 kWh/au board 1670-2170 kWh/au newsprint 1850-2500 kWh/au chemi-mechanical fluff pulp 900 kWh/au tissue 1400-1600 kWh/au kWh/au P&W 2200-2400 kWh/au Newsprint 370 kWh/au other 440 kWh/au wh/au wh/au wh/au Newsprint 370 kWh/au wh/au wh/au where 440 kWh/au wh/au		p34	94				1905-2131		1
typical 1260-1450 kWh/at TMP newsprint 2200-2450 kWh/at catalog 2080 kWh/at board 1670-2170 kWh/at average 1800 kWh/at newsprint 1550-2500 kWh/at tissue 1400-1600 kWh/at tissue 1400-1600 kWh/at P&W 2200-2400 kWh/at Newsprint 370 kWh/at other 440 kWh/at Newsprint 370 kWh/at							726-1170		h
TMP newsprint 2200-2450 kWh/au catalog 2080 kWh/au board 1670-2170 kWh/au average 1800 kWh/au newsprint 1850-2500 kWh/au Chemi-mechanical fluff pulp 900 kWh/au P8W 2200-2400 kWh/au Recycle liner 260 kWh/au Newsprint 370 kWh/au other 440 kWh/au Newsprint 370 kWh/au				1000					1
catalog 2080 kWh/au board 1670-2170 KWh/au average 1800 kWh/au newsprint 1850-2500 kWh/au newsprint 1850-2500 kWh/au tissue 1400-1600 kWh/au P&W 2200-2400 kWh/au Newsprint 370 kWh/au other 440 kWh/au Newsprint 370 kWh/au other 440 kWh/au				1988			1143-1315		
board 1670-2170 kWh/a average 1800 kWh/a newsprint 1850-2500 kWh/a Chemi-mechanical fluff pulp 900 kWh/a tissue 1400-1600 kWh/a P&W 2200-2400 kWh/a Newsprint 370 kWh/a other 440 kWh/a Newsprint Mill, p 35 440							1995-2222		
average 1800 kWh/au newsprint 1850-2500 kWh/au Chemi-mechanical fluff pulp 900 kWh/au tissue 1400-1600 kWh/au P&W 2200-2400 kWh/au Recycle liner 260 kWh/au Newsprint 370 kWh/au other 440 kWh/au Newsprint Mill, p 35 Mexicital Au							1633		H
newsprint 1850-2500 kWh/ad Chemi-mechanical fluff pulp 900 kWh/ad tissue 1400-1600 kWh/ad P&W 2200-2400 kWh/ad Recycle liner 260 kWh/ad Newsprint 370 kWh/ad other 440 kWh/ad Newsprint Mill, p 35 KWh/ad				1000			1514-1968		
Chemi-mechanical fluff pulp 900 kWh/at tissue 1400-1600 kWh/at P&W 2200-2400 kWh/at Recycle liner 260 kWh/at Newsprint 370 kWh/at other 4400 kWh/at Newsprint Mill, p 35 Image: state st				1988			1633		
tissue 1400-1600 kWh/aa P&W 2200-2400 kWh/aa Recycle liner 260 kWh/aa Newsprint 370 kWh/aa other 440 kWh/aa Newsprint Mill, p 35				1994			1665-2268		
P&W 2200-2400 kWh/au Recycle liner 260 kWh/au Newsprint 370 kWh/au other 440 kWh/au Newsprint Mill, p 35 200 200							816		l
Recycle liner 260 kWh/au Newsprint 370 kWh/au other 440 kWh/au Newsprint Mill, p 35							1270-1451		ļ
Newsprint 370 kWh/au other 440 kWh/au Newsprint Mill, p 35							1995-2177		ļ
other 440 kWh/au Newsprint Mill, p 35							236		
Newsprint Mill, p 35							336		
	nt						399		
N									
News mill, 1980-85			Nev	wsprint Mill N	lodel 2000				
GJ/admt MMBtu/adt kWh/a	nt kWh	n/adt	GJ/admt	MMBtu/adt	kWh/admt	kWh/adt			
Wood prep	23	21			45	41			
	24	1473			885	803			
recycle fiber		73			160	145			
stock prep		68			30	27			
	80	240	2.23	1.92	290	263			
waste water	80 75	31	2.20	1.32	85	203			
Total 3.36 2.89 2	80	1906	2.23	1.92	1495	1356	+		(

The Energy Roadmap, Forest Prod	lucts As	sociatio	on of Ca	nada (FF	PAC)					
Tom Browne, Paprican										
Thermal Consumption, unless noted										
								Median Bl.		
	Minimum	Maximum	Median		Min	Max	Median	Kraft Mill		
	GJ/odmt	GJ/odmt	GJ/odmt		MMBtu/adt	MMBtu/adt	MMBtu/adt	MMBtu/adt		
Kraft pulping, Continuous Digester	1.50	7.00	3.00		1.43	6.69	2.87	11.39		
Kraft pulping, Batch Digester	12.40	9.05	5.10		11.85	8.65	4.87			
Kraft Evaporators, No Direct Contact Concentrator	3.00	9.90	6.00		2.87	9.46	5.73			
Kraft Evaporators, Direct Contact Concentrator	2.10	30.00	2.95		2.01	28.66	2.82			
Kraft RB, Low Odor, FUEL	20.00	32.00	28.00		19.11	30.57	26.75			
Kraft RB, Direct Contact Concentrator, FUEL	18.00	37.00	26.00		17.20	35.35	24.84			
Kraft RB, Low Odor	1.00	5.90	2.50		0.96	5.64	2.39			
Kraft RB, Direct Contact Concentrator	0.90	5.60	1.90		0.86	5.35	1.82			
Kraft RB, Low Odor, Net Thermal Production	19.00	9.00	16.00		18.15	8.60	15.29			
Kraft RB, Direct Contact Concentrator, Net Thermal										
Production	14.00	9.00	11.00		13.38	8.60	10.51			
Kraft Causticizing, FUEL	1.49	3.20	2.10		1.42	3.06	2.01			
Kraft Causticizing	0.00	1.22	0.20		0.00	1.17	0.19			
Kraft Bleaching	1.00	6.60	3.20		0.96	6.31	3.06			
Mechanical Pulping / TMP	0.00	3.30	0.60		0.00	3.15	0.57			
Mechanical Pulping / TMP, Assumed SGW	1.00	3.30	1.50		0.96	3.15	1.43			
Mechanical Pulping / TMP, Production	4.00	0.00	0.00		3.82	0.00	0.00			
Mechanical Pulping / Assumed TMP, Production	4.00	1.40	3.50		3.82	1.34	3.34			
Mechanical Pulping / TMP, Net Production	4.00	(3.40)	(0.50)		3.82	(3.25)	(0.48)			
Paper Machine, Newsprint	3.70	11.00	5.30		3.53	10.51	5.06			
Paper Machine, Uncoated Groundwood Specialties	3.80	8.10	6.10		3.63	7.74	5.83			
Paper Machine, Printing & Writing	4.10	11.50	6.10		3.92	10.99	5.83			
Pulp Machine, Steam Dryer	3.50	6.40	4.50		3.34	6.11	4.30			
Deink / Recycle			2.00				1.91			
	Minimum	Maximum	Median		Minimum	Maximum	Median	Minimum	Maximum	Median
	Electric	Electric	Electric		Electric	Electric	Electric	Electric	Electric	Electric
	kWh/odmt	kWh/odmt	kWh/odmt		kWh/adt	kWh/adt	kWh/adt	MMBtu/adt	MMBtu/adt	MMBtu/adt
Mechanical Pulping / TMP	2100	3900	2700		2116	3930	2721	2006	3726	2580
Deink / Recycle			500				504			478
Paper & Pulp Machines			500				504			478
			000				004			470
TMP Newsprint, (Benchmarking)	2400	3000	2800		2419	3023	2822	2293	2866	2675
This Newspirit, (Denominariting)	2400	0000	2000		2410	0020	2022	2200	2000	2010
Energy Use Handbook, Canada, p 86										
Energy use nanubook, canada, p oo										
	1998	1999	2000	2001	1998	1999	2000	2001		
	mJ/odmt	mJ/odmt	mJ/odmt	mJ/odmt	MMBtu/adt	MMBtu/adt	MMBtu/adt	MMBtu/adt		
Pulp Mills	36,772	36,382	35,196	37,402	35.13	34.76	33.62	35.73		
Paper Mills, except Newsprint	17,437	16,932	16,276	14,905	16.66	16.18	15.55	14.24		
Paper Mills, except Newsprint Newsprint Mills	31,877		32,588	31,361	30.45	31.71	31.13	29.96		
		33,189	32,588		30.45					
Paperboard Mills	19,392	17,801	10,989	16,837	18.53	17.01	16.23	16.09		
Denskmarking Fragmenes in Duin America'. 1	Franz's T			- #42						
Benchmarking Energy use In Pulp & paper Industry,	Francis, 10	wers, Brow	ne Kererenc	e#13						
Discologi Koofi Merikat Dut										
Bleached Kraft Market Pulp										
				Thermal	Net Thermal		_	_	Thermal	Net Thermal
1		_		Production		Electricity	Fuel	Thermal	Production	Production
	Electricity	Fuel	Thermal		Production					MMBtu/adt
	kWh/odmt	GJ/odmt	GJ/odmt	GJ/odmt	GJ/odmt	kWh/adt	MMBtu/adt	MMBtu/adt	MMBtu/adt	
25 Percentile	kWh/odmt 565.1	GJ/odmt 25.7	GJ/odmt 16.46	GJ/odmt 14.75	GJ/odmt 0.9	kWh/adt 540	24.55	15.73	14.09	0.86
Median	kWh/odmt 565.1 656.2	GJ/odmt 25.7 29.45	GJ/odmt 16.46 19.06	GJ/odmt 14.75 16.36	GJ/odmt 0.9 3.48	kWh/adt 540 627	24.55 28.14	15.73 18.21	14.09 15.63	0.86
Median 75 Percentile	kWh/odmt 565.1 656.2 713.1	GJ/odmt 25.7	GJ/odmt 16.46 19.06 21.26	GJ/odmt 14.75	GJ/odmt 0.9	kWh/adt 540 627 681	24.55 28.14 29.22	15.73 18.21 20.31	14.09 15.63 16.71	0.86 3.32 4.46
Median	kWh/odmt 565.1 656.2	GJ/odmt 25.7 29.45	GJ/odmt 16.46 19.06	GJ/odmt 14.75 16.36	GJ/odmt 0.9 3.48	kWh/adt 540 627	24.55 28.14	15.73 18.21	14.09 15.63	0.86
Median 75 Percentile Modern	kWh/odmt 565.1 656.2 713.1	GJ/odmt 25.7 29.45	GJ/odmt 16.46 19.06 21.26	GJ/odmt 14.75 16.36	GJ/odmt 0.9 3.48	kWh/adt 540 627 681	24.55 28.14 29.22	15.73 18.21 20.31	14.09 15.63 16.71	0.86 3.32 4.46
Median 75 Percentile	kWh/odmt 565.1 656.2 713.1	GJ/odmt 25.7 29.45	GJ/odmt 16.46 19.06 21.26	GJ/odmt 14.75 16.36	GJ/odmt 0.9 3.48	kWh/adt 540 627 681	24.55 28.14 29.22	15.73 18.21 20.31	14.09 15.63 16.71	0.86 3.32 4.46
Median 75 Percentile Modern	kWh/odmt 565.1 656.2 713.1	GJ/odmt 25.7 29.45	GJ/odmt 16.46 19.06 21.26	GJ/odmt 14.75 16.36	GJ/odmt 0.9 3.48	kWh/adt 540 627 681	24.55 28.14 29.22	15.73 18.21 20.31	14.09 15.63 16.71	0.86 3.32 4.46
Median 75 Percentile Modern	kWh/odmt 565.1 656.2 713.1 511	GJ/odmt 25.7 29.45 30.59	GJ/odmt 16.46 19.06 21.26 10.9	GJ/odmt 14.75 16.36 17.49 Thermal	GJ/odmt 0.9 3.48 4.67	kWh/adt 540 627 681 488	24.55 28.14 29.22 0.00	15.73 18.21 20.31 10.41	14.09 15.63 16.71 0.00 Thermal	0.86 3.32 4.46 0.00 Net Thermal
Median 75 Percentile Modern	kWh/odmt 565.1 656.2 713.1 511 Electricity	GJ/odmt 25.7 29.45 30.59 Fuel	GJ/odmt 16.46 19.06 21.26 10.9 Thermal	GJ/odmt 14.75 16.36 17.49 Thermal Production	GJ/odmt 0.9 3.48 4.67 Net Thermal Production	kWh/adt 540 627 681 488 Electricity	24.55 28.14 29.22 0.00	15.73 18.21 20.31 10.41 Thermal	14.09 15.63 16.71 0.00 Thermal Production	0.86 3.32 4.46 0.00 Net Thermal Production
Median 75 Percentile Modern	kWh/odmt 565.1 656.2 713.1 511	GJ/odmt 25.7 29.45 30.59	GJ/odmt 16.46 19.06 21.26 10.9	GJ/odmt 14.75 16.36 17.49 Thermal	GJ/odmt 0.9 3.48 4.67	kWh/adt 540 627 681 488	24.55 28.14 29.22 0.00	15.73 18.21 20.31 10.41	14.09 15.63 16.71 0.00 Thermal	0.86 3.32 4.46 0.00 Net Thermal
Median 75 Percentile Modern	kWh/odmt 565.1 656.2 713.1 511 Electricity	GJ/odmt 25.7 29.45 30.59 Fuel	GJ/odmt 16.46 19.06 21.26 10.9 Thermal	GJ/odmt 14.75 16.36 17.49 Thermal Production	GJ/odmt 0.9 3.48 4.67 Net Thermal Production GJ/odmt	kWh/adt 540 627 681 488 Electricity	24.55 28.14 29.22 0.00	15.73 18.21 20.31 10.41 Thermal	14.09 15.63 16.71 0.00 Thermal Production	0.86 3.32 4.46 0.00 Net Thermal Production
Median 75 Percentile Modern Newsprint	kWh/odmt 565.1 656.2 713.1 511 Electricity kWh/odmt	GJ/odmt 25.7 29.45 30.59 Fuel GJ/odmt	GJ/odmt 16.46 19.06 21.26 10.9 Thermal GJ/odmt	GJ/odmt 14.75 16.36 17.49 Thermal Production GJ/odmt	GJ/odmt 0.9 3.48 4.67 Net Thermal Production GJ/odmt	kWh/adt 540 627 681 488 Electricity kWh/adt	24.55 28.14 29.22 0.00 Fuel MMBtu/adt	15.73 18.21 20.31 10.41 Thermal MMBtu/adt	14.09 15.63 16.71 0.00 Thermal Production MMBtu/adt	0.86 3.32 4.46 0.00 Net Thermal Production MMBtu/adt
Median 75 Percentile Modern Newsprint 25 Percentile	kWh/odmt 565.1 656.2 713.1 511 Electricity kWh/odmt 2779.3	GJ/odmt 25.7 29.45 30.59 Fuel GJ/odmt 0	GJ/odmt 16.46 19.06 21.26 10.9 Thermal GJ/odmt 5.54	GJ/odmt 14.75 16.36 17.49 Thermal Production GJ/odmt 0	GJ/odmt 0.9 3.48 4.67 	kWh/adt 540 627 681 488 Electricity kWh/adt 2655	24.55 28.14 29.22 0.00 Fuel MMBtu/adt 0.00	15.73 18.21 20.31 10.41 Thermal MMBtu/adt 5.29	14.09 15.63 16.71 0.00 Thermal Production MMBtu/adt 0.00	0.86 3.32 4.46 0.00 Net Thermal Production MMBtu/adt 2.51

The Energy Roadmap, Forest Proc	lucts As	sociatio	on of Ca	nada (FF	AC)							
Thermal Consumption, Table IV					,							
· · ·	25		75							Median BI.	Avg	Avg - 25% &
	Percentile	Median	Percentile	Modern		25 Percentile	Median	75 Percentile	Modern	Kraft Mill	Modern &	Modern Kraft
	GJ/odmt	GJ/odmt	GJ/odmt	GJ/odmt		MMBtu/adt	MMBtu/adt	MMBtu/adt	MMBtu/adt	MMBtu/adt	25% Perc.	MMBtu/adt
Kraft pulping Continuous	1.48	2.43	2.94	2.2		1.41	2.32	2.81	2.10	10.49	2.39	7.13
Kraft Pulping, Batch	2.84	4.33	4.94	3.5		2.71	4.14	4.72	3.34			
Kraft Pulping, M&D	4.8	5.5	6.04	na		4.59	5.25	5.77				
Kraft Evaporators, Indirect Contact	3.07	5.03	5.91	3.2		2.93	4.81	5.65	3.06		3.00	
Kraft Evaporators, Direct Contact	2.28	2.9	2.96	na		2.18	2.77	2.83				
Kraft Bleaching, Softwood	1.95	2.57	2.33	1.7		1.86	2.46	2.23	1.62		1.74	
Kraft Bleaching, Hardwood	1.02	1.62	2.33	na		0.97	1.55	2.23				
Kraft Pulping, Recausticizing, FUEL (table VI)	1.96	2.15	2.34	1.7		1.87	2.05	2.24	1.62		1.75	
Mechanical Pulping, TMP for News	0.04	0.39	0.56	0		0.04	0.37	0.54	0.00		0.02	
Mechanical Pulping, TMP for Paper	0	0.03	0.67	0		0.00	0.03	0.64	0.00		0.00	
Paper Machine, Newsprint	4.77	5.36	6.62	4.9		4.56	5.12	6.32	4.68		4.62	
Paper Machine, Uncoated Groundwood	4.93	6.21	7.01	na		4.71	5.93	6.70				
Paper Machine, Printing & Writing	5.74	6.32	8.31	5.1		5.48	6.04	7.94	4.87		5.18	
Paper Machine, Kraft papers	8.47	9.1	9.11	na		8.09	8.69	8.70				
Paper Machine, Board	6.92	6.94	7.18	3.4		6.61	6.63	6.86	3.25		4.93	
Pulp Machine, Dryer	4.14	4.59	5.26	2.3		3.96	4.39	5.03	2.20		3.08	
Table VII - Thermal Energy Consumption of Boilers												
Power Boilers	0	0.02	0.06	0		0.00	0.02	0.06	0.00			
Recovery Boiler, low Odor	0.11	0.14	0.19	0.05		0.11	0.13	0.18	0.05			
Recovery Boiler, Direct Contact	0.14	0.16	0.17	na		0.13	0.15	0.16				

