
Department of Energy Quality Managers
Software Quality Assurance Subcommittee

Reference Document SQAS22.01.00 - 2002

Software Quality Assurance Control

of

Existing Systems

September 2002

United States Department of Energy

Albuquerque Operations Office

Abstract

Existing software systems often represent significant investments and play important
roles in the every day businesses of organizations. Many of these systems are
experiencing support problems. To meet current and future operational needs,
organizations need to plan how best to address these support issues. Some of the issues
to consider are presented in this document with references to related standards for further
detailed examination. Two tutorials, one based on software maintenance and another
detailing a baseline recovery strategy are included.

SQA Control of Existing Systems SQAS22.01.00-2002

Acknowledgments

The Software Quality Assurance Subcommittee (SQAS) of the Nuclear Weapons
Complex Quality Managers initiated Work Item #22 to develop a quality report
addressing maintenance and to some extent, the broader support concerns of existing
software systems. Support for existing systems, particularly those in use for a number of
years, is a major concern. The SQAS members who have contributed to this work item
are listed below.

Brenda Coblentz

DOE HQ/CIO

Ray Cullen, Editor SR
Gary Echert

NNSA/DOE/AL

Phillip Dickert SR
Mike Elliott, Vice Chair

AWE UK

Tom Gonzales LA
Orval Hart

LA

Phil Huffman PX
Ken Koch LA
Cathy Kuhn, Editor

KC

Michael Lackner

KC

Jonathan Parker

LA

Dave Peercy SA
Maysa Peterson

LA

Uma Reddi LL
Edward Russell, Chair

LL

Leslie Schaffer PX/AAO
Nancy Smith SR
Robert Smith INEEL
Nancy Storch

LL

Debby Tate ANL-W

Preface
The current version of this document can be found on the Software Quality Assurance
Subcommittee website at http://cio.doe.gov/sqas .

This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government, any agency thereof or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof or any of their contractors or subcontractors.

 Page 2 of 12

http://cio.doe.gov/sqas

SQA Control of Existing Systems SQAS22.01.00-2002

Table of Contents

Acknowledgments ... 2

Preface.. 2

1. Introduction... 4

2. Problems with Existing Software Systems.. 4

3. Explanation of Concepts... 4

4. Management and Quality Control Issues ... 6

5. Decision Options.. 7

6. Conclusion ... 8

APPENDIX A. References .. 9

APPENDIX B. Software Maintenenace Tutorial ... 11

APPENDIX C. Baseline Recovery Tutorial... 12

List of Illustrations

Figure 1. Supportability Concept .. 5

Figure 2. Decision Tree for Existing Systems ... 7

Page 3 of 12

SQA Control of Existing Systems SQAS22.01.00-2002

1. Introduction

The purpose of this document is to provide information and guidance on the maintenance
and support needs of existing software systems. Some of the issues to consider are
introduced with an explanation of concepts. Ideas on improvement strategies are also
provided as well as references to supporting standards for detailed information.

The document’s intended audience includes managers of operational software systems
and/or lead developers responsible for the maintenance of existing systems. It is hoped
that this paper and the supporting information will lead to decisions on providing cost
effective solutions to improvements in the overall quality of existing software systems.
This paper is supported by two tutorials: software maintenance (Appendix B) and a
baseline recovery strategy (Appendix C).

2. Problems with Existing Software Systems

An existing software system is any software application that is currently in use. It
includes everything from newly released software to those that have existed for years.

Many systems reach a point sometime during their operational life when they need to be
thoroughly examined to determine whether they are supportable and can continue to be
supported. Some indicators of potential maintenance problems include:

• It has existed longer than originally planned.
• Its changes have been poorly captured.
• How it works is difficult to understand.
• It resists modification; i.e., the incorporation of changes is difficult, unexpected

defects show up when upgrades or enhancements occur.
• Its change management process is inadequate or non-existent.
• Its documentation is minimal or non-existent; thus, maintenance is performed using

source code.
• Its hardware or primary programming language is no longer supported by industry.

If a system exhibits any of these attributes, then further investigation of root causes of the
problem(s) should be considered along with an improvement strategy.

3. Explanation of Concepts

Software maintainability is defined as the ease with which a software system or
component can be modified to correct faults, improve performance or other attributes, or
adapt to a changed environment. Also, it is considered to be the set of attributes that bear
on the effort needed to make specified modifications.

