CHP Integrated with Packaged Boilers

EE0004354 CMCE, Inc. and Altex Technologies Corporation 10/2011 to 3/2013

> Carlo Castaldini, President, CMCE, Inc. carlo@cmc-engineering.com 408-314-0382

U.S. DOE Industrial Distributed Energy Portfolio Review Meeting Washington, D.C. June 1-2, 2011

EXECUTIVE SUMMARY

- Surveyed Boiler OEM Designs for Key Burner Retrofit Features
- Developed BBEST Design Specifications to Address Population
- Developed Engineering and Target Specifications
- Developed PI&D and Key Component Designs
- Engineered Microturbine Changes for Simple Cycle
- Engineered and Designed Integrated Burner-Microturbine Package
- Engineered and Designed New Ultra Low NOx Combustor
- Developed Integrated Control Logic and Initiated Procurement
- Executed Purchase of Microturbine and Auxiliary Components
- Expanded Test Laboratory with New Firetube Boiler for Lab Testing
- Secured Host Site in California
- Initiated Fabrication of BBEST Components

PROJECT OBJECTIVE

- Engineer, Design, Fabricate, and Field Demonstrate a Boiler-Burner-Energy System Technology (BBEST) to Replace Conventional Low NOx Burners on Packaged Boilers (5-50 MMBtu/hr)
- BBEST: Integration of a 100 kW Simple Cycle Microturbine with an Ultra Low NOx Burner into one Assembly with Integrated Controls
 - CARB 2007 CHP Compliance
 - 9-ppm NOx Boiler Compliance
 - 3,800 Btu/kWh Heat Rate with Corresponding Reductions in CO₂ by 0.18-0.64 tons/MWh (0.40 tons/MWh average)
 - Integrated Boiler and Microturbine Controls
 - Improved Boiler Efficiency Compared to Conventional 9-ppm Burners
 - Reliability on Par with Conventional Burners
 - Other Synergistic Benefits for Boiler Operation

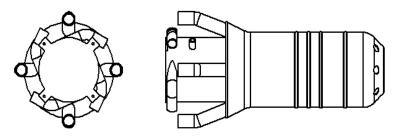
STATE OF ART: CONVENTIONAL DG

- Problem: Today's CHP Focuses on Power *First* •
 - Difficult Market Entry •
 - Limited to Niche Markets •

Where's the thermal load? **Problems:** Low Quality Waste Heat Recovery with Integrated Heat Exchanger (90 – 140F)

- Poor Efficiency (~60%)
- Long Payback (5+)
- Major Finger Pointing
- No Unified Process Controls

STATE OF THE ART: BOILER PROBLEMS


TECHNICAL APPROACH

BBEST

Most Cost-Effective Combined Heat and Power CHP System Plug-and-Play Retrofit

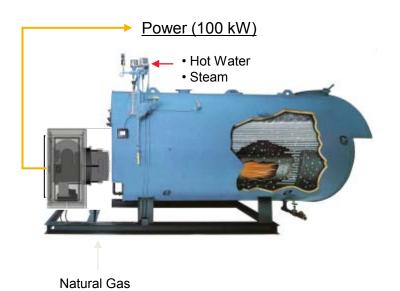
<u>Innovations:</u>

 Integrated the Exhaust from a CARB-Compliant Simple Cycle Microturbine with a Commercially Proven Ultra Low NOx Burner

- Operates Like a Conventional Burner that Co-generates Peak Efficiency Power
- Microturbine Flow Energy Recovery to Increase Energy Efficiency
- Low Cost for Quick Payback (<2 yrs)</p>
- Industrial Reliability and User Friendly

TECHNICAL APPROACH

Leadership Positions:


• CHP Experience of CMCE with Commercialization of Altex Burner Technologies

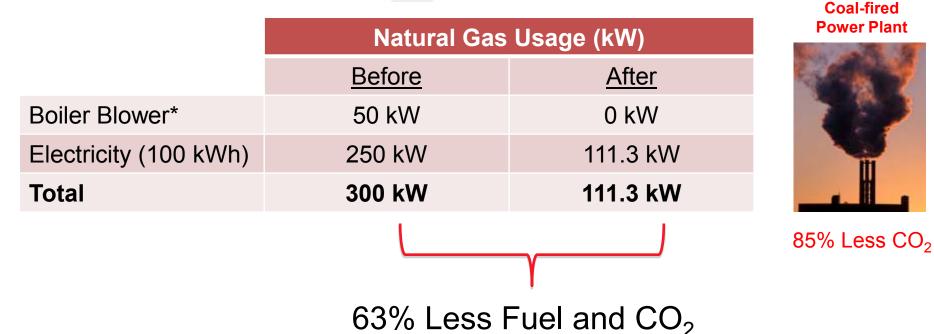
Market Execution:

- Investment into Commercialization
- Securing Key Suppliers of Key Components
- Engineering and Building Proprietary Systems
- Securing Boiler OEM Partnership
- Building Commercial Pipeline
- Securing Industry Representation
- Executing Field Services Agreements

TRANSITION & DEPLOYMENT

Boilers

- 5-50 MM BTU/hr Firing Rate
- Industrial, Commercial, Municipal
- Population Estimate: 450K worldwide


MEASURE OF SUCCESS

Gas-fired Power Plant 40% Efficient

BBEST

BENEFITS

- ENERGY BENEFITS:
 - 3,000 Btu/kWh savings compared to Modern Central Station; 6,000
 Btu/kWh savings compared to Coal Plant
 - Energy savings = (0.5*3,000+0.5*6,000 Btu/kWh)*(net generation of SCMT)*(no of units)* (load factor hrs/yr)
 - $\sim 130,000$ U.S. Installations == 0.4×10^{15} Btu/yr (0.4 Quads)
- ECONOMIC BENEFITS:
 - Generating Power Cheapest Way Possible @ 2.5 c/kWh (\$0.70/therm)
 - \$85,000-\$120,000/yr savings (electricity and boiler efficiency gains)
- ENVIRONMENTAL BENEFITS:
 - 33 million tons/yr CO₂ Reduction