Energy Cost Reduction	on in the	Pulp and	Paper In	dustry, Pa	prican, N	lov 1999	Refere	ence #12					
Table 5.2, page 79 Bleached		Fleetric	Fleatric	Chaom	Fleetric	Total							
	Steam GJ/admt	Electric kWh/admt	Electric kWh/adt	Steam MMBtu/adt	Electric MMBtu/adt	I otal MMBtu/adt							
1988 Avg Us	15.2	840			2.6			-					
1988 Best Swedish	12.4	720	-		2.0			-					
2000 Model	7.8	640			2.0								
	7.0	0+0	500	0.7	2.0	0.7							
Table 5.3, p 80, Steam Consu	mption (G.J/	admt)							Steam, MM	Btu/adt			
			wood			Hardy	wood		0.000,		Softwood		
							1990					1990	
	1990 SA	1990 SA	1990 NA	1990 Europe	Model	1990 NA	Europe		1990 SA	1990 SA	1990 NA	Europe	Avg
Woodroom	0	0	0.00		0.00	0.38			0.00	0.00	0.00	0.17	0.04
Digester, Washing, Screening	2.34	2	3.33	3.20	1.79	1.94	2.20		2.01	1.72	2.86	2.75	2.34
O ₂ Delignification	1.32	0.5	0.18	0.20	0.40	0.31	0.00		1.13	0.43	0.15	0.17	0.47
Bleaching	2.84	0.4	0.58	0.40	0.00	3.38	2.63		2.44	0.34	0.50	0.34	0.91
Chem Prep	0.31	0.4	0.37	0.30	0.11	0.17	0.30		0.27	0.34	0.32	0.26	0.30
Recasuticizing & Kiln	0.4	0.3	0.00		0.00	0.00	0.30		0.34	0.26	0.00	0.00	0.15
Evaporation & Stripping	3.9	4.2	5.40	4.20	3.34	3.77	3.04		3.35	3.61	4.64	3.61	3.80
Sub Total	11.11	7.80	9.86	8.50	5.64	9.95	8.87		9.55	6.71	8.48	7.31	8.01
UnBleached	6.95	6.90	9.10	7.90	5.24	6.26	6.24		5.98	5.93	7.82	6.79	6.63
Steam & Chemical Recovery	3.28	1.7	2.61	1.60	1.22	1.05	0.92		2.82	1.46	2.24	1.38	1.98
Pulp Drying	2.69	2.7	4.49	3.10	2.32	4.13	2.98		2.31	2.32	3.86	2.67	2.79
Total	17.09	12.2	16.96	13.20	9.18	15.12	10.77		16.2	11.6	16.1	12.5	14.1
Table 5.4, p 80, Electric Powe	er Consumpt		mt) wood			SW		Hardwood		Electric, M	MBtu/adt	Softwood	
		3011	woou	1	A	300		1990				30110000	1990
	1990 NA	1990 NA	1000 Chile	1990 Europe	Avg kWh/adt	Model	1990 NA		Avg kWh/adt	1990 NA	4000 NIA	1000 Chile	
Woodroom	1990 NA 24	1990 NA 43						Europe 28		20.6		1990 Chile 31.8	
Digester, Washing, Screening	168	43	180							20.6			
O ₂ Delignification		inc above	inc above		100			inc above	141	-	inc above		
	inc above			inc above		inc above	inc above						inc above
Bleaching Cham Bran	124	33	132	110	90	55	92	94	84	106.6	-	113.5	94.6
Chem Prep	20	64		05	20		4.4	10	45	25.0	0.0		
Recasuticizing & Kiln Evaporation & Stripping	30 125	61 75	23 98			60 35				25.8 107.5		19.8 84.3	21.5 25.8
Sub Total	471	393				30	-	-		405.0			25.0 335.3
UnBleached	347	393				275			269	298.4	309.5	290.6	240.8
Unbleacheu	547	300	330	200	300	213		231	209	230.4	309.3	230.0	240.0
Steam & Chemical Recovery	191	18	124	110	100	90	91	150	109	164.2	15.5	106.6	94.6
Wastewater Treatment	68	108				40	-			58.5			34.4
Pulp Drying	155	150				165		122	107	133.3			120.4
Total	885	669				625			-			681.8	-

Energy Cost Reducti			Paper In	dustry, Pa	prican, N	lov 1999	Refere	ence #12					
Table 7.1, page 120 Range o	of Energy Co												
		Steam		Gas		Electric		Electric	Electric		Steam		Gas
		GJ/mt		GJ/mt		kWh/mt		kWh/adt	kWh/adt		MMBtu/t		MMBtu/
	Min	Max	Avg	Avg	Min	Max	Avg	Avg	Min	Min	Max	Avg	Avg
Newsprint	3.4	5.5	4.5		420	630	525	476	381	2.9	4.7	3.8	
Coated groundwood	5.1	5.6	5.4		550	820	685	621	499	4.4	4.8	4.6	
Uncoated woodfree	4.3	7.2	5.8		550	670	610	553	499	3.7	6.2	4.9	
Coated woodfree	3.7	7.7	5.7		440		670		399	3.2			
Linerboard	3.4	8.8	6.1		515		588		467	2.9			
Tissue	2.6	4.5	3.6	2.2	835		943		757	2.2			
Average	3.8	6.6	5.2	2.2	552	788	670		500	3.2			
Average	0.0	0.0	0.2			100	0.0	000	000	0.2	0.0		
Table 7.2, page 120 Typical	Energy Cons	umption - Ne	ewsprint							Energy reg	uired for	Lime Kilns.	P 89
Tuble 112, page 120 Typical										Linergy ree	uncaror		
								1					
	Steam	Electric	Electric	Steam	Electric	Total		1			GJ/admt	MMBtu/adt	
	GJ/admt	kWh/admt	kWh/adt	MMBtu/adt	MMBtu/adt	MMBtu/adt					Paper	Paper	
Stock Preparation	0.66	100	91	0.6	0.3	0.9				Theoretical	0.77	0.66	
Forming & Pressing	0.3	142	129	0.3	0.4	0.7			82 Cana	dian survey	2.69	2.31	
Drying & Finishing	3.2	45	41	2.8	0.1	2.9		1		dern Design	1.55		
Auxiliary systems	0		38	0.0	0.1	0.1		1					
Total	4.16	329	298	3.6							GJ/t Lime	MMBtu/t Lime	MMBtu/t
										Theoretical	2.88		
Table 8.1, page 148 Gross E	nerav Consu	mption							82 Cana	dian survev	10.1	8.68	
- abie eiii, page : ie eieee =	Steam	Electric	Electric	Steam	Electric	Total			02 04.14	alan barroy		0.00	2.0
	kWh/admt	kWh/admt	kWh/adt	MMBtu/adt	MMBtu/adt	MMBtu/adt			Mo	dern Design	5.8	4.99	1.3
Kraft	2500	560	508	7.7	1.7	9.5			ivio.	Com Debigin	0.0	4.00	1.0
TMP/CTMP	200	3000	2721	0.6	9.3	9.9							
Deinked pulp	200	600	544	0.0	1.9								
	220	000	344	0.7	1.5	2.5							
Table 8.4, page 151 Typical	nowor roquir	od for rocycl	ing and doir	king									
Table 6.4, page 151 Typical		Electric	ing and den	Electric	Electric		Electric						
				kWh/adt	kWh/adt		MMBtu/adt						
	Min	kWh/admt	A			Min		A					
000 to list other and 8 was a diverse		Max	Avg 450	Avg 408	Min		Max	Avg					-
OCC to linerboard & medium	300	600				0.9	1.9						
ONP/OMG to newsprint	500	800	650		454		2.5						
MOW to P&W	600	1000	800	726	544	1.9	3.1						
MOW to tissue	700	800	750	680	635	2.2	2.5	2.3					
Table 8.2, p 148, Recycling p	rocesses												
		_				Avg.		Avg.					
	Steam	Electric		Avg. Electric		Electric	Avg. Steam		Avg. Total				
	kWh/admt	kWh/admt	kWh/admt	kWh/admt	kWh/adt	kWh/adt	MMBtu/adt		MMBtu/adt				
Pulping	0-400	62-74	200	68	56		0.6		0.8				
Coarse Screening		25-40		33	23	30	0.0		0.1				
Flotation		38-90		64	34		0.0		0.2				
Lightweight Cleaning		15-29		22	14		0.0		0.1				
Heavyweight Cleaning		27-40		33.5	24	30	0.0	0.1	0.1				
Fine Screening		31-69		50	28	45	0.0	0.2	0.2				
Washing / Thickening /	1												1
Kneading / Dispersing		17-19		18	15	16	0.0	0.1	0.1				
Bleaching	0-535	30-100	267.5	65		59	0.8		1.0				

Tab C – MECS Energy Distribution

Excel Workbook: MECS Energy Distribution

Tab D – BAT Energy Distribution

Excel Workbook: BAT Energy Distribution

Tab E – Practical Minimum Energy Distribution

Excel Workbook: Pract Min Energy Distribution

Tab F – Theoretical Minimum Energy Distribution

Excel Workbook: Theor Min Energy Distribution

Tab G – Drying Calculations

Excel Workbook: Drying Calculations

	MI	NIMUM THEORETIC	LE A CAL DRYING ENERGY Press Solids)
sheet temperature evaporation temperature heat of evaporation at 70 C steam temperature in dryer can heat of condensation at 120 C specific heat of water specific heat of fiber moisture ratio of entering sheet	50 100 2333 120 2203 4.18 1.25 1.38	C C kJ/kg C kJ/kg kJ/kg/C kJ/kg/C kg water/kg fiber	Notes: Assumes no energy needed for: •heating supply air •heating leakage air •heat leakage through hood walls and roof
moisture ratio of exiting sheet heat of sorption moisture ratio @ start of desorption moisture ratio @ end of desorption	0.05 175 0.3 0.05	kg water/kg fiber kJ/kg kg water/kg fiber kg water/kg fiber	
energy to heat water energy to heat fiber energy to evaporate water energy to desorb water	288.4 62.5 3103 44	kJ/kg fiber kJ/kg fiber kJ/kg fiber kJ/kg fiber	mass of all water x specific heat x temperature change mass of fiber x specific heat x temperature change mass of evaporated water x heat of vaporization mass of desorbed water x heat of sorption
total energy required total energy required kJ energy req'd / kJ steam condensed	3498 2.86 1.19	kJ/kg fiber MMBTU/FST pape kJ/kJ	er total energy / (heat of condensation x mass evaporated water)

	<u>MI</u>	NIMUM THEORETI	BLE B CAL DRYING ENERGY Press Solids)
sheet temperature evaporation temperture heat of evaporation at 70 C steam temperature in dryer can heat of condensation at 120 C specific heat of water specific heat of fiber moisture ratio of entering sheet moisture ratio of exiting sheet	50 100 2333 120 2203 4.18 1.25 1 0.05	C C kJ/kg C kJ/kg/C kJ/kg/C kg water/kg fiber kg water/kg fiber	Notes: Assumes no energy needed for: •heating supply air •heating leakage air •heat leakage through hood walls and roof
heat of sorption	175	kJ/kg	
moisture ratio @ start of desorption	0.3	kg water/kg fiber	
moisture ratio @ end of desorption	0.05	kg water/kg fiber	
energy to heat water	209	kJ/kg fiber	mass of all water x specific heat x temperature change
energy to heat fiber	62.5	kJ/kg fiber	mass of fiber x specific heat x temperature change
energy to evaporate water	2216	kJ/kg fiber	mass of evaporated water x heat of vaporization
energy to desorb water	44	kJ/kg fiber	mass of desorbed water x heat of sorption
total energy required	2532	kJ/kg fiber	er
total energy required	2.07	MMBTU/FST pap	
kJ energy req'd / kJ steam condensed	1.21	kJ/kJ	total energy / (heat of condensation x mass evaporated water)

	MIN	<u>TABLE</u> MUM THEORETICA	EC IL DRYING ENERGY
		(70% Exiting Pi	
sheet temperature evaporation temperature heat of evaporation at 70 C steam temperature in dryer can heat of condensation at 120 C specific heat of water specific heat of fiber moisture ratio of entering sheet	50 100 2333 120 2203 4.18 1.25 0.4286	C C kJ/kg C kJ/kg kJ/kg/C kJ/kg/C kg water/kg fiber	Notes: Assumes no energy needed for: •heating supply air •heating leakage air •heat leakage through hood walls and roof
moisture ratio of exiting sheet heat of sorption moisture ratio @ start of desorption moisture ratio @ end of desorption	0.05 175 0.3 0.05	kg water/kg fiber kJ/kg kg water/kg fiber kg water/kg fiber	
energy to heat water energy to heat fiber energy to evaporate water energy to desorb water	89.6 62.5 883 44	kJ/kg fiber kJ/kg fiber kJ/kg fiber kJ/kg fiber	mass of all water x specific heat x temperature change mass of fiber x specific heat x temperature change mass of evaporated water x heat of vaporization mass of desorbed water x heat of sorption
total energy required total energy required kJ energy req'd / kJ steam condensed	1079 0.88 1.29	kJ/kg fiber MMBTU/FST pape kJ/kJ	er total energy / (heat of condensation x mass evaporated water)

MECS Steam			•• =•						-	Steam	Steam	Steam
MECS Steam		detail in MM	Btu/ton							TBtu	TBtu	MMBtu/ton
	Prodn	Wood	Diarton	Screening			Lime Kiln /			i Diu	i Diu	WIWID(d/ton
CHEMICAL PULP	(Kton/yr)	Prep	Cooking	/ Cleaning	Washing	Evap	Chem Prp	Bleaching	Other			
Avg Area (MMBtu/ton)	(1401#31)	0.25	2.44	-	-	3.49	0.57	1.05	-			7.8
Subt Area (kton, TBtu)	53,248	13.3	130.1	-		186.0	30.3	56.0	-	415.7	TBtu	7.8
Sulfite	532	0.25	2.85			2.20	0.60	2.10			4.3	8.0
Kraft, UnBleached	19,917	0.25	2.51			3.50	0.58	2.10			136.3	6.8
Kraft, Bleached, SW	13,848	0.25	2.52			3.55	0.57	1.85			121.0	8.7
Kraft, Bleached, HW	15,404	0.25	2.32			3.50	0.56	1.90			131.4	8.5
NSSC, SemiChem	3,547	0.25	2.24			3.40	0.53	1.50			22.8	6.4
	0,0-11	Wood	Grinding /	Screening		0.40	0.00				22.0	0.4
MECHANICAL PULP		Prep	Refining	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		0.24	(0.65)	-	1.88	-						1.5
Subt Area (kton, TBtu)	4.680	1.1	(3.0)	-	8.8	-			-	6.9	TBtu	1.5
SGW	1,416	0.25	1.31		1.60				-	0.0	4.5	3.2
TMP	3,264	0.23	(1.50)		2.01						2.4	0.7
	-,		(•
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)				0.93								0.9
Subt Area (kton, TBtu)	28,509		-	26.7					-	26.7	TBtu	0.9
OCC	16,683			0.84					-		14.0	0.8
MOW, non deinked (tissue)	3,658			0.84							3.1	0.8
ONP, deinked	4,442			1.47							6.5	1.5
MOW, deinked	2,021			1.47							3.0	1.5
Pulp Sub	1,705										-	-
Subtotal	86,437									449.2	449.2	5.2
				Dryers,	Dry End /		Coating,	Super Cal,				
PAPER MACHINE		Wet End	Pressing	Drying	Calender		Prep	heat				
Avg Area (MMBtu/ton)		1.08	- 1	4.24	-		0.02	0.05				5.4
Subt Area (kton, TBtu)	99,545	107.8	-	422.3	-		2.5	5.3	_	537.8	TBtu	5.4
Corrugating Medium	9,806	1.50		4.50					-		58.8	6.0
Linerboard	23,509	1.50		4.61							143.6	6.1
Recycled Board	2,061	1.50		4.61							12.6	6.1
Folding Boxboard	4,728	1.20		4.56			0.10	0.25			28.9	6.1
Gypsum Board	1,429	1.50		4.61							8.7	6.1
Bl. Folding Boxboard / Milk	6,346	1.20		4.56			0.10	0.25			38.8	6.1
Other Board, unbl	247	1.30		4.14			0.10	0.25			1.4	5.8
Kraft Paper	1,545	1.16		4.32							8.5	5.5
Special Industrial	2,323	1.15		4.32							12.7	5.5
Unctd Free, Brist, & BI Pkg	14,069	1.10		4.50							80.9	5.7
Coated Freesheet	4,481	1.25		4.09			0.10	0.25			25.5	5.7
Newsprint	5,784	0.86		3.77			0.10	0.20			26.8	4.6
Gwd Specialties	1,668	0.86		3.77							7.7	4.6
Coated Groundwood	4,481	0.66		3.79			0.20	0.30			22.2	4.0
Tissue / Towel	7,127	0.00		3.95			0.20	0.00			30.0	4.3
Other Specialties	83	1.10		4.69							0.5	5.8
Market Pulp	9,858	1.10		3.07							30.3	3.1
Subtotal	99,545			0.07						537.8	537.8	5.4
Wastewater (WWT)	99,545	0.55								54.6	54.6	0.5
Other Utilities	99,545 99,545	0.55								39.8	39.8	0.5
Subtotal	99,545	0.40								94.4	94.4	0.4
Total	99,545									1,081.4	1,081.4	10.9
Total	55,545									1,001.4	1,001.4	10.0

Tab H – Energy Consumption Summaries

MECS Electricity										Electric	Electric	Electric
		detail in kWI	n/ton							TBtu	TBtu	MMBtu/ton
	Prodn	Wood		Screening		_	Lime Kiln /					
CHEMICAL PULP	(Kton/yr)	Prep	Cooking	/ Cleaning	Washing	Evap	Chem Prp	Bleaching	Other			
Avg Area (MMBtu/ton)		0.31	0.36	0.22	-	0.16	0.18	0.26	-			1.5
Subt Area (kton, TBtu)	53,248	16.4	18.9	11.5	-	8.7	9.4	13.7	-	78.6	TBtu	1.5
Sulfite	532	90	149			51		145			0.8	1.5
Kraft, UnBleached	19,917	90	84	70		55	73				25.3	1.3
Kraft, Bleached, SW	13,848	90	90	76		46	40	142			22.9	1.7
Kraft, Bleached, HW	15,404	90	80	60		40	36	129			22.8	1.5
NSSC, SemiChem	3,547	90	370			45	60				6.8	1.9
		Wood	Grinding /	Screening								
MECHANICAL PULP		Prep	Refining	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		0.31	7.87	0.34	0.41	-						8.9
Subt Area (kton, TBtu)	4,680	1.4	36.8	1.6	1.9	-				41.8	TBtu	8.9
SGW	1.416	90	1,973	100	120				-		11.0	7.8
TMP	3,264	90	2,451	100	120						30.7	9.4
	0,201		2,.01		.20							0
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)				1.34								1.3
Subt Area (kton, TBtu)	28,509		-	38.2					-	38.2	TBtu	1.3
OCC	16.683		-	372					-	50.2	21.2	1.3
MOW, non deinked (tissue)	3,658			434							5.4	1.5
ONP, deinked	3,050 4,442			434 465							5.4 7.1	1.5
				465 558							3.9	
MOW, deinked	2,021											1.9
Pulp Sub	1,705			112						150.0	0.6	0.4
Subtotal	86,437			Dryers,	Dry End /		Coating,	Super Cal,		158.6	158.6	1.8
		Wet End	Pressing		Calender		0,	drive				
				Drying			Prep					0.4
Avg Area (MMBtu/ton)	00 5 4 5	1.04	0.37	0.45	0.18	-	0.01	0.03	-	000.0	TBtu	2.1 2.1
Subt Area (kton, TBtu)	99,545	103.2	36.5	45.0	18.4		1.2	2.7	_	206.9		
Corrugating Medium	9,806	332	110	117							18.7	1.9
Linerboard	23,509	370	140	128	76						57.2	2.4
Recycled Board	2,061	340	120	91	70						4.4	2.1
Folding Boxboard	4,728	335	110	104	70		10	10			10.3	2.2
Gypsum Board	1,429	350	110	90	70						3.0	2.1
BI. Folding Boxboard / Milk	6,346	358	115	90	80		10	30			14.8	2.3
Other Board, unbl	247	335	110	91	75		10	30			0.5	2.2
Kraft Paper	1,545	358	110	103	80						3.4	2.2
Special Industrial	2,323	358	110	103	80						5.2	2.2
Unctd Free, Brist, & BI Pkg	14,069	345	115	105	80						31.0	2.2
Coated Freesheet	4,481	330	115	112	77		25	60			11.0	2.5
Newsprint	5,784	300	105	87	66						11.0	1.9
Gwd Specialties	1,668	300	105	87	66						3.2	1.9
Coated Groundwood	4,481	300	100	86	50		25	60			9.5	2.1
Tissue / Towel	7,127	200	65	480	00		20	00			18.1	2.5
Other Specialties	83	358	105	108	80						0.2	2.3
Market Pulp	9,858	40	40	80	00						5.4	0.5
	9,858	40	40	00						206.9	206.9	2.1
Subtotal										206.9		0.1
Master (M/M/T)	00 545											
Wastewater (WWT)	99,545	37									12.5	
Other Utilities	99,545	37 45								15.3	15.3	0.2