Software maintenance is defined as those activities that constitute modification of a
software product after delivery, to correct faults, improve performance or other attributes,
or to adapt the product to a changed environment. Typical maintenance activities include

Page 4 of 12

SQA Control of Existing Systems SQAS22.01.00-2002

analyzing change requests or problems to the installed software, modifying,
documenting, and testing agreed changes and updating the complete operational baseline
in the configuration management system.

The key point regarding maintenance is that after delivery the product or system may be
in a different environment from its creation; so, appropriate quality controls need careful
consideration to ensure the system’s supportability is not degraded.

Supportability is defined as attributes of software processes (e.g., development,
transition, operation, support), products (e.g., documentation, source code, test suites),
and environment resources (e.g., facilities, support systems, support personnel) that
enhance the capability to support software.

Support is defined as all the activities required to be carried out during the software’s
operational use to ensure the software is adequately available for its intended purpose.
Support activities include software maintenance as well as support services that extend
the maintenance change activities. Such support services might include routine back-up
and recovery, disaster recovery, "help desk" assistance, delivery of the updated software
product to the field, replacement of the operational software in the field, and other
activities that ensure the software product is operationally available.

In short, supportability includes maintainability and support includes maintenance. This
distinction is not always made so precisely, and organizations will typically mix and
match attributes and activities to fit their specific business needs. Although this paper
makes some effort to clarify these terms, it is more important that the attribute
characteristics and activities are understood to be maintenance/support concerns than
specifically what terminology is applied.

Supportability takes the concept of Maintainability a stage further. It is a more holistic
approach to the control and management of systems. Supportability should be considered
at the onset of a project and carried through into the maintenance/support phase. A
system that exhibits support problems may need a quality evaluation of its supportability.
Elements of software supportability are illustrated in Figure 1.

Software Supportability

Life Cycle
Processes

Maintain-
ability

Support
Resources

Figure 1. Supportability Concept

Page 5 of 12

SQA Control of Existing Systems SQAS22.01.00-2002

• Life cycle processes are the management of the development life cycle and

supporting techniques of configuration management, verification, and validation.
• Maintainability deals with the specific product items such as documentation, details

on the source code and the test suites used to confirm operational reliability.
• Support resources encompass the people issues, their competency and training

needs, and the support systems in terms of tools and infrastructure.

Further details and how to conduct quality evaluations of a system’s supportability can be
found in the Air Force Operational Test Evaluation Center (AFOTEC) Standards 99-102,
Volumes 2, 3 and 5.

4. Management and Quality Control Issues

Most systems eventually reach a point when questions arise about their maintainability
and supportability. Some systems are supportable for years, while others have
supportability problems from initial deployment. Many of these problems are indicative
of insufficient resources being applied to system support. Lack of management
commitment may be evident in terms of allocation of resources, funding and priority.
These obstacles may be the most important challenge to an improvement strategy.

The key to having cost-effective systems is to have applied the correct quality controls
during initial development and implemented good recovery strategies to existing systems.
Quality controls used during maintenance may need to be different than those used when
the software was created.

There are a number of important issues when considering improving the quality of
existing software systems. Some are:

• Most likely the system is being managed in a different environment than it was

developed.
• Customers or users should be involved and their expectations need to be carefully

considered, particularly in terms of failures or errors and availability.
• The people involved in support of the system may not be the same ones that

developed it.
• How the system was developed or constructed may not necessarily be obvious to

current maintainers.
• Documentation and a change management process may not be adequate.
• Planning for adequate resources and identification of their sources needs to be done.
• Integration into information architectures or modernization plans needs to be

considered.

There are good reasons to consider improving the quality of existing systems. If a system
is becoming difficult to support, it may well hinder an organization’s ability to achieve
business success. Support costs can be up to 80% of the system’s overall life cycle cost;
quality improvements can provide a clear return on investment.

Page 6 of 12

SQA Control of Existing Systems SQAS22.01.00-2002

5. Decision Options

When a system has reached a point where its quality is questioned, it may be prudent to
carry out a supportability assessment as part of an overall investigation on problems and
root causes. It is equally important to understand the range of options that can be
considered in a forward strategy.

The Decision tree below depicts some of these options:

Do Nothing
Limited Life

Change/Update
Manage Change

Gather
Information

Carry On

Change/Update
Manage Change

Reverse Engineer
Re-Engineer

Parts

Change/Update
Manage Change

Reverse Engineer
Re-Engineer

Entire System

Improve

New Acquisition Stop Using it Develop New
System

Retirement

Decision TreeExisting System
Decision Tree

Figure 2. Decision Tree for Existing Systems

The Carry On path can present risks that need to be managed. The do nothing option,
over time, will allow the system to become less useful until its reliability is
fundamentally questioned, or it becomes incompatible with its environment and is no
longer functional.