 $\frac{tonsCO_2}{yr} = 10^6 * \left(0.5 * \frac{0.77lbC}{lbgas} * \frac{lbgas}{23,600Btu} + 0.5 * \frac{0.87lbC}{lbcoal} * \frac{lbcoal}{12,000Btu} \right) * \frac{44}{12} \frac{0.4 * 10^9 MBtu}{(yr) * 2,000lb / ton} = 33 * 10^6 MBtu$

COMMERCIALIZATION APPROACH

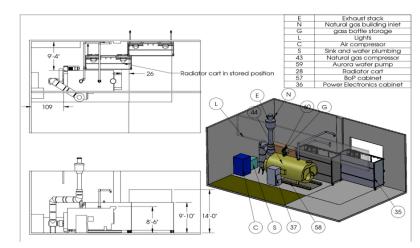
- Founded a new company (Leva Energy, Inc.) to commercialize BBEST
- Funded by CMCE, Inc. and Altex Technologies Corporation
- Receiving investor/customer interest (lead funder identified)
- Growing pipeline
- Scale beta unit design to fabricate/manufacture commercial units
- Target high-rate markets where combo of incentive/regulation exists
- Established Supply, Product and OEM channels

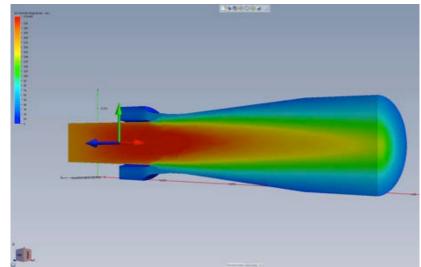
PROJECT MANAGEMENT & BUDGET

- Total Project Investment: \$2.827 million (incl. 40% cost share)
- Accelerated project timeline to meet NOx compliance mandates in CA, commercialization, and market opportunities
- On track to complete project by 2012 (depending on Host Site)

Task	Completion %	Complete Date	
Task 1	15	March 2013	
Task 2	50	June 2011	
Task 3	60	September 2011	
Task 4	10	September 2011	
Task 5	10	October 2011	
Task 6	0	November 2011	
Task 7	0	January 2012	
Task 8	0	March 2012	

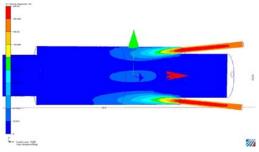
Project Budget					
	FY11	FY12	FY13	FY14	
DOE Investment	\$849,949	\$585,316	\$250,349		
Cost Share	\$251,075	\$323,116	\$570,199		
Project Total	\$1,098,024	\$908,432	\$820,548		

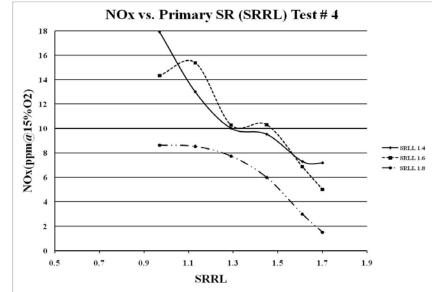

Cost Share Details (approximate):


- California Energy Commission: \$850,000
- Recipients: \$150,000
- Host Site: \$114,000

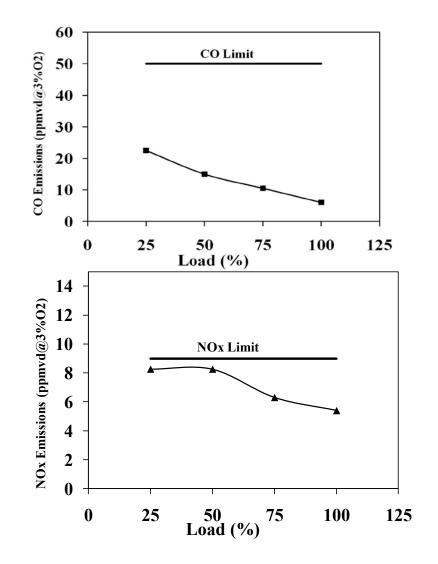
RESULTS & ACCOMPLISHMENTS

Major Accomplishments:


- Secured Key Suppliers
- Finalized Product Design/Footprint
- Performed CFD Testing on Key Components
- Initiated Integrated Control Development
- Building Boiler Test Cell
- Established Boiler OEM Partnerships for Testing/Integration


RESULTS & ACCOMPLISHMENT

- Combustor Bench Scale Testing Concluded
- Detailed Modeling of Combustor Completed



- Replacement Combustor Designed and Initiated Materials Procurement
- Microturbine Housing Modifications Designed

RESULTS & ACCOMPLISHMENT

- CFD Modeling of Integration Concluded
- BBEST P&ID and Dimensions Finalized
- Integrated Burner-Microturbine Control Logic Established
- Burner Operation Matched with Fixed Turbine Exhaust
- Preliminary BBEST Emissions Performance Established at Bench Scale

PATH FORWARD

- Complete Fabrication of Microturbine Combustor / Initiate Testing
- Complete Burner and System Interface Fabrication
- Complete Integrated Burner-Microturbine Controls
- Assemble and Lab Test BBEST on Commercial Boiler
- Optimize System and Components as Necessary
- Install at Host Site
- Perform Field Application Tests
- Finalize Commercialization
- Report Final Results to DOE

QUESTIONS?