MECS Direct Fuel										Dr Fuel	Dr Fuel	Dr Fuel
	Durit	detail in MM	Btu/ton	0						TBtu	TBtu	MMBtu/ton
	Prodn	Wood	A 11	Screening		_	Lime Kiln /	D 1 1 1	0.11			
CHEMICAL PULP	(Kton/yr)	Prep	Cooking	/ Cleaning	Washing	Evap		Bleaching	Other			
Avg Area (MMBtu/ton)	50.040	-	-	-	-	-	1.88	-	-		75/	1.9
Subt Area (kton, TBtu)	53,248	-	-	_	-	-	100.2	_	-	100.2	TBtu	1.9
Sulfite	532						1.78				0.9	1.8
Kraft, UnBleached	19,917						1.87				37.3	1.9
Kraft, Bleached, SW	13,848						1.97				27.3	2.0
Kraft, Bleached, HW	15,404						1.97				30.4	2.0
NSSC, SemiChem	3,547						1.17				4.2	1.2
		Wood		Screening								
MECHANICAL PULP		Prep	Refining	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		-	-	-	-	-			_			-
Subt Area (kton, TBtu)	4,680	-	-	-	-	-				-	TBtu	-
SGW	1,416								-		-	-
TMP	3,264										-	-
	,											
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)				-								-
Subt Area (kton, TBtu)	28,509		-	_						-	TBtu	-
OCC	16,683								-		-	-
MOW, non deinked (tissue)	3,658										-	-
ONP, deinked	4,442										_	_
MOW, deinked	2,021											
Pulp Sub	1,705											
Subtotal	86,437									100.2	100.2	- 1.2
Subiotal	00,437			Dryers,	Dry End /		Coating,	Super Cal,		100.2	100.2	1.2
PAPER MACHINE		Wet End	Pressing	Drying	Calender		Drying	heat				
Avg Area (MMBtu/ton)		-	-	0.13	-		0.18	-				0.3
Subt Area (kton, TBtu)	99,545	-		13.4		-	17.9		-	31.3	TBtu	0.3
	9,806	-	-	13.4	-	-	17.9	-	-	31.3	T D LU	0.3
Corrugating Medium											-	-
Linerboard	23,509										-	-
Recycled Board	2,061										-	-
Folding Boxboard	4,728			-			0.9				4.2	0.9
Gypsum Board	1,429										-	
Bl. Folding Boxboard / Milk	6,346						0.9				5.6	0.9
Other Board, unbl	247						0.5				0.1	0.5
Kraft Paper	1,545										-	-
Special Industrial	2,323										-	-
Unctd Free, Brist, & BI Pkg	14,069										-	-
Coated Freesheet	4,481			-			0.9				4.0	0.9
Newsprint	5,784										-	-
Gwd Specialties	1,668			-							-	-
Coated Groundwood	4,481			-			0.9				4.0	0.9
Tissue / Towel	7,127			1.9							13.4	1.9
Other Specialties	83										-	-
Market Pulp	9,858										-	-
Subtotal	99,545									31.3	31.3	0.3
Wastewater (WWT)	99,545									-	-	-
Other Utilities	99,545									-	_	_
Subtotal	99,545										-	-
Total	99,545 99,545									131.4	- 131.4	- 1.3
I Otal	33,040									131.4	131.4	1.0

MECS Stm + Elec + D Fuel										All	All	All
		detail in MM	Btu/ton							TBtu	TBtu	MMBtu/ton
	Prodn	Wood	Braiton	Screening			Lime Kiln /				. 514	
CHEMICAL PULP	(Kton/yr)	Prep	Cooking	/ Cleaning	Washing	Evap	Chem Prp	Bleaching	Other			
Avg Area (MMBtu/ton)		0.56	2.80	0.22	-	3.66	2.63	1.31	-			11.2
Subt Area (kton, TBtu)	53,248	29.7	149.0	11.5	-	194.7	139.9	69.7	-	594.5	TBtu	11.2
Sulfite	532	0.56	3.36	-	-	2.37	2.38	2.60	-		6.0	11.3
Kraft, UnBleached	19,917	0.56	2.80	0.24	-	3.69	2.70	-	-		198.9	10.0
Kraft, Bleached, SW	13,848	0.56	2.83	0.26	-	3.71	2.68	2.33	-		171.2	12.4
Kraft, Bleached, HW	15,404	0.56	2.59	0.20	-	3.64	2.65	2.34	-		184.6	12.0
NSSC, SemiChem	3,547	0.56	3.50	-	-	3.55	1.91	-	-		33.8	9.5
		Wood	Grinding /	Screening								
MECHANICAL PULP		Prep	Refining	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		0.54	7.22	0.34	2.29	-						10.4
Subt Area (kton, TBtu)	4,680	2.5	33.8	1.6	10.7	-				48.7	TBtu	10.4
SGW	1,416	0.56	8.04	0.34	2.01	-					15.5	10.9
TMP	3,264	0.54	6.86	0.34	2.42	-					33.2	10.2
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)			_	2.27								2.3
Subt Area (kton, TBtu)	28,509			64.8						64.8	TBtu	2.3
000	16,683			2.11							35.2	2.1
MOW, non deinked (tissue)	3,658			2.32							8.5	2.3
ONP, deinked	4,442			3.06							13.6	3.1
MOW, deinked	2,021			3.38							6.8	3.4
Pulp Sub	1,705			0.38							0.6	0.4
Subtotal	86,437									707.9	707.9	8.2
			Desseine	Dryers,	Dry End /		Coating,	Super				
		Wet End	Pressing	Drying	Calender		Prp & Dry	Calender				7.0
Avg Area (MMBtu/ton)	00 545	2.12	0.37	4.83	0.18	-	0.22	0.08	-	776.0	TBtu	7.8
Subt Area (kton, TBtu)	99,545	210.9	36.5	480.6	18.4		21.5	8.0	_	110.0		7.8
Corrugating Medium Linerboard	9,806 23,509	2.63 2.76	0.38 0.48	4.90 5.04	- 0.26		-	-			77.5 200.8	7.9 8.5
Recycled Board	23,509	2.76	0.48	5.04 4.92	0.26		-	-			200.8	8.2
Folding Boxboard	4,728	2.00	0.41	4.92	0.24		1.02	0.28			43.4	9.2
Gypsum Board	4,720	2.34	0.38	4.91	0.24		1.02	0.20			43.4	9.2 8.2
Bl. Folding Boxboard / Milk	6,346	2.69	0.38	4.92 4.86	0.24		1.02	0.35			59.2	0.2 9.3
Other Board, unbl	0,340 247	2.42	0.39	4.80	0.27		0.65	0.35			2.1	9.3 8.5
Kraft Paper	1,545	2.44	0.38	4.45	0.20		0.05	0.55			11.9	7.7
Special Industrial	2,323	2.38	0.38	4.67	0.27		-	-			17.9	7.7
Unctd Free, Brist, & BI Pkg	14,069	2.37	0.38	4.86	0.27		-	-			111.9	8.0
Coated Freesheet	4,481	2.43	0.39	4.80	0.27		- 1.07	- 0.45			40.5	9.0
Newsprint	5,784	1.88	0.39	4.47	0.20		-	0.45			37.8	9.0 6.5
Gwd Specialties	5,764 1,668	1.88	0.36	4.07	0.23		-	-			37.8 10.9	6.5
Coated Groundwood	4.481	1.68	0.30	4.07	0.23		- 1.17	0.50			35.6	8.0
Tissue / Towel	4,401 7,127	0.94	0.34	4.08 7.46	0.17		-	0.50			55.6 61.5	8.0 8.6
Other Specialties	83	2.32	0.22	7.40 5.06	0.27		-	-			01.5	8.0 8.0
Market Pulp	9,858	0.14	0.30	3.35	-		-	-			35.7	3.6
Subtotal	9,000	0.14	0.14	5.55	-		-	-		776.0	776.0	7.8
Wastewater (WWT)	99,545	0.67								67.1	67.1	0.7
Other Utilities	99,545 99,545	0.07								55.1	55.1	0.7
Subtotal	99,545	0.00								122.2	122.2	1.2
Total	99,545									1,606.1	1,606.1	16.1
	33,343									1,000.1	1,000.1	10.1

BAT Steam	I	detail in MM	Btu/ton							Steam TBtu	Steam TBtu	Steam MMBtu/to
	Prodn	Wood		Screening			Lime Kiln /					
CHEMICAL PULP	(Kton/yr)	Prep	Cooking	/ Cleaning	Washing	Evap	Chem Prp	Bleaching	Other			
Avg Area (MMBtu/ton)		0.10	1.55			3.00	0.10	0.65	-			5.4
Subt Area (kton, TBtu)	53,248	5.4	82.7	-	-	159.8	5.6	34.8	-	288.4	TBtu	5.4
Sulfite	532	0.25	2.52			2.17	0.60	2.10			4.1	7.6
Kraft, UnBleached	19,917	0.10	1.42			3.04	0.10				92.8	4.7
Kraft, Bleached, SW	13,848	0.10	1.77			2.96	0.10	1.41			87.8	6.3
Kraft, Bleached, HW	15,404	0.10	1.42			3.04	0.10	0.92			86.0	5.6
NSSC, SemiChem	3,547	0.10	1.90			2.90	0.10				17.7	5.0
		Wood	Grinding /	Screening								
MECHANICAL PULP		Prep	Refining	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		0.07	(0.24)	-	1.49	-			_			1.3
Subt Area (kton, TBtu)	4,680	0.3	(1.1)	-	7.0	-				6.1	TBtu	1.3
SGW	1,416		2.70		0.30				-		4.2	3.0
TMP	3,264	0.10	(1.52)		2.00						1.9	0.6
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)			_	0.73					_			0.7
Subt Area (kton, TBtu)	28,509			20.8						20.8		0.
000	16,683			0.60							10.0	0.0
MOW, non deinked (tissue)	3,658			0.60							2.2	0.0
ONP, deinked	4,442			1.33							5.9	1.3
MOW, deinked	2,021			1.33							2.7	1.3
Pulp Sub	1,705			-							-	-
Subtotal	86,437									315.3	315.3	3.6
				Dryers,	Dry End /		Coating,	Super Cal,				
PAPER MACHINE		Wet End	Pressing	Drying	Calender		Prep	heat				
Avg Area (MMBtu/ton)		0.39	-	3.02	-		0.02	0.05	_		-	3.5
Subt Area (kton, TBtu)	99,545	38.8	-	300.3	-		2.5	4.8	_	346.5	TBtu	3.5
Corrugating Medium	9,806	0.40		2.68							30.2	3.1
Linerboard	23,509	0.40		2.68							72.4	3.1
Recycled Board	2,061	0.40		3.60							8.2	4.0
Folding Boxboard	4,728	0.40		3.60			0.10	0.23			20.5	4.3
Gypsum Board	1,429	0.40		3.60							5.7	4.0
BI. Folding Boxboard / Milk	6,346	0.40		2.68			0.10	0.23			21.6	3.4
Other Board, unbl	247	0.40		3.25			0.10	0.23			1.0	4.0
Kraft Paper	1,545	0.40		2.68							4.8	3.1
Special Industrial	2,323	0.40		2.68							7.2	3.1
Unctd Free, Brist, & BI Pkg	14,069	0.40		3.76							58.5	4.3
Coated Freesheet	4,481	0.40		3.10			0.10	0.23			17.2	3.8
Newsprint	5,784	0.40		2.92							19.2	3.3
Gwd Specialties	1,668	0.40		3.56							6.6	4.0
Coated Groundwood	4,481	0.40		3.57			0.20	0.27			19.9	4.4
Tissue / Towel	7,127	0.26		3.70							28.2	4.0
Other Specialties	83	0.40		3.60							0.3	4.0
Market Pulp	9,858	0.40		2.13							24.9	2.
Subtotal	99,545									346.5	346.5	3.
Vastewater (WWT)	99,545	0.55								54.6	54.6	0.
Other Utilities	99,545	0.40								39.8	39.8	0.4
Subtotal	99,545									94.4	94.4	0.9
Total	99,545									756.1	756.1	7.0

BAT Electricity	1	detail in kWI	a/ton							Electric TBtu	Electric TBtu	Electric MMBtu/tor
	Prodn	Wood		Screening			Lime Kiln /			TDtu	i Diu	WWDtu/toi
CHEMICAL PULP	(Kton/yr)		Cooking	/ Cleaning	Washing	Evap	Chem Prp	Bleaching	Other			
Avg Area (MMBtu/ton)	(1 (10) "))	0.20	0.35	0.04	0.02	0.21	0.10	0.22	-			1.1
Subt Area (kton, TBtu)	53,248	10.8	18.4	2.1	1.0	11.3	5.5	11.6	-	60.8	TBtu	1.1
Sulfite	532	75	135			51		145		00.0	0.7	1.4
Kraft, UnBleached	19,917	63	85	18	9	67	27				18.3	0.9
Kraft, Bleached, SW	13,848	48	78	18	9	54	33	123			17.2	1.2
Kraft, Bleached, HW	15,404	63	85	-	Ŭ	67	27	105			18.2	1.2
NSSC, SemiChem	3,547	70	352			45	60	100			6.4	1.8
	0,011	Wood	Grinding /	Screening		10	00				0.1	1.0
MECHANICAL PULP		Prep	Refining	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		0.17	6.25	0.34	0.41	-						7.2
Subt Area (kton, TBtu)	4,680	0.8	29.3	1.6	1.9	-			-	33.6	TBtu	7.2
SGW	1,416	70	1,843	100	120				-	00.0	10.3	7.3
TMP	3,264	41	1,827	100	120						23.3	7.1
1 1011	3,204		1,027	100	120						20.0	7.1
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)				0.91								0.9
Subt Area (kton, TBtu)	28,509	·	-	25.9					-	25.9	TBtu	0.9
OCC	16,683		-	206					-	20.9	11.7	0.9
				348								1.2
MOW, non deinked (tissue)	3,658										4.3	
ONP, deinked	4,442			395							6.0	1.3
MOW, deinked	2,021			472							3.3	1.6
Pulp Sub	1,705			104						400.0	0.6	0.4
Subtotal	86,437			Dryers,	Dry End /		Conting	Super Cal,		120.3	120.3	1.4
PAPER MACHINE		Wet End	Pressing	Drying	Calender		Coating, Prep	drive				
			0	, ,			0.01					4 5
Avg Area (MMBtu/ton)	99,545	0.57	0.32	0.40	0.18 17.6	-	1.2	0.03	-	149.2	TBtu	<u>1.5</u> 1.5
Subt Area (kton, TBtu)		56.3	31.4		17.0	-	1.2	2.8	_	149.2		
Corrugating Medium	9,806	277	100	95	75						15.8	1.6
Linerboard	23,509	172	120	105	75						37.9	1.6
Recycled Board	2,061	100	70	75	70						2.2	1.1
Folding Boxboard	4,728	100	70	75	70		10	30			5.7	1.2
Gypsum Board	1,429	100	70	75	70						1.5	1.1
Bl. Folding Boxboard / Milk	6,346	172	120	105	75		10	30			11.1	1.7
Other Board, unbl	247	172	100	85	75		10	30			0.4	1.6
Kraft Paper	1,545	172	120	105	75						2.5	1.6
Special Industrial	2,323	172	120	105	75						3.7	1.6
Unctd Free, Brist, & BI Pkg	14,069	195	100	85	80						22.1	1.6
Coated Freesheet	4,481	185	95	85	70		25	40			7.6	1.7
Newsprint	5,784	138	80	60	50						6.5	1.1
Gwd Specialties	1,668	138	80	60	50						1.9	1.1
Coated Groundwood	4,481	250	100	65	50		25	65			8.5	1.9
Tissue / Towel	7,127	140	40	489							16.3	2.3
Other Specialties	83	172	120	100	75						0.1	1.6
Market Pulp	9,858	40	40	80							5.4	0.5
Subtotal	99,545									149.2	149.2	1.5
Wastewater (WWT)	99,545	37								12.5	12.5	0.1
Other Utilities	99,545	45								15.3	15.3	0.2
										27.8	27.8	0.3
Subtotal	99,545									21.0	21.0	U.J

BAT Direct Fuel										Dr Fuel	Dr Fuel	Dr Fuel
	Durala	detail in MM	Btu/ton	0						TBtu	TBtu	MMBtu/tor
	Prodn	Wood Prep	Cooking	Screening / Cleaning	Washing	Fuen	Lime Kiln / Chem Prp	Bleaching	Other			
	(Kton/yr)	Piep	Cooking	/ Cleaning	washing	Evap		Dieaching	Other			1 4
Avg Area (MMBtu/ton)	53,248	-		-	-	-	1.37 72.7	-	-	72.7	TBtu	<u>1.4</u> 1.4
Subt Area (kton, TBtu) Sulfite	53,248	-	-	-	-	-	1.76		-	12.1	0.9	1.4
Kraft, UnBleached	19,917						1.48				29.5	1.0
Kraft, Bleached, SW	13,848						1.40				19.0	1.3
Kraft, Bleached, HW	15,404						1.25				19.0	1.4
NSSC, SemiChem	3,547						1.25				4.1	1.3
Nooc, Semichem	5,547	Wood	Grinding /	Screening			1.15				4.1	1.2
MECHANICAL PULP		Prep		/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		-	-	-	-	-						-
Subt Area (kton, TBtu)	4,680	-	-	-	-	-			-	-	TBtu	_
SGW	1,416								-	-	1000	
TMP	3,264										_	_
	0,204											
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)				-								-
Subt Area (kton, TBtu)	28,509		-	-					-	-	TBtu	-
OCC	16,683								-		-	-
MOW, non deinked (tissue)	3,658										-	-
ONP, deinked	4,442										-	-
MOW, deinked	2,021										-	-
Pulp Sub	1,705										-	-
Subtotal	86,437									72.7	72.7	0.8
				Dryers,	Dry End /		Coating,	Super Cal,				
PAPER MACHINE		Wet End	Pressing	Drying	Calender		Drying	heat				
Avg Area (MMBtu/ton)		-	-	0.13	-		0.18	-	_			0.3
Subt Area (kton, TBtu)	99,545	-	-	13.2	-		17.7	-		31.0	TBtu	0.3
Corrugating Medium	9,806										-	-
Linerboard	23,509										-	-
Recycled Board	2,061										-	-
Folding Boxboard	4,728			-			0.9				4.2	0.9
Gypsum Board	1,429										-	-
Bl. Folding Boxboard / Milk	6,346						0.9				5.6	0.9
Other Board, unbl	247						0.4				0.1	0.4
Kraft Paper	1,545										-	-
Special Industrial	2,323										-	-
Unctd Free, Brist, & Bl Pkg	14,069										-	-
Coated Freesheet	4,481			-			0.9				3.9	0.9
Newsprint	5,784										-	-
Gwd Specialties	1,668			-							-	-
Coated Groundwood	4,481			-			0.9				3.9	0.9
Tissue / Towel	7,127			1.9							13.2	1.9
Other Specialties	83										-	-
Market Pulp	9,858										-	
Subtotal	99,545									31.0	31.0	0.3
Nastewater (WWT)	99,545									-	-	-
Other Utilities	99,545									-	-	-
Subtotal	99,545									-	-	-
Total	99,545									103.7	103.7	1.0

BAT Stm + Elec + D Fuel										All	All	All
		detail in MM	Btu/ton							TBtu	TBtu	MMBtu/ton
	Prodn	Wood		Screening			Lime Kiln /					
CHEMICAL PULP	(Kton/yr)	Prep	Cooking	/ Cleaning	Washing	Evap	Chem Prp	Bleaching	Other			
Avg Area (MMBtu/ton)		0.31	1.90	0.04	0.02	3.21	1.57	0.87	-			7.9
Subt Area (kton, TBtu)	53,248	16.2	101.2	2.1	1.0	171.1	83.8	46.4	-	421.9	TBtu	7.9
Sulfite	532	0.51	2.98	-	-	2.34	2.36	2.59	-		5.7	10.8
Kraft, UnBleached	19,917	0.31	1.71	0.06	0.03	3.27	1.67	-	-		140.6	7.1
Kraft, Bleached, SW	13,848	0.26	2.04	0.06	0.03	3.14	1.58	1.83	-		123.9	8.9
Kraft, Bleached, HW	15,404	0.31	1.71	-	-	3.27	1.44	1.28	-		123.4	8.0
NSSC, SemiChem	3,547	0.34	3.10	-	-	3.05	1.45	-	-		28.2	7.9
		Wood	Grinding /	Screening								
MECHANICAL PULP		Prep	Refining	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		0.24	6.01	0.34	1.90	-						8.5
Subt Area (kton, TBtu)	4,680	1.1	28.1	1.6	8.9	-				39.7	TBtu	8.5
SGW	1,416	0.24	8.99	0.34	0.71	-					14.6	10.3
TMP	3,264	0.24	4.71	0.34	2.41	-					25.1	7.7
	-, -	-										
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)				1.64								1.6
Subt Area (kton, TBtu)	28,509	t	-	46.7					_	46.7	TBtu	1.6
OCC	16,683	t	-	1.30					_		21.7	1.3
MOW, non deinked (tissue)	3,658			1.79							6.5	1.8
ONP, deinked	4,442			2.68							11.9	2.7
MOW, deinked	2,021			2.94							5.9	2.9
Pulp Sub	1,705			0.36							0.6	0.4
Subtotal	86,437			0.00						508.3	508.3	5.9
Cubiotai	00,101			Dryers,	Dry End /		Coating,	Super		000.0	000.0	0.0
PAPER MACHINE		Wet End	Pressing	Drying	Calender		Prp & Dry	Calender				
Avg Area (MMBtu/ton)		0.96	0.32	3.55	0.18		0.21	0.08				5.3
Subt Area (kton, TBtu)	99,545	95.1	31.4	353.5	17.6	-	21.4	7.6	_	526.6	TBtu	5.3
Corrugating Medium	9,806	1.35	0.34	3.00	-	-	-	-	_		46.0	4.7
Linerboard	23,509	0.99	0.41	3.04	0.26		-	-			110.3	4.7
Recycled Board	2,061	0.74	0.24	3.86	0.24		-	-			10.5	5.1
Folding Boxboard	4,728	0.74	0.24	3.86	0.24		1.01	0.33			30.4	6.4
Gypsum Board	1,429	0.74	0.24	3.86	0.24		-	-			7.3	5.1
Bl. Folding Boxboard / Milk	6,346	0.99	0.41	3.04	0.26		1.01	0.33			38.3	6.0
Other Board, unbl	247	0.99	0.34	3.54	0.26		0.53	0.33			1.5	6.0
Kraft Paper	1,545	0.99	0.34	3.04	0.20		0.55	0.55			7.2	4.7
Special Industrial	2,323	0.99	0.41	3.04	0.20		-	_			10.9	4.7
Unctd Free, Brist, & BI Pkg	14,069	1.07	0.41	4.05	0.20		-	-			80.6	4.7 5.7
Coated Freesheet	4,481	1.07	0.34	4.05	0.27		1.07	0.37			28.8	5.7 6.4
Newsprint	4,401 5,784	0.87	0.32	3.39	0.24		-	0.37			20.0 25.7	0.4 4.4
			0.27	3.12 3.76				-			25.7 8.5	
Gwd Specialties	1,668	0.87			0.17		-					5.1
Coated Groundwood	4,481	1.25	0.34	3.79	0.17		1.17	0.49			32.3 57.7	7.2
Tissue / Towel	7,127	0.74	0.14	7.23				-				8.1
Other Specialties	83	0.99	0.41	3.94	0.26		-	-			0.5	5.6
Market Pulp	9,858	0.54	0.14	2.40	-		-	-		500.0	30.3	3.1
Subtotal	99,545	0.07								526.6	526.6	5.3
Wastewater (WWT)	99,545	0.67								67.1	67.1	0.7
Other Utilities	99,545	0.55								55.1	55.1	0.6
Subtotal	99,545									122.2	122.2	1.2
Total	99,545	I								1,157.1	1,157.1	11.6