A more proactive approach under Carry On would be to gather information about the
system as it is used. This can then feed into an improvement program, new acquisition
or new development, as indicated by the arrows.

If the decision is to actively improve the system performance or quality, this can be
achieved in part or as an entire system. Reverse Engineering or Re-Engineering
support these improvement initiatives.

Reverse Engineering is defined as the process of analyzing a system to identify the
system components and their interrelations, and to create representations of the system in
another form or higher level of abstraction than the source code. It helps the
understanding of how the system works, but in itself does not actively change anything.
It can be equated to design recovery from an existing system.

Page 7 of 12

SQA Control of Existing Systems SQAS22.01.00-2002

Re-Engineering is the examination and alteration of a system to reconstitute it in a new
form and the subsequent implementation of the new form. Hopefully, the new form will
improve performance and overall quality, and thereby regain characteristics of
maintainability and supportability.

During any improvement activity, keeping track of changes/updates and managing
those changes is needed to ensure continued understanding of the system's
supportability. These options are further explained in the Baseline Recovery Tutorial,
found in Appendix C.

The Retire path offers three options for ceasing usage of the system. The decision can be
to apply a new acquisition strategy, accept that the system will no longer be required by
the organization in the future (stop using it), or develop a new system. If it is
determined that a new system can be acquired or developed, it would be cost-effective to
use as much good quality information about the existing system as possible during the
acquisition or development.

6. Conclusion

This document has only provided the reader with a brief description of maintainability
and supportability concerns, and possible actions that can be taken for improving the
quality of existing systems to make maintenance and support more effective.

Appendix B provides further information on maintenance and options for unsupportable
systems. Appendix C provides further information on baseline recover for achieving
quality improvements. For information on conducting a supportability assessment,
review AFOTEC 99-102, Volumes 2, 3, and 5 references as described in Appendix A.

Page 8 of 12

SQA Control of Existing Systems SQAS22.01.00-2002

APPENDIX A. REFERENCES

ISO/IEC 9126 - 1991, Software Quality Characteristics
Website: http://www.iso.ch/iso/en/ISOOnline.frontpage

Presents quality characteristics for software and the type of metrics to put in place to
demonstrate the attainment of quality software. Can be used to numerically baseline a
system's current status in terms of quantifiable characteristics from which to track
improvements.

IEEE 1219-1993, Standard for Software Maintenance
Website: http://www.computer.org

Provides a seven-step model for the process of good quality software maintenance. The
requirements for control, management, planning and documentation are highlighted. The
appendix provides methods and tools, and discusses reverse engineering.

D. E. Peercy and N. Chapin, "Interview with David E. Peercy", Journal of Software
Maintenance: Research and Practice, Vol 9, 177-200, 1997.
Website: http://www.dur.ac.uk/CSM

This paper provides some concepts of risk and how it is applied in the context of software
maintenance. The presentation style is in the form of an interview with maintenance-
related questions and maintenance insight answers.

D. E. Peercy, "Risk Assessment in the Maintenance Environment," IEEE
Proceedings of International Conference on Software Maintenance, 1987.
Website: http://www.computer.org

This paper describes a comprehensive methodology for software supportability risk
assessment. The objective was to identify which quality factor characteristics are
important for supportability of the particular application and to develop an appropriate
process for risk measurement. Statistical information gathered through over 300 project
maintenance evaluations and surveys was used to establish supportability risk correlation
equations. These equations along with estimated support activities, estimated available
resources, and supportability characteristic evaluations provide guidance for assessing the
supportability of a particular application.

AFOTEC 99-102, Volume 2, Software Support Life Cycle Process Evaluation
Website: http://web2.deskbook.osd.mil/htmlfiles/DBY_af_170-3-.asp

This volume provides a methodology and a questionnaire for evaluating the effect of
planned or actual software support life cycle processes on the supportability of a software
application. Characteristics of life cycle processes such as project planning,
requirements, design, implementation, testing, interfaces and configuration management
are evaluated.