Prac Min Steam		detail in MM	Btu/ton							Steam TBtu	Steam TBtu	Steam MMBtu/ton
	Prodn	Wood		Screening			Lime Kiln /					
CHEMICAL PULP	(Kton/yr)	Prep	Cooking	/ Cleaning	Washing	Evap	Chem Prp	Bleaching	Other			
Avg Area (MMBtu/ton)		0.10	1.55	-	-	2.20	0.10	0.65	-			4.6
Subt Area (kton, TBtu)	53,248	5.4	82.7	-	-	117.1	5.6	34.8	-	245.7	TBtu	4.6
Sulfite	532	0.25	2.52			1.59	0.60	2.10			3.8	7.1
Kraft, UnBleached	19,917	0.10	1.42			2.23	0.10				76.6	3.8
Kraft, Bleached, SW	13,848	0.10	1.77			2.17	0.10	1.41			76.9	5.5
Kraft, Bleached, HW	15,404	0.10	1.42			2.23	0.10	0.92			73.5	4.8
NSSC, SemiChem	3,547	0.10	1.90			2.13	0.10				15.0	4.2
		Wood	Grinding /	Screening								
MECHANICAL PULP		Prep	Refining	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		0.07	(0.24)	-	1.49	-						1.3
Subt Area (kton, TBtu)	4,680	0.3	(1.1)	-	7.0	-				6.1	TBtu	1.3
SGW	1,416		2.70		0.30				-		4.2	3.0
TMP	3,264	0.10	(1.52)		2.00						1.9	0.6
			, ,									
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)				0.73								0.7
Subt Area (kton, TBtu)	28,509		-	20.8					-	20.8	TBtu	0.7
OCC	16,683		-	0.60					-	20.0	10.0	0.6
MOW, non deinked (tissue)	3,658			0.60							2.2	0.6
ONP. deinked	4,442			1.33							5.9	1.3
MOW, deinked	2,021			1.33							2.7	1.3
Pulp Sub	1,705			1.00							2.1	1.5
Subtotal	86,437			-						272.6	272.6	3.2
Cubiotai	00,407			Dryers,	Dry End /		Coating,	Super Cal,		212.0	212.0	0.2
PAPER MACHINE		Wet End	Pressing	Drying	Calender		Prep	heat				
Avg Area (MMBtu/ton)		0.39	-	1.31	-		0.02	0.05				1.8
Subt Area (kton, TBtu)	99,545	38.8	-	130.0	-	-	2.5	4.8	-	176.2	TBtu	1.8
Corrugating Medium	9,806	0.40		1.16		-	2.0	1.0	-	170.2	15.3	1.6
Linerboard	23,509	0.40		1.16							36.7	1.6
Recycled Board	2,061	0.40		1.10							4.0	2.0
Folding Boxboard	4,728	0.40		1.56			0.10	0.23			10.8	2.0
	, -						0.10	0.23				
Gypsum Board BL Folding Poyhoard / Milk	1,429 6,346	0.40 0.40		1.56 1.16			0.10	0.23			2.8 12.0	2.0 1.9
BI. Folding Boxboard / Milk	,											
Other Board, unbl	247	0.40		1.41			0.10	0.23			0.5	2.1
Kraft Paper	1,545	0.40		1.16							2.4	1.6
Special Industrial	2,323	0.40		1.16							3.6	1.6
Unctd Free, Brist, & BI Pkg	14,069	0.40		1.63							28.5	2.0
Coated Freesheet	4,481	0.40		1.34			0.10	0.23			9.3	2.1
Newsprint	5,784	0.40		1.26							9.6	1.7
Gwd Specialties	1,668	0.40		1.54							3.2	1.9
Coated Groundwood	4,481	0.40		1.55			0.20	0.27			10.8	2.4
Tissue / Towel	7,127	0.26		1.60							13.3	1.9
Other Specialties	83	0.40		1.56							0.2	2.0
Market Pulp	9,858	0.40		0.92							13.0	1.3
Subtotal	99,545									176.2	176.2	1.8
Wastewater (WWT)	99,545	0.55								54.6	54.6	0.5
Other Utilities	99,545	0.40								39.8	39.8	0.4
Subtotal	99,545									94.4	94.4	0.9
Total	99,545									543.2	543.2	5.5

Prac Min Electricity										Electric	Electric	Electric
		detail in kWI	n/ton							TBtu	TBtu	MMBtu/ton
	Prodn	Wood		Screening			Lime Kiln /					
CHEMICAL PULP	(Kton/yr)	Prep	Cooking	/ Cleaning	Washing	Evap	Chem Prp	Bleaching	Other			
Avg Area (MMBtu/ton)		0.20	0.35	0.04	0.02	0.21	0.10	0.22	-			1.1
Subt Area (kton, TBtu)	53,248	10.8	18.4	2.1	1.0	11.3	5.5	11.6	-	60.8	TBtu	1.1
Sulfite	532	75	135			51		145			0.7	1.4
Kraft, UnBleached	19,917	63	85	18	9	67	27				18.3	0.9
Kraft, Bleached, SW	13,848	48	78	18	9	54	33	123			17.2	1.2
Kraft, Bleached, HW	15,404	63	85	-		67	27	105			18.2	1.2
NSSC, SemiChem	3,547	70	352			45	60				6.4	1.8
		Wood	Grinding /	Screening								
MECHANICAL PULP		Prep	Refining	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		0.17	6.25	0.34	0.41	-						7.2
Subt Area (kton, TBtu)	4,680	0.8	29.3	1.6	1.9	-				33.6	TBtu	7.2
SGW	1,416	70	1,843	100	120				-		10.3	7.3
TMP	3,264	41	1,827	100	120						23.3	7.1
	-, -		, -									
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)				0.91								0.9
Subt Area (kton, TBtu)	28,509		-	25.9						25.9	TBtu	0.9
0CC	16,683	•		206					-		11.7	0.7
MOW, non deinked (tissue)	3.658			348							4.3	1.2
ONP, deinked	4,442			395							6.0	1.3
MOW, deinked	2,021			472							3.3	1.6
Pulp Sub	1,705			104							0.6	0.4
Subtotal	86,437			104						120.3	120.3	1.4
Cubiotai	00,107			Dryers,	Dry End /		Coating,	Super Cal,		120.0	120.0	
PAPER MACHINE		Wet End	Pressing	Drying	Calender		Prep	drive				
Avg Area (MMBtu/ton)		0.57	0.32	0.40	0.18		0.01	0.03				1.5
Subt Area (kton, TBtu)	99,545	56.3	31.4	39.9	17.6		1.2	2.8		149.2	TBtu	1.5
Corrugating Medium	9,806	277	100	95		-			-		15.8	1.6
Linerboard	23,509	172	120	105	75						37.9	1.6
Recycled Board	2,061	100	70	75	70						2.2	1.1
Folding Boxboard	4,728	100	70	75	70		10	30			5.7	1.2
Gypsum Board	1,429	100	70	75	70		10	00			1.5	1.1
Bl. Folding Boxboard / Milk	6,346	100	120	105	70		10	30			1.5	1.7
Other Board, unbl	247	172	120	85	75		10	30			0.4	1.6
Kraft Paper	1,545	172	120	105	75		10	50			2.5	1.6
Special Industrial	2,323	172	120	105	75						2.5	1.6
Unctd Free, Brist, & BI Pkg	2,323	172	120	85	75 80						3.7 22.1	1.6
Coated Freesheet	,	195	95	85 85	80 70		25	40			7.6	
	4,481						25	40			7.6 6.5	1.7
Newsprint	5,784	138	80	60	50							1.1
Gwd Specialties	1,668	138	80	60 65	50		05	05			1.9	1.1
Coated Groundwood	4,481	250	100	65	50		25	65			8.5	1.9
Tissue / Towel	7,127	140	40	489	75						16.3	2.3
Other Specialties	83	172	120	100	75						0.1	1.6
Market Pulp	9,858	40	40	80							5.4	0.5
Subtotal	99,545									149.2	149.2	1.5
Wastewater (WWT)	99,545	37								12.5	12.5	0.1
Other Utilities	99,545	45								15.3	15.3	0.2
Subtotal	99,545									27.8	27.8	0.3
Total	99,545									297.3	297.3	3.0

Prac Min Direct Fuel	1	-1-4-11 (- BABA)	D1							Dr Fuel	Dr Fuel	Dr Fuel
	Prodn	detail in MM Wood	Btu/ton	Caraaniaa			Lime Kiln /			TBtu	TBtu	MMBtu/ton
			Cooking	Screening	Weehing	E. on		Dissehing	Other			
	(Kton/yr)	Prep	COOKING	/ Cleaning	Washing	⊑vap	Chem Prp	Bleaching	Other			0.0
Avg Area (MMBtu/ton)	50.040	-	-	-	-	-	0.89	-	-		TDL	0.9
Subt Area (kton, TBtu)	53,248	-	-	-	-	-	47.6	-	-	47.6	TBtu	0.9
Sulfite	532						1.76				0.9	1.8
Kraft, UnBleached	19,917						0.96				19.2	1.0
Kraft, Bleached, SW	13,848						0.89				12.3	0.9
Kraft, Bleached, HW	15,404						0.81				12.5	0.8
NSSC, SemiChem	3,547		0.1.11.1	. .			0.75				2.7	0.7
		Wood		Screening	D 1 1 1							
MECHANICAL PULP		Prep	•	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		-	-	-	-	-			-			-
Subt Area (kton, TBtu)	4,680	-	-	-	-	-				-	TBtu	-
SGW	1,416										-	-
TMP	3,264										-	-
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)				-					-			-
Subt Area (kton, TBtu)	28,509			-						-	TBtu	-
000	16,683										-	-
MOW, non deinked (tissue)	3,658										-	-
ONP, deinked	4,442										-	-
MOW, deinked	2,021										-	-
Pulp Sub	1,705										-	-
Subtotal	86,437									47.6	47.6	0.6
				Dryers,	Dry End /		Coating,	Super Cal,				
PAPER MACHINE		Wet End	Pressing	Drying	Calender		Drying	heat				
Avg Area (MMBtu/ton)		-	-	0.13	-		0.18	-	-			0.3
Subt Area (kton, TBtu)	99,545	-	-	13.2	-		17.7	-		31.0	TBtu	0.3
Corrugating Medium	9,806										-	-
Linerboard	23,509										-	-
Recycled Board	2,061										-	-
Folding Boxboard	4,728			-			0.9				4.2	0.9
Gypsum Board	1,429										-	-
Bl. Folding Boxboard / Milk	6,346						0.9				5.6	0.9
Other Board, unbl	247						0.4				0.1	0.4
Kraft Paper	1,545										-	-
Special Industrial	2,323										-	-
Unctd Free, Brist, & BI Pkg	14,069										-	-
Coated Freesheet	4,481			-			0.9				3.9	0.9
Newsprint	5,784										-	-
Gwd Specialties	1,668			-							-	-
Coated Groundwood	4,481			_			0.9				3.9	0.9
Tissue / Towel	7,127			1.9			0.0				13.2	1.9
Other Specialties	83										-	-
Market Pulp	9,858										-	-
Subtotal	99,545									31.0	31.0	0.3
Wastewater (WWT)	99,545											-
Other Utilities	99,545									-	-	_
Subtotal	99,545 99,545									-	-	
Total	99,545									78.6	78.6	- 0.8
rolar	33,043									10.0	10.0	0.0

Prac Min Stm + Elec + D Fuel										All	All	All
		detail in MM	Btu/ton							TBtu	TBtu	MMBtu/ton
	Prodn	Wood		Screening			Lime Kiln /					
CHEMICAL PULP	(Kton/yr)	Prep	Cooking	/ Cleaning	Washing	Evap	Chem Prp	Bleaching	Other			
Avg Area (MMBtu/ton)		0.31	1.90	0.04	0.02	2.41	1.10	0.87	-			6.6
Subt Area (kton, TBtu)	53,248	16.2	101.2	2.1	1.0	128.4	58.7	46.4	-	354.1	TBtu	6.6
Sulfite	532	0.51	2.98	-	-	1.76	2.36	2.59	-		5.4	10.2
Kraft, UnBleached	19,917	0.31	1.71	0.06	0.03	2.46	1.15	-	-		114.1	5.7
Kraft, Bleached, SW	13,848	0.26	2.04	0.06	0.03	2.35	1.10	1.83	-		106.3	7.7
Kraft, Bleached, HW	15,404	0.31	1.71	-	-	2.46	1.00	1.28	-		104.2	6.8
NSSC, SemiChem	3,547	0.34	3.10	-	-	2.28	1.05	-	-		24.0	6.8
		Wood	Grinding /	Screening								
MECHANICAL PULP		Prep	Refining	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		0.24	6.01	0.34	1.90	-						8.5
Subt Area (kton, TBtu)	4,680	1.1	28.1	1.6	8.9	-				39.7	TBtu	8.5
SGW	1,416	0.24	8.99	0.34	0.71	-					14.6	10.3
TMP	3,264	0.24	4.71	0.34	2.41	-					25.1	7.7
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)				1.64								1.6
Subt Area (kton, TBtu)	28,509			46.7						46.7	TBtu	1.6
000	16,683		-	1.30							21.7	1.3
MOW, non deinked (tissue)	3,658			1.79							6.5	1.8
ONP. deinked	4,442			2.68							11.9	2.7
MOW, deinked	2,021			2.94							5.9	2.9
Pulp Sub	1,705			0.36							0.6	0.4
Subtotal	86,437									440.5	440.5	5.1
Subtotal	86,437			Dryers,	Dry End /		Coating,	Super		440.5	440.5	5.1
PAPER MACHINE	86,437	Wet End	Pressing	Dryers, Drying	Dry End / Calender		Coating, Prp & Dry	Super Calender		440.5	440.5	5.1
	86,437	Wet End 0.96	Pressing 0.32							440.5	440.5	3.6
PAPER MACHINE	86,437 99,545		0	Drying	Calender		Prp & Dry	Calender		356.3	440.5	
PAPER MACHINE Avg Area (MMBtu/ton)		0.96	0.32	Drying 1.84	Calender 0.18		Prp & Dry 0.21	Calender 0.08	_			3.6
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu)	99,545	0.96 95.1	0.32 31.4	Drying 1.84 183.2	Calender 0.18 17.6		Prp & Dry 0.21 21.4	Calender 0.08 7.6	=		TBtu	3.6 3.6
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium	99,545 9,806	0.96 95.1 1.35	0.32 31.4 0.34	Drying 1.84 183.2 1.48	Calender 0.18 17.6		Prp & Dry 0.21 21.4	Calender 0.08 7.6	=		TBtu 31.1	3.6 3.6 3.2
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard	99,545 9,806 23,509	0.96 95.1 1.35 0.99	0.32 31.4 0.34 0.41	Drying 1.84 183.2 1.48 1.52	Calender 0.18 17.6 - 0.26		Prp & Dry 0.21 21.4 -	Calender 0.08 7.6 - -	-		TBtu 31.1 74.5	3.6 3.6 3.2 3.2
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board	99,545 9,806 23,509 2,061	0.96 95.1 1.35 0.99 0.74	0.32 31.4 0.34 0.41 0.24	Drying 1.84 183.2 1.48 1.52 1.81	Calender 0.18 17.6 - 0.26 0.24		Prp & Dry 0.21 21.4 - - -	Calender 0.08 7.6 - -			TBtu 31.1 74.5 6.3	3.6 3.6 3.2 3.2 3.0
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard	99,545 9,806 23,509 2,061 4,728	0.96 95.1 1.35 0.99 0.74 0.74	0.32 31.4 0.34 0.41 0.24 0.24	Drying 1.84 183.2 1.48 1.52 1.81 1.81	Calender 0.18 17.6 0.26 0.24 0.24		Prp & Dry 0.21 21.4 - - 1.01	Calender 0.08 - - - 0.33			TBtu 31.1 74.5 6.3 20.7	3.6 3.6 3.2 3.2 3.0 4.4
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board	99,545 9,806 23,509 2,061 4,728 1,429	0.96 95.1 1.35 0.99 0.74 0.74 0.74	0.32 31.4 0.34 0.41 0.24 0.24 0.24	Drying 1.84 183.2 1.48 1.52 1.81 1.81 1.81 1.81	Calender 0.18 17.6 0.26 0.24 0.24 0.24		Prp & Dry 0.21 - - - 1.01 -	Calender 0.08 - - - 0.33	=		TBtu 31.1 74.5 6.3 20.7 4.3	3.6 3.2 3.2 3.0 4.4 3.0
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board Bl. Folding Boxboard / Milk Other Board, unbl	99,545 9,806 23,509 2,061 4,728 1,429 6,346	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.74 0.99	0.32 31.4 0.34 0.41 0.24 0.24 0.24 0.24 0.24 0.41	Drying 1.84 183.2 1.48 1.52 1.81 1.81 1.81 1.52 1.70	Calender 0.18 17.6 0.26 0.24 0.24 0.24 0.24 0.26		Prp & Dry 0.21 - - 1.01 - 1.01	Calender 0.08 - - 0.33 - 0.33			TBtu 31.1 74.5 6.3 20.7 4.3 28.7	3.6 3.2 3.2 3.0 4.4 3.0 4.5
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board Bl. Folding Boxboard / Milk	99,545 9,806 23,509 2,061 4,728 1,429 6,346 247	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.74 0.99 0.99	0.32 31.4 0.34 0.41 0.24 0.24 0.24 0.24 0.41 0.34	Drying 1.84 183.2 1.48 1.52 1.81 1.81 1.81 1.52	Calender 0.18 17.6 0.26 0.24 0.24 0.24 0.24 0.26 0.26		Prp & Dry 0.21 21.4 - 1.01 - 1.01 0.53	Calender 0.08 7.6 - 0.33 - 0.33 0.33	=		TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board Bl. Folding Boxboard / Milk Other Board, unbl Kraft Paper Special Industrial	99,545 9,806 23,509 2,061 4,728 1,429 6,346 247 1,545 2,323	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.74 0.99 0.99 0.99 0.99	0.32 31.4 0.34 0.41 0.24 0.24 0.24 0.41 0.34 0.41 0.41	Drying 1.84 183.2 1.48 1.52 1.81 1.81 1.81 1.52 1.70 1.52 1.52	Calender 0.18 17.6 0.26 0.24 0.24 0.24 0.24 0.26 0.26 0.26	-	Prp & Dry 0.21 21.4 - - 1.01 - 1.01 0.53	Calender 0.08 7.6 - 0.33 - 0.33 0.33 0.33	=		TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0 4.9 7.4	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1 3.2 3.2
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board BI. Folding Boxboard / Milk Other Board, unbl Kraft Paper	99,545 9,806 23,509 2,061 4,728 1,429 6,346 247 1,545	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.74 0.99 0.99 0.99	0.32 31.4 0.34 0.41 0.24 0.24 0.24 0.24 0.41 0.34 0.41	Drying 1.84 183.2 1.48 1.52 1.81 1.81 1.81 1.52 1.70 1.52	Calender 0.18 17.6 - 0.26 0.24 0.24 0.24 0.24 0.26 0.26		Prp & Dry 0.21 21.4 - - 1.01 - 1.01 0.53 - -	Calender 0.08 7.6 - - 0.33 - 0.33 0.33 0.33 - -			TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0 4.9	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1 3.2
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board BI. Folding Boxboard / Milk Other Board, unbl Kraft Paper Special Industrial Unctd Free, Brist, & BI Pkg Coated Freesheet	99,545 9,806 23,509 2,061 4,728 1,429 6,346 247 1,545 2,323 14,069 4,481	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.99 0.99 0.99 0.99 1.07 1.03	0.32 31.4 0.34 0.24 0.24 0.24 0.24 0.41 0.34 0.41 0.34 0.32	Drying 1.84 183.2 1.48 1.52 1.81 1.81 1.52 1.70 1.52 1.52 1.52 1.92 1.63	Calender 0.18 17.6 0.26 0.24 0.24 0.24 0.24 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.24		Prp & Dry 0.21 21.4 - - 1.01 - 1.01 0.53 - - -	Calender 0.08 7.6 - - 0.33 - 0.33 0.33 - 0.33 - - - - - - - - - - - - - - - - - -	Ξ		TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0 4.9 7.4 50.6 20.9	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1 3.2 3.2 3.6 4.7
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board BI. Folding Boxboard / Milk Other Board, unbl Kraft Paper Special Industrial Unctd Free, Brist, & BI Pkg Coated Freesheet Newsprint	99,545 9,806 23,509 2,061 4,728 1,429 6,346 247 1,545 2,323 14,069 4,481 5,784	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.99 0.99 0.99 0.99 1.07 1.03 0.87	0.32 31.4 0.34 0.24 0.24 0.24 0.24 0.41 0.34 0.41 0.34 0.41 0.34 0.32 0.27	Drying 1.84 183.2 1.48 1.52 1.81 1.81 1.52 1.70 1.52 1.52 1.92 1.63 1.47	Calender 0.18 17.6 0.26 0.24 0.24 0.24 0.24 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.22 0.24 0.26 0.26 0.26 0.26 0.24 0.24 0.26 0.27 0		Prp & Dry 0.21 21.4 - - 1.01 0.53 - - 1.07	Calender 0.08 7.6 - 0.33 0.33 0.33 0.33 - - 0.33 0.33 0.33 - - 0.33 0.33 0.33 - - 0.33 0.33 - - - - - - - - - - - - -	=		TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0 4.9 7.4 50.6 20.9 16.1	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1 3.2 3.2 3.2 3.6 4.7 2.8
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board BI. Folding Boxboard / Milk Other Board, unbl Kraft Paper Special Industrial Unctd Free, Brist, & BI Pkg Coated Freesheet Newsprint Gwd Specialties	99,545 9,806 23,509 2,061 4,728 1,429 6,346 247 1,545 2,323 14,069 4,481 5,784 1,668	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.99 0.99 0.99 0.99 0.99 1.07 1.03 0.87	0.32 31.4 0.34 0.24 0.24 0.24 0.24 0.41 0.34 0.41 0.34 0.41 0.34 0.41 0.32 0.27 0.27	Drying 1.84 183.2 1.48 1.52 1.81 1.81 1.52 1.70 1.52 1.52 1.52 1.52 1.52 1.63 1.47 1.75	Calender 0.18 17.6 - - - - - - - - - - - - - - - - - - -	-	Prp & Dry 0.21 21.4 - - 1.01 - 1.01 0.53 - - 1.07 - -	Calender 0.08 7.6 - 0.33 - 0.33 0.33 - - 0.33 - - 0.33 - - - - - - - - - - - - -	=		TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0 4.9 7.4 50.6 20.9 16.1 5.1	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1 3.2 3.2 3.6 4.7 2.8 3.1
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board BI. Folding Boxboard / Milk Other Board, unbl Kraft Paper Special Industrial Unctd Free, Brist, & BI Pkg Coated Freesheet Newsprint Gwd Specialties Coated Groundwood	99,545 9,806 23,509 2,061 4,728 1,429 6,346 247 1,545 2,323 14,069 4,481 5,784 1,668 4,481	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.99 0.99 0.99 0.99 1.07 1.03 0.87 0.87 0.87 1.25	0.32 31.4 0.34 0.24 0.24 0.24 0.24 0.24 0.41 0.34 0.41 0.34 0.41 0.34 0.27 0.27 0.34	Drying 1.84 183.2 1.48 1.52 1.81 1.81 1.52 1.70 1.52 1.52 1.92 1.63 1.47 1.75 1.77	Calender 0.18 17.6 0.26 0.24 0.24 0.24 0.24 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.22 0.24 0.26 0.26 0.26 0.26 0.24 0.24 0.26 0.27 0		Prp & Dry 0.21 21.4 - - - 1.01 0.53 - - - 1.07 -	Calender 0.08 7.6 - 0.33 0.33 0.33 0.33 - - 0.33 0.33 0.33 - - 0.33 0.33 0.33 - - 0.33 0.33 - - - - - - - - - - - - -			TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0 4.9 7.4 50.6 20.9 16.1 5.1 23.3	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1 3.2 3.2 3.6 4.7 2.8 3.1 5.2
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board BI. Folding Boxboard / Milk Other Board, unbl Kraft Paper Special Industrial Unctd Free, Brist, & BI Pkg Coated Freesheet Newsprint Gwd Specialties Coated Groundwood Tissue / Towel	99,545 9,806 23,509 2,061 4,728 1,429 6,346 2,323 14,069 4,481 5,784 1,668 4,481 7,127	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.99 0.99 0.99 1.07 1.03 0.87 1.25 0.74	0.32 31.4 0.34 0.24 0.24 0.24 0.24 0.41 0.34 0.34 0.32 0.27 0.27 0.34 0.14	Drying 1.84 1.83.2 1.48 1.52 1.81 1.81 1.52 1.70 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.63 1.47 1.75 1.77 5.13	Calender 0.18 17.6 0.26 0.24 0.24 0.24 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.24 0.17 0.17 0.17		Prp & Dry 0.21 21.4 - - 1.01 - 1.01 0.53 - - - 1.07 - - 1.17	Calender 0.08 7.6 - 0.33 - 0.33 0.33 - - 0.33 - - 0.33 - - - - - - - - - - - - -			TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0 4.9 7.4 50.6 20.9 16.1 5.1 23.3 42.8	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1 3.2 3.2 3.6 4.7 2.8 3.1 5.2 6.0
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board BI. Folding Boxboard / Milk Other Board, unbl Kraft Paper Special Industrial Unctd Free, Brist, & BI Pkg Coated Freesheet Newsprint Gwd Specialties Coated Groundwood Tissue / Towel Other Specialties	99,545 9,806 23,509 2,061 4,728 1,429 6,346 247 1,545 2,323 14,069 4,481 5,784 1,668 4,481 7,127 83	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.99 0.99 0.99 1.07 1.03 0.87 0.87 0.87 0.87 0.87 0.87 0.87	$\begin{array}{c} 0.32\\ \hline 31.4\\ 0.34\\ 0.41\\ 0.24\\ 0.24\\ 0.41\\ 0.34\\ 0.41\\ 0.34\\ 0.32\\ 0.27\\ 0.27\\ 0.27\\ 0.34\\ 0.14\\ 0.14\\ 0.41\\ \end{array}$	Drying 1.84 1.83.2 1.48 1.52 1.81 1.81 1.52 1.70 1.52 1.52 1.52 1.92 1.63 1.47 1.75 1.77 5.13 1.90	Calender 0.18 17.6 0.26 0.24 0.24 0.24 0.24 0.24 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.24 0.17 0.17 0.17	-	Prp & Dry 0.21 21.4 - - 1.01 - 1.01 0.53 - - - 1.07 - 1.17	Calender 0.08 7.6 - 0.33 - 0.33 0.33 - - 0.33 - - 0.33 - - - - - - - - - - - - -			TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0 4.9 7.4 50.6 20.9 16.1 5.1 23.3 42.8 0.3	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1 3.2 3.2 3.6 4.7 2.8 3.1 5.2 6.0 3.6
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board BI. Folding Boxboard / Milk Other Board, unbl Kraft Paper Special Industrial Unctd Free, Brist, & BI Pkg Coated Freesheet Newsprint Gwd Specialties Coated Groundwood Tissue / Towel Other Specialties Market Pulp	99,545 9,806 23,509 2,061 4,728 1,429 6,346 247 1,545 2,323 14,069 4,481 5,784 1,668 4,481 7,127 83 9,858	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.99 0.99 0.99 1.07 1.03 0.87 1.25 0.74	0.32 31.4 0.34 0.24 0.24 0.24 0.24 0.41 0.34 0.34 0.32 0.27 0.27 0.34 0.14	Drying 1.84 1.83.2 1.48 1.52 1.81 1.81 1.52 1.70 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.63 1.47 1.75 1.77 5.13	Calender 0.18 17.6 0.26 0.24 0.24 0.24 0.26 0.26 0.26 0.26 0.26 0.27 0.24 0.17 0.17 0.17 0.17 0.26	-	Prp & Dry 0.21 21.4 - - 1.01 - 1.01 0.53 - - - 1.07 - 1.17	Calender 0.08 7.6 - 0.33 - 0.33 0.33 - - 0.33 - - 0.33 - - - - - - - - - - - - -		356.3	TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0 4.9 7.4 50.6 20.9 16.1 5.1 23.3 42.8 0.3 18.4	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1 3.2 3.2 3.6 4.7 2.8 3.1 5.2 6.0 3.6 1.9
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board BI. Folding Boxboard / Milk Other Board, unbl Kraft Paper Special Industrial Unctd Free, Brist, & BI Pkg Coated Freesheet Newsprint Gwd Specialties Coated Groundwood Tissue / Towel Other Specialties Market Pulp	99,545 9,806 23,509 2,061 4,728 1,429 6,346 247 1,545 2,323 14,069 4,481 5,784 1,668 4,481 7,127 83 9,858 99,545	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.99 0.99 0.99 0.99 1.07 1.03 0.87 1.25 0.74 0.87 1.25 0.74 0.99 0.54	$\begin{array}{c} 0.32\\ \hline 31.4\\ 0.34\\ 0.41\\ 0.24\\ 0.24\\ 0.41\\ 0.34\\ 0.41\\ 0.34\\ 0.32\\ 0.27\\ 0.27\\ 0.27\\ 0.34\\ 0.14\\ 0.14\\ 0.41\\ \end{array}$	Drying 1.84 1.83.2 1.48 1.52 1.81 1.81 1.52 1.70 1.52 1.52 1.52 1.92 1.63 1.47 1.75 1.77 5.13 1.90	Calender 0.18 17.6 0.26 0.24 0.24 0.24 0.26 0.26 0.26 0.26 0.26 0.27 0.24 0.17 0.17 0.17 0.17 0.26		Prp & Dry 0.21 21.4 - - 1.01 - 1.01 0.53 - - - 1.07 - 1.17	Calender 0.08 7.6 - 0.33 - 0.33 0.33 - - 0.33 - - 0.33 - - - - - - - - - - - - -		356.3	TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0 4.9 7.4 50.6 20.9 16.1 5.1 23.3 42.8 0.3 42.8 0.3 18.4 356.3	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1 3.2 3.2 3.2 3.6 4.7 2.8 3.1 5.2 6.0 3.6 1.9 3.6
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board BI. Folding Boxboard / Milk Other Board, unbl Kraft Paper Special Industrial Unctd Free, Brist, & BI Pkg Coated Freesheet Newsprint Gwd Specialties Coated Groundwood Tissue / Towel Other Specialties Market Pulp Subtotal Wastewater (WWT)	99,545 9,806 23,509 2,061 4,728 1,429 6,346 2,323 14,069 4,481 5,784 1,669 4,481 5,784 1,669 4,481 7,127 83 9,858 99,545	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.99 0.99 0.99 0.99 1.07 1.03 0.87 1.25 0.74 0.97 0.54 0.54	$\begin{array}{c} 0.32\\ \hline 31.4\\ 0.34\\ 0.41\\ 0.24\\ 0.24\\ 0.41\\ 0.34\\ 0.41\\ 0.34\\ 0.32\\ 0.27\\ 0.27\\ 0.27\\ 0.34\\ 0.14\\ 0.14\\ 0.41\\ \end{array}$	Drying 1.84 1.83.2 1.48 1.52 1.81 1.81 1.52 1.70 1.52 1.52 1.52 1.92 1.63 1.47 1.75 1.77 5.13 1.90	Calender 0.18 17.6 0.26 0.24 0.24 0.24 0.26 0.26 0.26 0.26 0.26 0.27 0.24 0.17 0.17 0.17 0.17 0.26		Prp & Dry 0.21 21.4 - - 1.01 - 1.01 0.53 - - - 1.07 - 1.17	Calender 0.08 7.6 - 0.33 - 0.33 0.33 - - 0.33 - - 0.33 - - - - - - - - - - - - -		356.3 356.3 67.1	TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0 4.9 7.4 50.6 20.9 16.1 5.1 23.3 42.8 0.3 18.4 3566.3 67.1	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1 3.2 3.6 4.7 2.8 3.1 5.2 6.0 3.6 1.9 3.6 0.7
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board BI. Folding Boxboard / Milk Other Board, unbl Kraft Paper Special Industrial Unctd Free, Brist, & BI Pkg Coated Freesheet Newsprint Gwd Specialties Coated Groundwood Tissue / Towel Other Specialties Market Pulp Subtotal Wastewater (WWT)	99,545 9,806 23,509 2,061 4,728 1,429 6,346 2,323 14,069 4,481 5,784 1,668 4,481 5,784 1,668 4,481 5,784 1,7127 83 9,858 99,545	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.99 0.99 0.99 0.99 1.07 1.03 0.87 1.25 0.74 0.87 1.25 0.74 0.99 0.54	$\begin{array}{c} 0.32\\ \hline 31.4\\ 0.34\\ 0.41\\ 0.24\\ 0.24\\ 0.41\\ 0.34\\ 0.41\\ 0.34\\ 0.32\\ 0.27\\ 0.27\\ 0.27\\ 0.34\\ 0.14\\ 0.14\\ 0.41\\ \end{array}$	Drying 1.84 1.83.2 1.48 1.52 1.81 1.81 1.52 1.70 1.52 1.52 1.52 1.92 1.63 1.47 1.75 1.77 5.13 1.90	Calender 0.18 17.6 0.26 0.24 0.24 0.24 0.26 0.26 0.26 0.26 0.26 0.27 0.24 0.17 0.17 0.17 0.17 0.26		Prp & Dry 0.21 21.4 - - 1.01 - 1.01 0.53 - - - 1.07 - 1.17	Calender 0.08 7.6 - 0.33 - 0.33 0.33 - - 0.33 - - 0.33 - - - - - - - - - - - - -		356.3 356.3 67.1 55.1	TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0 4.3 7.4 50.6 20.9 16.1 5.1	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1 3.2 3.6 4.7 2.8 3.1 5.2 6.0 3.6 1.9 3.6 1.9 0.7 0.7
PAPER MACHINE Avg Area (MMBtu/ton) Subt Area (kton, TBtu) Corrugating Medium Linerboard Recycled Board Folding Boxboard Gypsum Board BI. Folding Boxboard / Milk Other Board, unbl Kraft Paper Special Industrial Unctd Free, Brist, & BI Pkg Coated Freesheet Newsprint Gwd Specialties Coated Groundwood Tissue / Towel Other Specialties Market Pulp Subtotal Wastewater (WWT)	99,545 9,806 23,509 2,061 4,728 1,429 6,346 2,323 14,069 4,481 5,784 1,669 4,481 5,784 1,669 4,481 7,127 83 9,858 99,545	0.96 95.1 1.35 0.99 0.74 0.74 0.74 0.99 0.99 0.99 0.99 1.07 1.03 0.87 1.25 0.74 0.97 0.54 0.54	$\begin{array}{c} 0.32\\ \hline 31.4\\ 0.34\\ 0.41\\ 0.24\\ 0.24\\ 0.41\\ 0.34\\ 0.41\\ 0.34\\ 0.32\\ 0.27\\ 0.27\\ 0.27\\ 0.34\\ 0.14\\ 0.14\\ 0.41\\ \end{array}$	Drying 1.84 1.83.2 1.48 1.52 1.81 1.81 1.52 1.70 1.52 1.52 1.52 1.92 1.63 1.47 1.75 1.77 5.13 1.90	Calender 0.18 17.6 0.26 0.24 0.24 0.24 0.26 0.26 0.26 0.26 0.26 0.27 0.24 0.17 0.17 0.17 0.17 0.26		Prp & Dry 0.21 21.4 - - 1.01 - 1.01 0.53 - - - 1.07 - 1.17	Calender 0.08 7.6 - 0.33 - 0.33 0.33 - - 0.33 - - 0.33 - - - - - - - - - - - - -		356.3 356.3 67.1	TBtu 31.1 74.5 6.3 20.7 4.3 28.7 1.0 4.9 7.4 50.6 20.9 16.1 5.1 23.3 42.8 0.3 18.4 3566.3 67.1	3.6 3.2 3.2 3.0 4.4 3.0 4.5 4.1 3.2 3.6 4.7 2.8 3.1 5.2 6.0 3.6 1.9 3.6 0.7

Theo Min Steam		detail in MM	Btu/ton							Steam TBtu	Steam TBtu	Steam MMBtu/ton
	Prodn			Screening			Lime Kiln /					
CHEMICAL PULP	(Kton/yr)	Prep	Cooking	/ Cleaning	Washing	Evap	Chem Prp	Bleaching	Other			
Avg Area (MMBtu/ton)		0.10	1.55	-	-	1.90	0.10	0.65	-			4.3
Subt Area (kton, TBtu)	53,248	5.4	82.7	-	-	101.2	5.6	34.8	-	229.7	TBtu	4.3
Sulfite	532	0.25	2.52			1.37	0.60	2.10			3.6	6.8
Kraft, UnBleached	19,917	0.10	1.42			1.92	0.10				70.6	3.5
Kraft, Bleached, SW	13,848	0.10	1.77			1.87	0.10	1.41			72.8	5.3
Kraft, Bleached, HW	15,404	0.10	1.42			1.92	0.10	0.92			68.8	4.5
NSSC, SemiChem	3,547	0.10	1.90			1.84	0.10				14.0	3.9
		Wood	Grinding /	Screening								
MECHANICAL PULP		Prep	Refining	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		0.07	(0.24)	-	1.49	-			_			1.3
Subt Area (kton, TBtu)	4,680	0.3	(1.1)	-	7.0	-				6.1	TBtu	1.3
SGW	1,416		2.70		0.30						4.2	3.0
TMP	3,264	0.10	(1.52)		2.00						1.9	0.6
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)				0.73								0.7
Subt Area (kton, TBtu)	28,509	Ī		20.8						20.8	TBtu	0.7
000	16,683	İ		0.60					-		10.0	0.6
MOW, non deinked (tissue)	3,658			0.60							2.2	0.6
ONP, deinked	4,442			1.33							5.9	1.3
MOW, deinked	2,021			1.33							2.7	1.3
Pulp Sub	1,705			_							-	-
Subtotal	86,437									256.7	256.7	3.0
				Dryers,	Dry End /		Coating,	Super Cal,				
PAPER MACHINE		Wet End	Pressing	Drying	Calender		Prep	heat				
Avg Area (MMBtu/ton)		0.39	-	0.88	-		0.02	0.05	_			1.3
Subt Area (kton, TBtu)	99,545	38.8	-	88.0	-		2.5	4.8		134.1	TBtu	1.3
Corrugating Medium	9,806	0.40		0.79							11.6	1.2
Linerboard	23,509	0.40		0.79							27.9	1.2
Recycled Board	2,061	0.40		1.05							3.0	1.5
Folding Boxboard	4,728	0.40		1.05			0.10	0.23			8.4	1.8
Gypsum Board	1,429	0.40		1.05							2.1	1.5
BI. Folding Boxboard / Milk	6,346	0.40		0.79			0.10	0.23			9.6	1.5
Other Board, unbl	247	0.40		0.95			0.10	0.23			0.4	1.7
Kraft Paper	1,545	0.40		0.79							1.8	1.2
Special Industrial	2,323	0.40		0.79							2.8	1.2
Unctd Free, Brist, & BI Pkg	14,069	0.40		1.10							21.1	1.5
Coated Freesheet	4,481	0.40		0.91			0.10	0.23			7.3	1.6
Newsprint	5,784	0.40		0.86							7.3	1.3
Gwd Specialties	1,668	0.40		1.04							2.4	1.4
Coated Groundwood	4,481	0.40		1.05			0.20	0.27			8.6	1.9
Tissue / Towel	7,127	0.26		1.08			0.20	0.27			9.6	1.3
Other Specialties	83	0.40		1.05							0.1	1.5
Market Pulp	9,858	0.40		0.62							10.1	1.0
	0,000	0.10		0.02						134.1	134.1	1.3
	99 545											1.0
Subtotal	99,545 99,545	0.55								54.6		0.5
Subtotal Wastewater (WWT)	99,545	0.55								54.6 39.8	54.6	0.5
Subtotal		0.55 0.40								54.6 39.8 94.4		0.5 0.4 0.9