Page 9 of 12

http://www.iso.ch/iso/en/ISOOnline.frontpage
http://www.computer.org/
http://www.dur.ac.uk/CSM
http://www.computer.org/
http://web2.deskbook.osd.mil/htmlfiles/DBY_af_170-3-.asp

SQA Control of Existing Systems SQAS22.01.00-2002

AFOTEC 99-102, Volume 3, Software Maintainability Evaluation
Website: http://web2.deskbook.osd.mil/htmlfiles/DBY_af_170-3-.asp

This volume provides a methodology and a questionnaire for evaluating the effect of
software product characteristics on the maintainability/supportability of the software
application. Software characteristics are expressed in terms of various documentation
elements and the source code categorized by specific quality factors such as modularity,
simplicity, consistency, traceability, and so forth.

AFOTEC 99-102, Volume 5, Software Support Resources Evaluation
Website: http://web2.deskbook.osd.mil/htmlfiles/DBY_af_170-3-.asp

This volume provides a methodology and a questionnaire for evaluating the effect of
software support resource characteristics on the supportability of the software
application. Software support resources include the plans, support systems and
equipment, support personnel, and physical facility resources required to support a
software system after deployment. This evaluation method assesses the presence or
reasonableness of the processes needed to support a “fielded” software system.

Society of Automotive Engineers (SAE) Supportability Documents
JA 1004, Software Supportability Program Standard (July 1998)
JA 1005, Software Supportability Program Implementation Guide (May 2001)
JA 1006, Software Support Concept (June 1999)
Website: http://www.sae.org

The SAE G-11 Software Committee has published a suite of documents that provide
further background for achieving supportability in software programs through life cycle
engineering activities. The software support concept guideline provides a framework
through which support and supportability activities can be identified for COTS and
custom developed software products. The software supportability program standard and
implementation guide identify recommended practices for the achievement of suitable
supportability.

Page 10 of 12

http://web2.deskbook.osd.mil/htmlfiles/DBY_af_170-3-.asp
http://web2.deskbook.osd.mil/htmlfiles/DBY_af_170-3-.asp
http://www.sae.org/

SQA Control of Existing Systems SQAS22.01.00-2002

APPENDIX B. SOFTWARE MAINTENENACE TUTORIAL

The main theme of the tutorial is how to approach maintenance before and after it is in
production. It introduces the concepts of:

• What software maintenance is, when it occurs, and what it costs.
• How maintenance can be considered at each stage of the life cycle.
• What legacy systems are and how to deal with them.
• The terminology for reverse engineering and re-engineering.

Included is a discussion on the various types of maintenance. The cost of maintenance is
highlighted with a quantitative breakdown to illustrate the relative cost for various types
of maintenance activities.

The problems with software’s constant change are further emphasized, including a
pictorial representation of how software reliability can deteriorate over time. A
comparison of maintenance with good and bad configurations is made, emphasizing the
need to apply a systematic approach (software engineering) during development. Issues
of poor maintenance are listed together with their implications.

Software Maintenance Tutorial

SQAS22_02_00-200
2.ppt

Page 11 of 12

SQA Control of Existing Systems SQAS22.01.00-2002

APPENDIX C. BASELINE RECOVERY TUTORIAL

Baseline Recovery - The Implementation of QA to Existing Software Systems

This tutorial presents a strategy of what to do if a system is found to be of a poor quality;
e.g., has an incomplete or out-of-date baseline or configuration.

A framework of three main activities is presented. These consist of (i) capturing current
information about the existing baseline, (ii) identifying the status and actions needed to
improve with decision on how this can be achieved and (iii) actions to put in place that
will demonstrate overall control.

The process makes use of a software register or inventory listing of software items as the
basis from which to gather information. The initial stage is to capture as much
information about the current system as possible. What to capture and ways to do it are
listed. The system’s history should feed into current arrangements and influence future
actions. A range of Configuration Items (CI) that could constitute a baseline including
types of documents is listed with some fundamental questions to be asked. Then, using
the V-model as a framework, a means to improve CIs is presented.

Two main methods to these improvements are suggested, either through a specific
program of improvement actions or via a change control system, which utilizes
knowledge gained when changes occur. Demonstration of control provides a way in
which basic information can be gathered and presented. The number of errors or bugs
reported during operations should be captured as should the impact and the reasons why
they occurred. Examples of actions determined for various software products in a
register are given, as are the status and detailed actions.

Baseline Recovery Tutorial

SQAS22_03_00-200
2.ppt

Page 12 of 12

	 1. Introduction
	2. Problems with Existing Software Systems
	3. Explanation of Concepts
	4. Management and Quality Control Issues
	5. Decision Options
	
	6. Conclusion
	APPENDIX A. REFERENCES
	APPENDIX B. SOFTWARE MAINTENENACE TUTORIAL
	APPENDIX C. BASELINE RECOVERY TUTORIAL