Theo Min Electricity		detail in kWI	a/ton							Electric TBtu	Electric TBtu	Electric MMBtu/ton
	Prodn	Wood		Screening			Lime Kiln /			1 Dtu	i Dia	WWD to rom
CHEMICAL PULP	(Kton/yr)	Prep	Cooking	/ Cleaning	Washing	Evap	Chem Prp	Bleaching	Other			
Avg Area (MMBtu/ton)	(1 (101)) (1)	0.20	0.35	0.04	0.02	0.21	0.10	0.22	-			1.1
Subt Area (kton, TBtu)	53,248	10.8	18.4	2.1	1.0	11.3	5.5	11.6	-	60.8	TBtu	1.1
Sulfite	532	75	135			51	0.0	145		00.0	0.7	1.4
Kraft, UnBleached	19,917	63	85	18	9	67	27				18.3	0.9
Kraft, Bleached, SW	13,848	48	78	18	9	54	33	123			17.2	1.2
Kraft, Bleached, HW	15,404	63	85	-	Ū.	67	27	105			18.2	1.2
NSSC, SemiChem	3,547	70	352			45	60	100			6.4	1.8
	0,011	Wood	Grinding /	Screening							0.1	
MECHANICAL PULP		Prep	Refining	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		0.17	6.25	0.34	0.41	_						7.2
Subt Area (kton, TBtu)	4,680	0.8	29.3	1.6	1.9	-				33.6	TBtu	7.2
SGW	1,416	70	1,843	100	120				-	00.0	10.3	7.3
TMP	3,264	41	1,827	100	120						23.3	7.1
	0,201		1,021	100	120						20.0	
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)				0.91								0.9
Subt Area (kton, TBtu)	28,509		-	25.9						25.9	TBtu	0.9
OCC	16,683		-	206					-	20.0	11.7	0.7
MOW, non deinked (tissue)	3,658			348							4.3	1.2
ONP, deinked	4,442			395							6.0	1.2
MOW, deinked	2,021			472							3.3	1.5
Pulp Sub	1,705			104							0.6	0.4
Subtotal	86,437			104						120.3	120.3	1.4
Cubiotal	00,407			Dryers,	Dry End /		Coating,	Super Cal,		120.0	120.0	1.4
PAPER MACHINE		Wet End	Pressing	Drying	Calender		Prep	drive				
Avg Area (MMBtu/ton)		0.57	0.32	0.40	0.18		0.01	0.03				1.5
Subt Area (kton, TBtu)	99,545	56.3	31.4	39.9	17.6	-	1.2	2.8		149.2	TBtu	1.5
Corrugating Medium	9,806	277	100	95					-		15.8	1.6
Linerboard	23,509	172	120	105	75						37.9	1.6
Recycled Board	2,061	100	70	75	70						2.2	1.1
Folding Boxboard	4,728	100	70	75	70		10	30			5.7	1.2
Gypsum Board	1,429	100	70	75	70						1.5	1.1
Bl. Folding Boxboard / Milk	6,346	172	120	105	75		10	30			11.1	1.7
Other Board, unbl	247	172	100	85	75		10	30			0.4	1.6
Kraft Paper	1,545	172	120	105	75		.0	00			2.5	1.6
Special Industrial	2,323	172	120	105	75						3.7	1.6
Unctd Free, Brist, & BI Pkg	14,069	195	100	85	80						22.1	1.6
Coated Freesheet	4.481	185	95	85	70		25	40			7.6	1.0
Newsprint	5,784	138	95 80	60	50		25	40			6.5	1.1
Gwd Specialties	1,668	138	80 80	60	50						1.9	1.1
Coated Groundwood	4,481	250	100	65	50 50		25	65			8.5	1.1
Tissue / Towel	7,127	250 140	40	489	50		25	05			0.5 16.3	2.3
Other Specialties	83	140	40 120	409	75						0.1	2.3 1.6
	03 9,858	40	40	80	75						0.1 5.4	0.5
Market Pulp Subtotal	9,858 99,545	40	40	80						149.2	5.4 149.2	0.5
Wastewater (WWT)	99,545 99,545	37								149.2	149.2	0.1
Other Utilities	99,545	45								<u>15.3</u> 27.8	15.3 27.8	0.2
Subtotal Total	99,545									-	-	0.3
Lotal	99,545									297.3	297.3	3.0

JACOBS

Theo Min Direct Fuel										Dr Fuel	Dr Fuel	Dr Fuel
		detail in MM	Btu/ton	. .						TBtu	TBtu	MMBtu/ton
	Prodn	Wood	O s s l i s s	Screening		-	Lime Kiln /	Disastrias	011			
CHEMICAL PULP	(Kton/yr)	Prep	Cooking	/ Cleaning	Washing	Evap	Chem Prp	Bleaching	Other			
Avg Area (MMBtu/ton)	50.040	-	-	-	-	-	0.69	-	-		70/	0.7
Subt Area (kton, TBtu)	53,248	-	-	-	-	-	36.8	-	-	36.8	TBtu	0.7
Sulfite	532						1.76				0.9	1.8
Kraft, UnBleached	19,917						0.74				14.7	0.7
Kraft, Bleached, SW	13,848						0.69				9.5	0.7
Kraft, Bleached, HW	15,404						0.63				9.6	0.6
NSSC, SemiChem	3,547						0.58				2.0	0.6
		Wood		Screening								
MECHANICAL PULP		Prep	Refining	/ Cleaning	Bleaching	Other						
Avg Area (MMBtu/ton)		-	-	-	-	-			_			-
Subt Area (kton, TBtu)	4,680	-	-	-	-	-				-	TBtu	-
SGW	1,416								-		-	-
TMP	3,264										-	-
RECYCLED PULP				Recycling								
Avg Area (MMBtu/ton)				-								-
Subt Area (kton, TBtu)	28,509			-						-	TBtu	-
occ	16,683		-						-		-	-
MOW, non deinked (tissue)	3,658										-	-
ONP, deinked	4,442										-	-
MOW, deinked	2,021										-	-
Pulp Sub	1,705										-	_
Subtotal	86,437									36.8	36.8	0.4
Cabiola	00,101			Dryers,	Dry End /		Coating,	Super Cal,		00.0	00.0	0
PAPER MACHINE		Wet End	Pressing	Drying	Calender		Drying	heat				
Avg Area (MMBtu/ton)		-		0.13	-		0.18	-				0.3
Subt Area (kton, TBtu)	99,545	-	-	13.2	-	-	17.7	-	-	31.0	TBtu	0.3
Corrugating Medium	9,806			10.2		-			-	01.0	-	0.0
Linerboard	23,509											
Recycled Board	2,061										-	-
Folding Boxboard	4,728						0.9				- 4.2	- 0.9
				-			0.9				4.2	0.9
Gypsum Board	1,429						0.0					-
BI. Folding Boxboard / Milk	6,346						0.9				5.6	0.9
Other Board, unbl	247						0.4				0.1	0.4
Kraft Paper	1,545										-	-
Special Industrial	2,323										-	-
Unctd Free, Brist, & BI Pkg	14,069										-	-
Coated Freesheet	4,481			-			0.9				3.9	0.9
Newsprint	5,784										-	-
Gwd Specialties	1,668			-							-	-
Coated Groundwood	4,481			-			0.9				3.9	0.9
Tissue / Towel	7,127			1.9							13.2	1.9
Other Specialties	83										-	-
Market Pulp	9,858										-	-
Subtotal	99,545									31.0	31.0	0.3
Wastewater (WWT)	99,545									-	-	-
Other Utilities	99,545									-	-	-
Subtotal	99,545									-	-	-
Total	99,545									67.8	67.8	0.7

CHEMICAL PULP TBu TBu TBu TBu TBu TBu TBu MMBRuton Avg Area (MMBRuton) 53,246 162 012 2.11 0.0 0.67 - 6.1 Subt Area (kton, TBu) 53,246 162 012 2.11 0.0 0.67 - 5.3 100 Kraft, Helsched, SW 13.48 0.26 0.40 0.03 2.15 0.33 - 103 5.2 5.3 100 Skaft, Helsched, SW 13.48 0.26 0.40 0.03 2.16 0.33 - 964 7.2 Kaft, Helsched, IW 13.44 0.34 1.30 - - 2.24 0.38 - - 2.24 6.3 SSG, Sem/UMBUton 4.680 0.34 1.30 - - 2.4 8.5 SWI Area (kton, TBu) 4.680 0.24 0.71 - 2.51 7.7 Recycling Ava Area (kton, TBu) 16.83 - - -	Theo Min Stm + Elec + D Fuel										All	All	All
CHEMICAL PULP (Konvyn) Prep Cocking / Cleaning Waar Chem Pre Bischning Other Subt Area (Kon, TBu) 5324 16.2 101.2 2.1 10.0 10.90 0.87 - 6.1 Kraft, Ubeleached 19.917 0.31 1.71 0.06 0.03 2.15 0.33 - - 103.6 5.2 Kraft, Bleached, W 13.448 0.26 2.04 0.06 0.03 2.16 0.39 1.83 - 99.4 7.2 Kraft, Bleached, W 13.448 0.26 2.04 0.06 0.03 2.06 0.99 1.83 - 99.4 7.2 Kraft, Bleached, WW 15.440 0.31 1.71 - - 2.15 0.32 1.28 - 99.6 6.33 Stat Kraft, Bleached, WW 1.44 0.36 - - 20.7 TBu 6.6 1.84 Stat Kraft, Bleached, Stat 1.1 2.6 1.24 7.0			detail in MM	Btu/ton							TBtu	TBtu	MMBtu/ton
Avg Area (MMBLtron) 0.31 1.90 0.02 2.11 0.90 0.87 - 6.1 Suffice 552 0.51 2.18 1.01 1124 48.0 46.4 - 327.3 TBU 6.1 Suffice 552 0.51 2.98 - - 1.55 2.98 - - 10.0 15.7 0.93 - - 10.3 6.5 2.59 - 10.3 6.5 5.2 3.0 5.5 0.93 - - 10.3 6.6 6.3 3.1 - - 1.1 0.60 0.34 1.0 - - 1.190 0.88 - - 22.4 6.3 NECHANICAL PULP Prep Pretining / Ceening Ceening Other - 22.4 7.7 8.5 SGW 1.14 28.1 1.6 8.9 - - 22.1 7.7 7.7 4.6 10.3 10.3 - - 22.1		Prodn	Wood		Screening			Lime Kiln /					
Suit Area (ktor, TBu) 55.24 10.2 10.1 12.4 48.0 46.4 - 327.3 TBu 6.1 Kart, Unsleached 19,917 0.31 1.71 0.06 0.03 2.06 0.90 1.83 - 103.6 5.2 Krat, Bleached, SW 15,446 0.31 1.71 - - 2.15 0.82 1.28 - 996.6 6.3 NSSC, Sem(Chem 3.547 0.34 3.10 0.7 - 1.99 0.88 - - 22.4 6.3 SW MCCHANICAL PULP Vector Granding / Screening - - 1.99 0.88 - 22.4 6.3 SW 4.46 0.24 6.01 0.34 9.7 - 22.6 39.7 TBu 6.5 1.8 GW 4.460 0.24 4.71 0.34 2.41 - 25.1 7.7 1.5 MOW, deriked 2.021 1.64 - 1.	CHEMICAL PULP	(Kton/yr)	Prep	Cooking	/ Cleaning	Washing	Evap	Chem Prp	Bleaching	Other			
Suttle 532 0.51 2.98 - - 1.55 2.58 2.59 - 6.3 10.0 Kraft, Uhleached, SW 13.848 0.26 2.04 0.06 0.03 2.15 0.93 - 10.0 66.6 6.3 Kraft, Bleached, HW 15.404 0.31 1.71 - - 1.15 0.82 1.28 - 96.6 6.6 3.3 1.0 - 1.99 0.88 - - 22.4 6.3 MECHANICAL PULP Avg Area (MMBtu/ton) 4.660 0.34 1.6 8.9 - - 22.4 6.3 SGW 1.466 0.34 2.41 - 8.9 - - 28.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.8 1.6 </td <td>Avg Area (MMBtu/ton)</td> <td></td> <td>0.31</td> <td>1.90</td> <td>0.04</td> <td>0.02</td> <td>2.11</td> <td>0.90</td> <td>0.87</td> <td>-</td> <td></td> <td></td> <td>6.1</td>	Avg Area (MMBtu/ton)		0.31	1.90	0.04	0.02	2.11	0.90	0.87	-			6.1
Suffice 652 0.51 2.98 - - 1.55 2.59 - 5.3 10.0 Kraft, Dielached, SW 13,848 0.26 2.04 0.06 0.03 2.15 0.93 - - 103.6 5.2 Kraft, Bleached, HW 13,848 0.26 2.04 0.06 0.03 2.15 0.82 1.28 - 99.6 6.6 6.3 NSSC, SemiChem 3.547 Wood Grinding / Screining Other - 1.99 0.88 - - 22.4 6.3 SGW 1.11 28.1 1.6 8.9 - - 28.5 39.7 TBlu 8.5 SGW 1.46 0.34 2.41 - 8.9 - - 28.5 39.7 TBlu 8.5 39.7 18.4 10.3 14.6 10.3 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 19.9 2.7 <t< td=""><td>Subt Area (kton, TBtu)</td><td>53,248</td><td>16.2</td><td>101.2</td><td>2.1</td><td>1.0</td><td>112.4</td><td>48.0</td><td>46.4</td><td>-</td><td>327.3</td><td>TBtu</td><td>6.1</td></t<>	Subt Area (kton, TBtu)	53,248	16.2	101.2	2.1	1.0	112.4	48.0	46.4	-	327.3	TBtu	6.1
Kraft, Bleached, SW 13,848 0.26 204 0.06 0.33 2.06 0.90 1.83 - 99.4 7.2 Wraft, Bleached, HW 15,404 0.341 1.71 - - 1.99 0.88 - - 22.4 6.3 NSSC, SemiChem 3,547 Void Grinding / Screening Other - 1.99 0.88 - - 22.4 6.3 Wood Grinding / Screening Other - 1.99 0.88 - - 22.4 6.3 SGW 1.11 28.1 1.6 8.9 - - 39.7 TBu 8.5 SGW 1.460 0.24 4.071 - - 1.6 - - 1.6 - - 1.6 - 1.6 - - 1.6 - - 1.6 - - 1.6 - - - - 1.7 1.6 - - - -		532	0.51	2.98	-	-	1.55	2.36	2.59	-		5.3	10.0
Kraft, Blached, HW 15,404 0.31 1.71 . . 2.15 0.82 1.28 . 96.6 6.3 NSSC, SemiChem 3,547 0.34 3.10 . . 1.99 0.82 1.28 . 22.4 6.3 MCCHANCAL PULP Avg Area (MMBruton) . 0.24 6.01 0.034 1.90 . . 22.4 6.3 SGW 1.416 0.24 4.71 0.34 2.41 .	Kraft, UnBleached	19,917	0.31	1.71	0.06	0.03	2.15	0.93	-	-		103.6	5.2
Kraft, Blached, HW 15,404 0.31 1.71 . . 2.15 0.82 1.28 . 96.6 6.3 NSSC, SemiChem 3,547 0.34 3.10 . . 1.99 0.82 1.28 . 22.4 6.3 MCCHANCAL PULP Avg Area (MMBruton) . 0.24 6.01 0.034 1.90 . . 22.4 6.3 SGW 1.416 0.24 4.71 0.34 2.41 .	Kraft, Bleached, SW	13.848	0.26	2.04	0.06	0.03	2.06	0.90	1.83	-		99.4	7.2
NSSC, SemiChem 3,547 0.34 3.10 - - 1.99 0.88 - - 22.4 6.3 MECHANICAL PULP Avg Area (MMB1u/on) 0.24 6.01 0.34 1.90 Other avg Area (Kon, TBlu) 6.80 1.11 28.1 1.6 8.9 - - 25.1 7.7 SGW 1.416 0.24 8.99 0.34 0.71 - - 16.6 16.6 16.6 16.6 16.6 7.7 14.6 10.3 25.1 7.7 Avg Area (Kon, TBlu) 28.509 - - 46.7 - - 1.6 1.9 0.6 1.1 1.6 1.0 21.7 1.3 0.2 1.9 0.6 0.6 1.9 21.7 1.3 0.6 0.6 0.6 0.6 0.6 0.6 0.4 1.9 2.7 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.0 2.0 0.6 0.4 3.0 3.0 3.2 2.2 2.9 2.				1.71	_			0.82		-		96.6	
Wood Grinding / Screening Beachag Other 8.5 Sub Area (MBRUron) 0.24 6.01 0.34 1.00 - 8.5 Sub Area (Mon, TBlu) 1.41 0.24 8.99 0.34 0.71 - 8.5 SGW 1.41 0.24 8.99 0.34 0.71 - 1.64 10.3 TMP 3.264 0.24 4.71 0.34 2.41 - 25.1 7.7 13 Sub Area (Mon, TBlu) 25.509 1.64 - - 46.7 1.6	NSSC, SemiChem		0.34	3.10	-	-		0.88		-		22.4	
MECHANICAL PULP Avg Area (MMBlu/on) Subt Area (kton, TBu) Prep 4460 Refining 1.1 Isse 2307 Other 1.5 Bleaching 39.7 Other 1.5 SOW 1.446 0.24 8.9 0.34 0.71 - 8.5 SOW 1.446 0.24 8.9 0.34 0.71 - 1.6 8.9 - Avg Area (MMBlu/on) Subt Area (kton, TBu) 25.509 - Recycling - 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.19 2.7 1.30 - 6.5 1.8 1.19 2.7 1.3 OVC no deinked (itsue) 3.658 1.79 - 413.7 4.13 2.9 - 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.4		- , -			Screening								
Avg Area (MMBtu/on) 0.24 6.01 0.34 1.90 - 8.5 SW 1.41 0.24 8.9 0.34 0.71 - 39.7 TBU 8.5 SW 3.26 0.24 4.71 0.34 0.71 - 39.7 TBU 8.5 SW Area (MMBtu/on) - - 1.64 - 25.1 7.7 RECYCLED PULP Recycling 1.64 - - 1.6 - - 1.6 1.6 1.6 1.6 1.6 - - 1.6 - - 1.6 1.6 1.6 1.6 1.6 - - - 1.6 - - 1.6 - - - 1.6 -	MECHANICAL PULP				0	Bleaching	Other						
Subt Area (kton, TBu) 4.60 1.1 28.1 1.6 8.9 - SGW 1.416 0.24 8.9 0.34 0.71 - 25.1 7.7 RECYCLED PULP Aga Area (MBturbun) - 16.4 10.3 25.1 7.7 MCV, non deinked (tissue) 3.658 1.30 - 46.7 - 16.4 OCC 16.683 1.30 - 2.65 1.8 - 1.19 2.7 NCW, deinked 2.021 2.94 - 0.6 0.4 - 6.5 1.8 PUP Sub 1.705 0.36 -					0	0	-						8.5
Sew 1.416 0.24 8.99 0.34 0.71 1 TMP 3,264 0.24 4.71 0.34 2.41 - 25.1 7.7 RECYCLED PULP Arg Area (MMBtu/ton) 28,509 0.24 4.71 0.34 2.41 - 25.1 7.7 CCC 16.683 1.30 1.64 46.7 1.8 46.7 1.8 1.8 1.8 1.8 1.19 2.7 1.3 ONP, deinked 2.021 2.94 5.9 2.9 1.19 2.7 1.3 0.6 0.4 Subtotal 86.437 0.26 0.36 0.21 0.6 0.4 1.05 0.6 0.4 0.21 0.06 0.4 0.21 0.06 0.21 0.21 0.21 0.21 0.21 0.23 1.42 0.18 0.21 0.21 0.23 1.42 0.18 0.21 0.6 0.4 1.33 3.2 2.5 2.5 2.5 2.5 2.5 2.5		4.680					_				39.7	TBtu	
TMP 3,264 0.24 4.71 0.34 2.41 - 25.1 7.7 RECYCLED PULP Avg Area (MMBtu/ton) Subt Area (kton, TBtu) 28,509 1.64 46.7 1.6 46.7 1.6 OCC 16,683 1.79 6.5 1.8 46.7 1.8 OW, deinked (tissue) 3,658 1.79 6.5 1.8 0.6 0.4 MOW, deinked 2,021 2.94 5.9 2.9 9.9 0.6 0.4 Subtate (kton, TBtu) 9.9,545 95.1 31.4 141.2 17.6 21.4 0.6 0.4 Corrugating Medium 9.806 1.35 0.34 1.11 - - - 27.4 2.8 Corrugating Medium 9.806 1.35 0.34 1.11 - - - 27.4 2.8 Linerboard 2.061 0.74 0.24 1.01 0.33 1.8.3 3.9 Corrugating Medium 9.806 1.35 0.34		,					-				00.1		
RECYCLED PULP Arg Area (MMBtu/ton) Subt Area (ton, TBtu) 28,509 28,509 Recording 1.64 1.64 46.7 TBtu 1.6 OCC 16,683 1.30 21.7 1.3 21.7 1.3 MOW, non deinked (tissue) 36.86 1.79 6.5 1.8 ONP, deinked 2.021 2.94 5.9 2.9 Pulp Sub 1.705 0.36 11.9 2.7 MW, deinked 2.021 2.94 5.9 2.9 Pulp Sub 1.056 0.36 0.6 0.4 Subt Area (MNDBu/ton) 0.96 0.32 1.42 0.18 2.14 7.6 Subt Area (Mon, TBtu) 99.545 95.1 31.4 1.11 - - 6.5 2.8 Corrugating Medium 9.806 1.35 0.34 1.11 - - - 6.2 2.5 Folding Boxboard 4.728 0.74 0.24 1.31 0.24 - - 3.6 2.5 2.5 <t< td=""><td></td><td>, -</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		, -					-						
Avg Area (MMBturton) 164 Subt Area (kton, TBtu) 28.509 46.7 TBtu 16. OCC 16,663 1.30 21.7 1.3 MOW, non deinked (tissue) 3,558 1.79 6.5 1.8 ONP, deinked 2,021 2.94 5.9 2.9 Pulp Sub 1.70 0.6 0.4 Yavg Area (MMBturton) 0.96 0.32 1.42 0.18 Avg Area (MMBturton) 99,545 95.1 1.41.2 0.16 0.21 0.08 314.3 TBtu 3.2 Subt Area (kton, TBtu) 99,545 95.1 31.4 1.11 - - - 66.7 2.8 Corrugating Medium 9.806 1.35 0.34 1.11 - - - 66.7 2.8 Corrugating Medium 9.806 1.35 0.34 1.11 - - - 66.7 2.8 Corrugating Medium 9.806 1.35 0.34 1.14 0.26 <td>11011</td> <td>0,204</td> <td>0.24</td> <td>4.71</td> <td>0.04</td> <td>2.41</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>20.1</td> <td>1.1</td>	11011	0,204	0.24	4.71	0.04	2.41						20.1	1.1
Avg Area (MMBturton) 164 Subt Area (kton, TBtu) 28.509 46.7 TBtu 16. OCC 16,663 1.30 21.7 1.3 MOW, non deinked (tissue) 3,558 1.79 6.5 1.8 ONP, deinked 2,021 2.94 5.9 2.9 Pulp Sub 1.70 0.6 0.4 Yavg Area (MMBturton) 0.96 0.32 1.42 0.18 Avg Area (MMBturton) 99,545 95.1 1.41.2 0.16 0.21 0.08 314.3 TBtu 3.2 Subt Area (kton, TBtu) 99,545 95.1 31.4 1.11 - - - 66.7 2.8 Corrugating Medium 9.806 1.35 0.34 1.11 - - - 66.7 2.8 Corrugating Medium 9.806 1.35 0.34 1.11 - - - 66.7 2.8 Corrugating Medium 9.806 1.35 0.34 1.14 0.26 <td>RECYCLED PULP</td> <td></td> <td></td> <td></td> <td>Recycling</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	RECYCLED PULP				Recycling								
Subt Area (kton, TBtu) 28,509 46.7 OCC 16,683 1.30 21.7 1.3 MOW, non deinked (tissue) 3,658 1.79 6.5 1.8 ONP, deinked 4,442 2,68 11.9 2.7 Pulp Sub 1.705 0.8 0.6 0.4 Subtotal 86,437 413.7 48.7 48.7 PAPER MACHINE Wet End Pressing Dryers, Dry End / Drying Calender Prp & Dry Calender 0.21 0.08 314.3 TBtu 3.2 Subt Area (kMB, TBtu) 9.9545 95.1 31.4 141.2 17.6 21.4 7.6 314.3 TBtu 3.2 Corrugating Medium 9.9645 95.1 31.4 141.2 17.6 21.4 7.6 314.3 TBtu 3.2 Corrugating Medium 9.9645 95.1 31.4 111<-													16
OCC 16,683 1.30 21.7 1.3 MOW, non deinked (tissue) 3,658 1.79 6.5 1.8 ONP, deinked 2,021 2.94 5.9 2.9 Pulp Sub 1.705 0.36 0.6 0.4 Subtotal 86.437 Dryers, DryEnd / Coating, Super 413.7 413.7 4.8 PAPER MACHINE Wet End Pressing Drying, Calender O.21 0.08 314.3 18.0 32.2 Gorugating Medium 9.806 1.35 0.34 1.11 - - - 65.7 2.8 Corrugating Medium 9.806 0.22 0.34 1.31 0.24 - - 65.7 2.8 Recycled Board 2.061 0.74 0.24 1.31 0.24 - - 65.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.6 3.14.3 3.9 3.9 3.9 3.9 3.9 3.14.3 3.9		28 500		-						_	46.7	TBtu	
MOW, non deinked (tissue) 3,658 1.79 6.5 1.8 ONP, deinked 4,442 2,68 11.9 2.9 Pujp sub 1,705 0.36 0.6 0.4 Subtotal 86437 0.6 0.4 0.6 0.4 PAPER MACHINE Wet End Pressing Dryters, Dry End / Coating, Super Calender 0.6 0.4 Subtotal 96,437 96,545 96,1 31.4 1412 17.6 21.4 7.6 314.3 18.3 3.2 Corrugating Medium 98,06 1.35 0.34 1.11 - - - 66.7 2.8 Recycled Board 2,061 0.74 0.24 1.31 0.24 - - - 65.7 2.8 Folding Boxboard 4,728 0.74 0.24 1.31 0.24 - - - 3.6 2.5 Bi. Folding Boxboard / Milk 6.346 0.99 0.34 1.24 0.26 0.53				-							40.7		
ONP. deinked 4.442 2.68 11.9 2.7 MOW, deinked 2.021 2.94 5.9 2.9 Subtotal 86.437													
MOW, deinked 2.021 2.94 5.9 2.9 Pulp Sub 1,705 0.36 0.6 0.4 Subtotal 86,437 Bit Subtotal 86,437 413.7 413.7 413.7 4.8 PAPER MACHINE Avg Area (MMBtu/ton) 0.96 0.32 1.42 0.18 Ozer dender Oze dender Ozer denden													
Pulp Sub 1.705 0.36 0.4 0.4 Subtotal 86,437 413.7 4	- ,												
Subtotal 86,437 413.7 4.8 PAPER MACHINE Avg Area (MMBturon) Subt Area (kton, TBtu) 0.96 0.32 1.42 0.18 0.18 0.21 0.08 Corrugating Medium 99,545 95.1 31.4 141.2 17.6 21.4 7.6 314.3 TBtu 3.2 Corrugating Medium 9,606 1.35 0.34 1.11 - - - 65.7 2.8 Recycled Board 2,061 0.74 0.24 1.31 0.24 - - 65.7 2.8 BL Folding Boxboard 4,728 0.74 0.24 1.31 0.24 - - - 3.6 2.5 Folding Boxboard 1,429 0.74 0.24 1.31 0.24 - - - 3.6 2.5 Special Industria 2,323 0.99 0.41 1.14 0.26 - - - - 6.5 2.8 Unctd Free, Brist, & BI Pkg 1,069 1.07 <	-												
Dryers. Dryers. Dryers. Dryers. Dryers. Calender Coating. Super Avg Area (MMBtu/ton) 99,545 95.1 31.4 141.2 17.6 21.4 0.8 314.3 TBtu 3.2 3.2 1.42 0.18 0.21 0.08 314.3 TBtu 3.2 3.2 3.2 1.42 0.18 0.21 0.08 314.3 TBtu 3.2 <					0.36								
PAPER MACHINE Arg Area (MMBtu/ton) Subt Area (kton, TBtu) Wet End 99,545 Pressing 99,143 Drying 142 Calender 0.18 Prp & Dry Calender 0.21 0.08 3.2 Corrugating Medium 9,806 1.35 0.34 1.412 17.6 21.4 7.6 314.3 TBtu 3.2 Corrugating Medium 9,806 1.35 0.34 1.11 - - - 27.4 2.8 Linerboard 2.061 0.74 0.24 1.31 0.24 - - - 5.2 2.5 Folding Boxboard 4.728 0.74 0.24 1.31 0.24 - - - 3.6 2.5 BL Folding Boxboard 1.429 0.74 0.24 1.31 0.24 - - - 3.6 2.5 BL Folding Boxboard 1.429 0.74 0.24 1.31 0.24 - - - 3.6 2.5 BL Folding Boxboard 1.429 0.74 0.24 1.31 0.27 </td <td>Subtotal</td> <td>86,437</td> <td></td> <td></td> <td>Druces</td> <td>Dry End /</td> <td></td> <td>Conting</td> <td>Super</td> <td></td> <td>413.7</td> <td>413.7</td> <td>4.8</td>	Subtotal	86,437			Druces	Dry End /		Conting	Super		413.7	413.7	4.8
Avg Area (MMBtu/ton) 0.96 0.32 1.42 0.18 0.21 0.08 3.2 3.2 Subt Area (kton, TBtu) 99,545 95.1 31.4 141.2 17.6 21.4 7.6 314.3 TBtu 3.2 Corrugating Medium 9,806 1.35 0.34 1.11 - - - 26.7 2.8 Linerboard 23,509 0.99 0.41 1.14 0.26 - - - 65.7 2.8 Recycled Board 2,061 0.74 0.24 1.31 0.24 - - - 3.6 2.5 Folding Boxboard 4,728 0.74 0.24 1.31 0.24 - - - 3.6 2.5 BL Folding Boxboard / Milk 6,346 0.99 0.41 1.14 0.26 - - 4.3 2.8 Special Industrial 2,323 0.99 0.41 1.14 0.26 - - - 4.3 2.8 </td <td></td> <td></td> <td>Wet End</td> <td>Pressing</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Wet End	Pressing									
Subt Area (kton, TBtu) 99.545 95.1 31.4 141.2 17.6 21.4 7.6 314.3 TBtu 3.2 Corrugating Medium 9.806 1.35 0.34 1.11 - - - 65.7 2.8 Linerboard 23,509 0.99 0.41 1.14 0.26 - - 65.7 2.8 Recycled Board 2,061 0.74 0.24 1.31 0.24 - - - 65.7 2.8 Folding Boxboard 4,728 0.74 0.24 1.31 0.24 - - - 3.6 2.5 5.2 2.5 5 5 2.6 1.01 0.33 18.3 3.9 3.6 2.5 5.2 2.5 5 5.2 2.5 5 5.2 2.5 5 5.2 2.5 5 5.2 2.5 5 5 2.6 3.4 1.01 0.33 1.8.3 3.9 9 3.6 2.5 1.14 <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.2</td>				0									3.2
Corrugating Medium 9,806 1.35 0.34 1.11 - - - - 27.4 2.8 Linerboard 23,509 0.99 0.41 1.14 0.26 - - 65.7 2.8 Recycled Board 2,061 0.74 0.24 1.31 0.24 - - - 65.7 2.8 Folding Boxboard 4,728 0.74 0.24 1.31 0.24 - - - 3.6 2.5 2.5 Bi. Folding Boxboard / Milk 6,346 0.99 0.41 1.14 0.26 0.53 0.33 0.9 3.7 Kraft Paper 1,545 0.99 0.41 1.14 0.26 - - 4.3 2.8 Special Industrial 2,323 0.99 0.41 1.14 0.26 - - 4.3 2.8 3.1 Coated Freeshet 4,81 1.03 0.32 1.20 0.24 1.07 0.37 18.9 <t< td=""><td>o (/ </td><td>00 545</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>_</td><td>31/1 3</td><td>TBtu</td><td></td></t<>	o (/ 	00 545					-			_	31/1 3	TBtu	
Linerboard 23,509 0.99 0.41 1.14 0.26 - - 65.7 2.8 Recycled Board 2,061 0.74 0.24 1.31 0.24 - - - 5.2 2.5 Folding Boxboard 4,728 0.74 0.24 1.31 0.24 - - - 3.6 2.5 Bl. Folding Boxboard / Milk 6,346 0.99 0.41 1.14 0.26 1.01 0.33 26.3 4.1 Other Board, unbl 247 0.99 0.34 1.24 0.26 0.53 0.33 0.9 3.7 Kraft Paper 1,545 0.99 0.41 1.14 0.26 - - 4.3 2.8 Special Industrial 2,323 0.99 0.41 1.14 0.26 - - 4.3 2.8 Unctd Free, Brist, & BI Pkg 14,069 1.07 0.34 1.39 0.27 - - 43.2 3.1 Coated		,					-			_	514.5		
Recycled Board 2,061 0.74 0.24 1.31 0.24 - - - 5.2 2.5 Folding Boxboard 4,728 0.74 0.24 1.31 0.24 1.01 0.33 18.3 3.9 Gypsum Board 1,429 0.74 0.24 1.31 0.24 - - - 3.6 2.5 Bl. Folding Boxboard / Milk 6,346 0.99 0.41 1.14 0.26 0.53 0.33 0.9 3.7 Kraft Paper 1,545 0.99 0.41 1.14 0.26 0.53 0.33 0.9 3.7 Kraft Paper 1,545 0.99 0.41 1.14 0.26 - - 4.3 2.8 Special Industrial 2,323 0.99 0.41 1.14 0.26 - - - 43.2 3.1 Coated Freesheet 4,481 1.03 0.32 1.20 0.24 1.07 0.37 18.9 4.2													
Folding Boxboard 4,728 0.74 0.24 1.31 0.24 1.01 0.33 18.3 3.9 Gypsum Board 1,429 0.74 0.24 1.31 0.24 - - - 3.6 2.5 Bl. Folding Boxboard / Milk 6,346 0.99 0.41 1.14 0.26 1.01 0.33 26.3 4.1 Other Board, unbl 247 0.99 0.34 1.24 0.26 0.53 0.33 0.9 3.7 Kraft Paper 1,545 0.99 0.41 1.14 0.26 - - - 4.3 2.8 Special Industrial 2,323 0.99 0.41 1.14 0.26 - - - 4.32 3.1 Coated Freesheet 4,481 1.03 0.32 1.20 0.27 - - 43.2 3.1 Rwd Specialties 1,668 0.87 0.27 1.06 0.17 - - 4.3 2.6													
Gypsun Board 1,429 0.74 0.24 1.31 0.24 - - - 3.6 2.5 Bl. Folding Boxboard / Milk 6,346 0.99 0.41 1.14 0.26 1.01 0.33 26.3 4.1 Other Board, unbl 247 0.99 0.34 1.24 0.26 0.53 0.33 0.9 3.7 Kraft Paper 1,545 0.99 0.41 1.14 0.26 - - 4.3 2.8 Special Industrial 2,323 0.99 0.41 1.14 0.26 - - 4.3 2.8 Unctd Free, Brist, & BI Pkg 14,069 1.07 0.34 1.39 0.27 - - 43.2 3.1 Coated Freesheet 4,481 1.03 0.32 1.20 0.24 1.07 0.37 18.9 4.2 Newsprint 5,784 0.87 0.27 1.06 0.17 - - 4.3 2.6 Coated Groundwood 4,481 1.25 0.34 1.27 0.17 1.17 0.49 21.													
BI. Folding Boxboard / Milk 6,346 0.99 0.41 1.14 0.26 1.01 0.33 26.3 4.1 Other Board, unbl 247 0.99 0.34 1.24 0.26 0.53 0.33 0.9 3.7 Kraft Paper 1,545 0.99 0.41 1.14 0.26 - - 4.3 2.8 Special Industrial 2,323 0.99 0.41 1.14 0.26 - - 4.3 2.8 Unctd Free, Brist, & BI Pkg 14,069 1.07 0.34 1.39 0.27 - - 43.2 3.1 Coated Freesheet 4,481 1.03 0.32 1.20 0.24 1.07 0.37 18.9 4.2 Newsprint 5,784 0.87 0.27 1.06 0.17 - - 4.3 2.6 Coated Groundwood 4,481 1.25 0.34 1.27 0.17 1.17 0.49 21.0 4.7 Tissue / Towel 7,127 0.74 0.14 4.61 - - - - - </td <td></td>													
Other Board, unbl 247 0.99 0.34 1.24 0.26 0.53 0.33 0.9 3.7 Kraft Paper 1,545 0.99 0.41 1.14 0.26 - - 4.3 2.8 Special Industrial 2,323 0.99 0.41 1.14 0.26 - - 6.5 2.8 Unctd Free, Brist, & BI Pkg 14,069 1.07 0.34 1.39 0.27 - - 43.2 3.1 Coated Freesheet 4,481 1.03 0.32 1.20 0.24 1.07 0.37 18.9 4.2 Newsprint 5,784 0.87 0.27 1.06 0.17 - - 4.3 2.6 Coated Groundwood 4,481 1.25 0.17 - - 4.3 2.6 Coated Groundwood 4,481 1.25 0.17 1.17 0.49 21.0 4.7 Tissue / Towel 7,127 0.74 0.14 4.61 -													
Kraft Paper 1,545 0.99 0.41 1.14 0.26 - - 4.3 2.8 Special Industrial 2,323 0.99 0.41 1.14 0.26 - - 6.5 2.8 Unctd Free, Brist & BI Pkg 14,069 1.07 0.34 1.39 0.27 - - 4.3 2.8 Coated Freesheet 4.481 1.03 0.32 1.20 0.24 1.07 0.37 18.9 4.2 Newsprint 5,784 0.87 0.27 1.06 0.17 - - 4.3 2.6 Coated Groundwood 4,481 1.25 0.34 1.27 0.17 - - 4.3 2.6 Coated Groundwood 4,481 1.25 0.34 1.27 0.17 1.17 0.49 21.0 4.7 Tissue / Towel 7,127 0.74 0.14 4.61 - - - 39.1 5.5 Other Specialties 83 0.99 0.41 1.40 0.26 - - 14.3 314.3 3.2<	•	,											
Special Industrial 2,323 0.99 0.41 1.14 0.26 - - 6.5 2.8 Unctd Free, Brist, & BI Pkg 14,069 1.07 0.34 1.39 0.27 - - 43.2 3.1 Coated Freesheet 4,481 1.03 0.32 1.20 0.24 1.07 0.37 18.9 4.2 Newsprint 5,784 0.87 0.27 1.06 0.17 - - 13.7 2.4 Gwd Specialties 1,668 0.87 0.27 1.25 0.17 - - 4.3 2.6 Coated Groundwood 4,481 1.25 0.34 1.27 0.17 1.17 0.49 21.0 4.7 Tissue / Towel 7,127 0.74 0.14 4.61 - - - 39.1 5.5 Other Specialties 83 0.99 0.41 1.40 0.26 - - 314.3 314.3 3.2 Wastewater (WWT)													
Unctd Free, Brist, & BI Pkg 14,069 1.07 0.34 1.39 0.27 - - 43.2 3.1 Coated Freesheet 4,481 1.03 0.32 1.20 0.24 1.07 0.37 18.9 4.2 Newsprint 5,784 0.87 0.27 1.06 0.17 - - 13.7 2.4 Gwd Specialties 1,668 0.87 0.27 1.25 0.17 - - 4.3 2.6 Coated Groundwood 4,481 1.25 0.34 1.27 0.17 1.17 0.49 21.0 4.7 Tissue / Towel 7,127 0.74 0.14 4.61 - - - 0.3 3.0 Market Pulp 9,858 0.54 0.14 0.90 - - - 15.5 1.6 Subtotal 99,545 0.54 0.14 0.90 - - - 14.3 314.3 3.2 Market Pulp 98,545													
Coated Freesheet 4,481 1.03 0.32 1.20 0.24 1.07 0.37 18.9 4.2 Newsprint 5,784 0.87 0.27 1.06 0.17 - - 13.7 2.4 Gwd Specialties 1,668 0.87 0.27 1.25 0.17 - - 4.3 2.6 Coated Groundwood 4,481 1.25 0.34 1.27 0.17 1.17 0.49 21.0 4.7 Tissue / Towel 7,127 0.74 0.14 4.61 - - - 39.1 5.5 Other Specialties 83 0.99 0.41 1.40 0.26 - - 0.3 3.0 Market Pulp 9.858 0.54 0.14 0.90 - - - 314.3 314.3 3.2 Wastewater (WWT) 99.545 0.67 - - - 67.1 67.1 0.7 Subtotal 99.545 0.55 55.	•	,											
Newsprint 5,784 0.87 0.27 1.06 0.17 - - - 13.7 2.4 Gwd Specialties 1,668 0.87 0.27 1.25 0.17 - - - 4.3 2.6 Coated Groundwood 4,481 1.25 0.34 1.27 0.17 - - 4.3 2.6 Coated Groundwood 4,481 1.25 0.34 1.27 0.17 1.17 0.49 21.0 4.7 Tissue / Towel 7,127 0.74 0.14 4.61 - - - 39.1 5.5 Other Specialties 83 0.99 0.41 1.40 0.26 - - 0.3 3.0 Market Pulp 9,858 0.54 0.14 0.90 - - 314.3 314.3 3.2 Wastewater (WWT) 99,545 0.67 - - 67.1 67.1 0.7 Subtotal 99,545 0.55 -													
Gwd Specialties 1,668 0.87 0.27 1.25 0.17 - - 4.3 2.6 Coated Groundwood 4,481 1.25 0.34 1.27 0.17 1.17 0.49 21.0 4.7 Tissue / Towel 7,127 0.74 0.14 4.61 - - - 39.1 5.5 Other Specialties 83 0.99 0.41 1.40 0.26 - - 0.3 3.0 Market Pulp 9,858 0.54 0.14 0.90 - - - 15.5 1.6 Subtotal 99,545 0.67 - - 314.3 312.2 Other Utilities 99,545 0.67 - 55.1 55.1 0.6 Subtotal 99,545 0.55 55.1 55.1 0.6 55.1 55.1 0.6 Subtotal 99,545 0.55 122.2 122.2 122.2 122.2 122.2 122.2													
Coated Groundwood 4,481 1.25 0.34 1.27 0.17 1.17 0.49 21.0 4.7 Tissue / Towel 7,127 0.74 0.14 4.61 - - - 39.1 5.5 Other Specialties 83 0.99 0.41 1.40 0.26 - - 0.3 3.0 Market Pulp 9.858 0.54 0.14 0.90 - - - 1.55 1.6 Subtotal 99,545 0.67 - - 67.1 67.1 0.71 0.7 Other Utilities 99,545 0.55 55.1 55.1 0.6 Subtotal 99,545 0.55 122.2 122.2 122.2 122.2	•												
Tissue / Towel 7,127 0.74 0.14 4.61 - - - - 39.1 5.5 Other Specialties 83 0.99 0.41 1.40 0.26 - - 0.3 3.0 Market Pulp 9.858 0.54 0.14 0.90 - - - 15.5 1.6 Subtotal 99.545 0.67 - - 314.3 314.3 3.2 Wastewater (WWT) 99.545 0.67 67.1 67.1 0.7 Other Utilities 99.545 0.55 55.1 0.6 Subtotal 99.545 0.55 122.2 122.2 122.2	•	,											
Other Specialties 83 0.99 0.41 1.40 0.26 - - 0.3 3.0 Market Pulp 9,858 0.54 0.14 0.90 - - - 15.5 1.6 Subtotal 99,545 0.67 314.3 314.3 32.2 Wastewater (WWT) 99,545 0.67 67.1 67.1 0.7 Other Utilities 99,545 0.55 51.1 55.1 56.1 Subtotal 99,545 0.55 122.2 122.2 122.2 122.2 122.2						0.17		1.17	0.49				
Market Pulp 9,858 0.54 0.14 0.90 - - - 15.5 1.6 Subtotal 99,545 99,545 0.67 314.3 312.3 32 Wastewater (WWT) 99,545 0.67 67.1 67.1 0.7 Other Utilities 99,545 0.55 55.1 55.1 0.6 Subtotal 99,545 0.55 122.2 122.2 122.2 122.2								-	-				
Subtotal 99,545 314.3 314.3 3.2 Wastewater (WWT) 99,545 0.67 67.1 67.1 0.7 Other Utilities 99,545 0.55 55.1 55.1 0.6 Subtotal 99,545 122.2 122.2 1.2	Other Specialties					0.26		-	-				
Wastewater (WWT) 99,545 0.67 67.1 0.7 Other Utilities 99,545 0.55 55.1 55.1 0.6 Subtotal 99,545 122.2 122.2 1.2	Market Pulp	9,858	0.54	0.14	0.90	-		-	-			15.5	
Other Utilities 99,545 0.55 55.1 55.1 0.6 Subtotal 99,545 122.2		99,545											3.2
Other Utilities 99,545 0.55 55.1 55.1 0.6 Subtotal 99,545 122.2 122.2 1.2	Wastewater (WWT)	99,545	0.67								67.1	67.1	0.7
Subtotal 99,545 122.2 1.2		99,545	0.55								55.1		0.6
Total 99,545 850.2 8.5	Subtotal										122.2	122.2	1.2
	Total	99,545									850.2	850.2	8.5

Tab I - Abbreviations

Abbreviatio	ons used in pulp and paper process descriptions:
AA	Active Alkali
AD	Air Dried, i.e. at 10 % moisture
admt	Air dried metric ton, 10% moisture, 2205 pounds
adst	Air dried short ton, 10% moisture, 2000 pounds
BAD	Bleached Air Died
BD	Bone dried, i.e. at 0% moisture; same as OD, below
BOD	Biochemical oxygen demand
BLS	Black Liquor Solids
Btu	British Thermal Unit; 3412 Btus per kilowatt-hour
CaO	Calcium Oxide
cu ft, ft ³	Cubic feet
cu m, m ³	Cubic meter
cm ²	Square centimeters
G	Giga, 10 ⁹
gpl	Grams per liter
gpm	Gallons per minute
gsm	Grams per square meter
fpm	Feet per minute
fst	Finished short ton, finished paper product, 2000 pounds
HWD	Hardwood
J	Joule
k	Kilo, 10 ³
kg	Kilogram, i.e. 1000 grams
kWh	Kilowatt Hour
L/s	Liters per second
lbs	Pounds
m	Meters, metric
М	Mega, 10 ⁶ a prefix for metric units; also thousand as prefix to English units,
MD	Machine Dried, i.e. typically 4 - 7% moisture
MDfst	Machined Dried finished short ton
MGD	Million gallons per day
Mlb	1000 pounds
MM	Million, 10 ⁶ prefix for English units

m/min	Matara par minuta
m/min	Meters per minute
MOW	Mixed office waste
mtpd, mt/d	Metric tons per day, i.e. equal to 2205 lbs
NaOH	Caustic soda or sodium hydroxide
NSSC	Neutral Sulfite Semi-chemical (also used for green liquor semi-chemical)
0	Oxygen (O ₂)
000	Old corrugated containers
OD	Oven Dried, i.e. at 0 % moisture, same as bone dried
ONP	Old newsprint
Р	Hydrogen peroxide (H ₂ O ₂)
psi	Pounds per square inch
Q	Chelation
sq ft, ft ²	Square feet
stm	Steam
SGW	Stone ground wood
SWD	Softwood
Т	Trillion, 10 ¹²
TIC	Total Installed Cost
TMP	Thermal mechanical pulp
Tpd	Tons per day, i.e. equal to 2000 lbs
Tph	Tons per hour
Тру	Tons per year

11. REFERENCES

- ¹ 2002 Manufacturing Energy Consumption Survey (MECS), Energy Information Administration (EIA), Department of Energy (DOE), Table 3.2, "Fuel Consumption, 2002"
- ² 2004 Statistics, Paper, Paperboard & Wood Pulp, American Forest & Paper Association (AF&PA) <u>www.afandpa.org</u>
- ³ AF&PA 2002 Statistics, Estimated Fuel and Energy Used, year 2000r, page 55
- ⁴ Analytical Cornerstone, published by Paperloop Pup & Paper Benchmarking Services (RISI), 2018 Powers Ferry Road, Atlanta, GA <u>www.paperloop.com</u>
- ⁵ Fisher Pulp & Paper Worldwide V.5.0, published by Fisher International, 50 Water Street, South Norwalk, CT <u>www.fisheri.com</u>
- ⁶ Energy Cost Reduction in the Pulp and Paper Industry, a Monograph; Pulp and Paper Research Institute of Canada (Paprican); November 1999
- ⁷ DW Francis, MT Towers, TC Browne, Energy Cost Reduction in Pulp & Paper Industry -An Energy Benchmarking Perspective⁷, Pulp and Paper Research Institute of Canada (Paprican), 2004
- ⁸ Pulp & Paper Industry, "Energy Best Practices Guidebook", provided by "Focus on Energy", May 2005
- ⁹ IPST's benchmarking model provided by Jaakko Pöyry Consulting, Tarrytown, NY
- ¹⁰ White Paper No.10 Environmental Comparison Manufacturing Technologies for Virgin and Recycled Corrugated Boxes; Paper Task Force; Environmental Defense Fund, Duke University, et al; December 15, 1995
- ¹¹ Energy and Environmental Profile of the U.S. Forest Products Industry Volume 1: Paper Manufacture, Energetics Inc, Columbia Maryland for the U.S. Department of Energy; December 2005
- ¹² A Guide to Energy Savings Opportunities in the Kraft Pulp Industry, AGRA Simons Limited, Vancouver, BC; The Pulp and paper Technical Association of Canada (PAPTAC)
- ¹³ Lars J. Nilsson, Eric D. Larson, Kenneth R. Gilbreath, Ashok Gupta, Energy Efficiency and the Pulp and Paper Industry, Report IE962, American Council for an Energy-Efficient Economy, Washington, D.C.; September 1995. Executive summary is available at <u>www.aceee.org</u>, and then under publication IE962.
- ¹⁴ The Energy Roadmap Pulp and Paper for a Self-Sufficient Tomorrow, Forest Products Association of Canada (FPAC), Appendix 5

- ¹⁵ Bill Francis, Michael Towers, Tom Browne, Benchmarking Energy Use in Pulp and Paper Operations, Paprican.
- ¹⁶ Francis et al, Energy Cost Reduction in Pulp & Paper Industry An Energy Benchmarking Perspective
- ¹⁷ Focus on Energy, Energy Best Practices Guidebook
- ¹⁸ A Guide to Energy Savings Opportunities in the Kraft Pulp Industry, AGRA Simons Limited, Vancouver, BC; The Pulp and Paper Technical Association of Canada (PAPTAC)
- ¹⁹ Nilsson et al, Energy Efficiency and the Pulp and Paper Industry, Report IE962.
- ²⁰ Energy Cost Reduction in the Pulp and Paper Industry, a Monograph (Paprican)
- ²¹ Private correspondence with Metso, February 2006.
- ²² "Energy Cost Reduction in the Pulp and Paper Industry", Chapter 5, Chemical Pulp Mills, Dave McIlroy & Jakub Wilczinsky, Paprican, Nov 1999
- ²³ Nilsson et al., "Energy Efficiency and the Pulp and Paper Industry", Report IE962.
- ²⁴ Ibid.
- ²⁵ Carter, D., et al., "Performance Parameters of Oxygen Delignification" TAPPI J., Vol. 80: No. 10, Oct. 1997
- ²⁶ Germgard, U., Norstedt, A., "A bleach Plant with Presses", Preprints, TAPPUI Pulping Conference (1994), 831-836.
- ²⁷ Energy Cost Reduction in the Pulp and Paper Industry, a Monograph (Paprican).
- ²⁸ Ibid.
- ²⁹ Grace, T.M., 1989a, "Preparation of White Liquor," in Grace T.M. and Malcolm E.W. (eds), Pulp and Paper Manufacture, Vol 5, Alkaline Pulping, TAPPI, Atlanta, GA
- ³⁰ Energy Cost Reduction in the Pulp and Paper Industry, a Monograph (Paprican); p 91.
- ³¹ McCann, D., "Design Review of Black Liquor Evaporators", Pulp and Paper Canada, Vol. 96:4, 1995, p 47-50
- ³² Energy Cost Reduction in the Pulp and Paper Industry, a Monograph (Paprican), p 93.
- ³³ Larson, E., Consonni, S, Katofsky, R, "A Cost-Benefit Assessment of Biomass Gasification Power Generation in the Pulp and Paper Industry," Final Report, October 8, 2003, p. S13

- ³⁴ Turner, P.A. (Tech Ed.), "Water Use Reduction in the Pulp and paper Industry 1994", Canadian Pulp and Paper Association, Montreal, Quebec, November 1994
- ³⁵ Energy Cost Reduction in the Pulp and Paper Industry, a Monograph (Paprican), p 82.
- ³⁶ ASME Power Test Code 4.1 b Industrial Boilers, 1964
- ³⁷ NCASI, Estimated CO2 Emissions Resulting From Compliance With U.S. Federal Environmental Regulations in The Forest Products Industry, Special Report No. 98-02, December 1998
- ³⁸ IPPC Draft reference document on Best Available Techniques in the Pulp and Paper Industry, Institute for Prospective Technological Studies, European IPPC Bureau, Seville, Draft, August 1998
- ³⁹ Ibid.
- ⁴⁰ Beak Consultants, Anaerobic Treatment of TMP/CTMP Wastewater, Prepared for Environmental Canada, Wastewater Technology Center, Burlington, Ontario, 1986
- ⁴¹ Energy Costs, If You Want to Save Energy and Create a Positive Cash Flow, UP Time Information and News, CA Lawton Company, DePere, Wi, April 2001
- ⁴² POM Technologies Americas, 2000 International Park Drive, Birmingham, AL 35243. <u>www.pomta.com</u>
- ⁴³ POM Technologies Americas, Compact Wet End Systems, Birmingham, AL (www.pomta.com)
- ⁴⁴ Kinstrey, R, "Opportunities for Energy Reduction Case Studies", Paperloop's Extra Edition, October 2001
- ⁴⁵ Energy Cost Reduction in the Pulp and Paper Industry, a Monograph (Paprican), p 127.
- ⁴⁶ Internal Report: Felt Tension Trials, Union Camp Corp, May 1983
- ⁴⁷ Internal Report, Weyerhaeuser, February 1993
- ⁴⁸ Nilsson et al., "Energy Efficiency and the Pulp and Paper Industry", Report IE962, p 27.
- ⁴⁹ TAPPI TIP Sheet Paper Machine Energy Conservation, Draft, 2002, TAPPI, Norcross, GA.
- ⁵⁰ San-Ei Regulator Tower Rake, San-Ei Regulator, LTD, Shizuoka, Japan
- ⁵¹ Private correspondence with Metso, February 2006. Note: Metso copyrights Sankey diagram.

- ⁵² Setting the Industry Technology Agenda The 2001 Forest, Wood & Paper Industry Technology Summit, p. 73.
- ⁵³ Sprague, Clyde H., New Concepts in Wet Pressing, Final Report, DOE/CE/40685-T1 (DE86008553) March, 1986
- ⁵⁴ Private correspondence with Ahrens, IPST / GT, Atlanta GA, March 2006.
- ⁵⁵ Energy Cost Reduction in the Pulp and Paper Industry, a Monograph (Paprican), p 89.
- ⁵⁶ Grace, "Preparation of White Liquor".
- ⁵⁷ Null, David, "Benchmarking and Its Applications," TAPPI Engineering, Pulping and Environmental Conference, August, 2005
- ⁵⁸ Blotz, R.P., Hanson III, G.M., Trescot, J.B., Fenelon, R., External Suspension Drying Systems vs. Modern Long Kilns: Total Plant Benefits, Metso, 02/1920/01
- ⁵⁹ Wallberg, O.H.A., Jönsson, A.-S., "Ultrafiltration of Kraft Cooking Liquors from a Continuous Cooking Process", Desalination 180 (1-3):109-118 (2005)
- ⁶⁰ DeMartini, N., Private Communication, May, 2006
- ⁶¹ Pulp and Paper Manufacture, 3rd Ed., Vol. 5, Alkaline Pulping, Grace, Malcolm eds. Ch. XIX, "Black Liquor Evaporation" (T. M. Grace), Tappi, 1989
- ⁶² Adams, T., et al, Kraft Recovery Boilers, Adams, ed., Ch. 3, "Black Liquor Properties", Tappi Press, 1997

- ⁶⁴ Pulp and Paper Manufacture, 3rd Ed., (Grace).
- ⁶⁵ Adams et al, Kraft Recovery Boilers.
- 66 Ibid.
- ⁶⁷ Pulp and Paper Manufacture, 3rd Ed. (Grace),
- ⁶⁸ Adams et al, Kraft Recovery Boilers.
- ⁶⁹ Ibid.
- ⁷⁰ Pulp and Paper Manufacture, 3rd Ed., (Grace).
- ⁷¹ Adams et al, Kraft Recovery Boilers.

⁷² Ibid.

⁶³ Ibid.

- ⁷³ deBeer J., Worrell E., and Blok K., 1993, "Energy Conservation in the Paper and Board Industry in the Long Term" Report 93006, Dept. of Science, Technology and Society, University of Utrecht, The Netherlands
- ⁷⁴ Larson et al, A Cost-Benefit Assessment of Biomass Gasification Power Generation in the Pulp and Paper Industry, p. S13
- ⁷⁵ Nilsson et al., "Energy Efficiency and the Pulp and Paper Industry", IE962, p. 44.
- ⁷⁶ Ihren N., 1994, "Optimization of Black Liquor Gasification Systems", Licentiate thesis, Department of Chemical Engineering and Technology, Royal Institute of Technology, Stockholm, Sweden
- ⁷⁷ Landalv, Invar, "Update on the Chemrec DP1 Pilot Gasifier", IEX Annex XV meeting Feb 20-22, 2006
- ⁷⁸ Nilsson et al., "Energy Efficiency and the Pulp and Paper Industry", IE962, p. 48.
- ⁷⁹ Subbiah A, Nilsson L.J., and Larson E.D., 1995, "Energy Analysis of a Kraft Pulp Mill: Potential for Energy Efficiency and Advance Biomass Cogeneration," Proceedings from the 17th Industrial Energy Technology Conference, April 5-7, Houston, TX
- ⁸⁰ Sinquefield, S, Zeng, X, Ball, B, "In situ Causticizing for Black Liquor Gasifiers", DOE project #DE-FC26-02NT41492, December 2, 2005
- ⁸¹ Thorp, B, Raymond, D, "Agenda 2020 Reachable Goals Can Double P&P Industry's Cash Flow," PaperAge, Part One - September 2004, p 18 and Part Two – October 2004, p 16.
- ⁸² Thorp, Ben, "Transition of Mills to Biorefinery Model Creates New Profit Streams," Pulp and Paper, November 2005, p35.
- ⁸³ Larson, Eric D., Princeton University, work in progress.

Disclaimer: Jacobs Engineering Group prepared this report for use by AIChE and DOE. This report reflects the professional opinion of Jacobs. Except where noted, Jacobs and GT/IPST have not independently verified facts or information supplied by third parties, and expresses no opinion as to the accuracy or completeness of those facts, information or assumptions. Any parties using the opinions expressed in this report should thoroughly understand the basis for those opinions before making any decisions. This report is not intended to be utilized or employed in representing or promoting the sale of securities. Jacobs Engineering Group, GT/IPST, AIChE and DOE, nor any person acting on their behalf make any warranties, expressed or implied, nor assumes any liability with respect to the use of any information, technology, engineering or discussions in this report.